ArduinoCore-samd/cores/arduino/Uart.cpp

240 lines
5.8 KiB
C++

/*
Copyright (c) 2015 Arduino LLC. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "Uart.h"
#include "Arduino.h"
#include "wiring_private.h"
#define NO_RTS_PIN 255
#define NO_CTS_PIN 255
#define RTS_RX_THRESHOLD 10
Uart::Uart(SERCOM *_s, uint8_t _pinRX, uint8_t _pinTX, SercomRXPad _padRX, SercomUartTXPad _padTX) :
Uart(_s, _pinRX, _pinTX, _padRX, _padTX, NO_RTS_PIN, NO_CTS_PIN)
{
}
Uart::Uart(SERCOM *_s, uint8_t _pinRX, uint8_t _pinTX, SercomRXPad _padRX, SercomUartTXPad _padTX, uint8_t _pinRTS, uint8_t _pinCTS)
{
sercom = _s;
uc_pinRX = _pinRX;
uc_pinTX = _pinTX;
uc_padRX = _padRX ;
uc_padTX = _padTX;
uc_pinRTS = _pinRTS;
uc_pinCTS = _pinCTS;
}
void Uart::begin(unsigned long baudrate)
{
begin(baudrate, SERIAL_8N1);
}
void Uart::begin(unsigned long baudrate, uint16_t config)
{
pinPeripheral(uc_pinRX, g_APinDescription[uc_pinRX].ulPinType);
pinPeripheral(uc_pinTX, g_APinDescription[uc_pinTX].ulPinType);
if (uc_padTX == UART_TX_RTS_CTS_PAD_0_2_3) {
if (uc_pinCTS != NO_CTS_PIN) {
pinPeripheral(uc_pinCTS, g_APinDescription[uc_pinCTS].ulPinType);
}
}
if (uc_pinRTS != NO_RTS_PIN) {
pinMode(uc_pinRTS, OUTPUT);
EPortType rtsPort = g_APinDescription[uc_pinRTS].ulPort;
pul_outsetRTS = &PORT->Group[rtsPort].OUTSET.reg;
pul_outclrRTS = &PORT->Group[rtsPort].OUTCLR.reg;
ul_pinMaskRTS = (1ul << g_APinDescription[uc_pinRTS].ulPin);
*pul_outclrRTS = ul_pinMaskRTS;
}
sercom->initUART(UART_INT_CLOCK, SAMPLE_RATE_x16, baudrate);
sercom->initFrame(extractCharSize(config), LSB_FIRST, extractParity(config), extractNbStopBit(config));
sercom->initPads(uc_padTX, uc_padRX);
sercom->enableUART();
}
void Uart::end()
{
sercom->resetUART();
rxBuffer.clear();
txBuffer.clear();
}
void Uart::flush()
{
while(txBuffer.available()); // wait until TX buffer is empty
sercom->flushUART();
}
void Uart::IrqHandler()
{
if (sercom->isFrameErrorUART()) {
// frame error, next byte is invalid so read and discard it
sercom->readDataUART();
sercom->clearFrameErrorUART();
}
if (sercom->availableDataUART()) {
rxBuffer.store_char(sercom->readDataUART());
if (uc_pinRTS != NO_RTS_PIN) {
// RX buffer space is below the threshold, de-assert RTS
if (rxBuffer.availableForStore() < RTS_RX_THRESHOLD) {
*pul_outsetRTS = ul_pinMaskRTS;
}
}
}
if (sercom->isDataRegisterEmptyUART()) {
if (txBuffer.available()) {
uint8_t data = txBuffer.read_char();
sercom->writeDataUART(data);
} else {
sercom->disableDataRegisterEmptyInterruptUART();
}
}
if (sercom->isUARTError()) {
sercom->acknowledgeUARTError();
// TODO: if (sercom->isBufferOverflowErrorUART()) ....
// TODO: if (sercom->isParityErrorUART()) ....
sercom->clearStatusUART();
}
}
int Uart::available()
{
return rxBuffer.available();
}
size_t Uart::availableForWrite()
{
return txBuffer.availableForStore();
}
int Uart::peek()
{
return rxBuffer.peek();
}
int Uart::read()
{
int c = rxBuffer.read_char();
if (uc_pinRTS != NO_RTS_PIN) {
// if there is enough space in the RX buffer, assert RTS
if (rxBuffer.availableForStore() > RTS_RX_THRESHOLD) {
*pul_outclrRTS = ul_pinMaskRTS;
}
}
return c;
}
size_t Uart::write(const uint8_t data)
{
if (sercom->isDataRegisterEmptyUART() && txBuffer.available() == 0) {
sercom->writeDataUART(data);
} else {
// spin lock until a spot opens up in the buffer
while(txBuffer.isFull()) {
uint8_t interruptsEnabled = ((__get_PRIMASK() & 0x1) == 0);
if (interruptsEnabled) {
uint32_t exceptionNumber = (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk);
if (exceptionNumber == 0 ||
NVIC_GetPriority((IRQn_Type)(exceptionNumber - 16)) > SERCOM_NVIC_PRIORITY) {
// no exception or called from an ISR with lower priority,
// wait for free buffer spot via IRQ
continue;
}
}
// interrupts are disabled or called from ISR with higher or equal priority than the SERCOM IRQ
// manually call the UART IRQ handler when the data register is empty
if (sercom->isDataRegisterEmptyUART()) {
IrqHandler();
}
}
txBuffer.store_char(data);
sercom->enableDataRegisterEmptyInterruptUART();
}
return 1;
}
SercomNumberStopBit Uart::extractNbStopBit(uint16_t config)
{
switch(config & HARDSER_STOP_BIT_MASK)
{
case HARDSER_STOP_BIT_1:
default:
return SERCOM_STOP_BIT_1;
case HARDSER_STOP_BIT_2:
return SERCOM_STOP_BITS_2;
}
}
SercomUartCharSize Uart::extractCharSize(uint16_t config)
{
switch(config & HARDSER_DATA_MASK)
{
case HARDSER_DATA_5:
return UART_CHAR_SIZE_5_BITS;
case HARDSER_DATA_6:
return UART_CHAR_SIZE_6_BITS;
case HARDSER_DATA_7:
return UART_CHAR_SIZE_7_BITS;
case HARDSER_DATA_8:
default:
return UART_CHAR_SIZE_8_BITS;
}
}
SercomParityMode Uart::extractParity(uint16_t config)
{
switch(config & HARDSER_PARITY_MASK)
{
case HARDSER_PARITY_NONE:
default:
return SERCOM_NO_PARITY;
case HARDSER_PARITY_EVEN:
return SERCOM_EVEN_PARITY;
case HARDSER_PARITY_ODD:
return SERCOM_ODD_PARITY;
}
}