Compare commits

...

14 commits
2dim ... ndim

Author SHA1 Message Date
Zoltán Vörös
2867ec9f13 ulab_ndarray_type is extern now 2019-12-31 11:03:11 +01:00
Zoltán Vörös
05b6e0a464 ndim code backup without any particular milestone 2019-12-24 08:17:28 +01:00
Zoltán Vörös
24c2370a3d fixed slicing error in ndarray.c 2019-12-10 19:37:18 +01:00
Zoltán Vörös
e6e781f49a implemented slice assignments 2019-12-08 21:52:57 +01:00
Zoltán Vörös
e911c9cc74 fixed slice length function 2019-12-05 20:53:27 +01:00
Zoltán Vörös
b422a0c0e3 removed separate iterative print function 2019-12-04 21:51:36 +01:00
Zoltán Vörös
5bac1c7e37 added linspace to numerical 2019-12-04 07:13:21 +01:00
Zoltán Vörös
d30916e105 added linspace to numerical 2019-12-04 07:13:01 +01:00
Zoltán Vörös
5d63913c88 added fft functions 2019-12-04 07:05:25 +01:00
Zoltán Vörös
8756100df1 removed unused macro in vectorise.h 2019-12-03 22:55:14 +01:00
Zoltán Vörös
07186860ab simplified vectorise.c, and added the polynomial functions 2019-12-03 22:42:29 +01:00
Zoltán Vörös
d2750454ce added test notebook 2019-12-02 21:55:36 +01:00
Zoltán Vörös
46a9a6c941 added test notebook 2019-12-02 21:48:41 +01:00
Zoltán Vörös
4996952edb backup of code for arbitrary rank 2019-12-02 21:32:40 +01:00
15 changed files with 4337 additions and 8423 deletions

View file

@ -87,35 +87,26 @@ mp_obj_t fft_fft_ifft_spectrum(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im,
ndarray_obj_t *re = MP_OBJ_TO_PTR(arg_re);
uint16_t len = re->array->len;
if((len & (len-1)) != 0) {
// TODO: pad the input vector, if the length is not a power of 2
mp_raise_ValueError("input array length must be power of 2");
}
ndarray_obj_t *out_re = create_new_ndarray(1, len, NDARRAY_FLOAT);
mp_float_t *data_re = (mp_float_t *)out_re->array->items;
ndarray_obj_t *ndarray_re = ndarray_new_linear_array(len, NDARRAY_FLOAT);
mp_float_t *data_re = (mp_float_t *)ndarray_re->array->items;
if(re->array->typecode == NDARRAY_FLOAT) {
// By treating this case separately, we can save a bit of time.
// I don't know if it is worthwhile, though...
memcpy((mp_float_t *)out_re->array->items, (mp_float_t *)re->array->items, re->bytes);
} else {
for(size_t i=0; i < len; i++) {
data_re[i] = ndarray_get_float_value(re->array->items, re->array->typecode, i);
data_re[i] = ndarray_get_float_value(re->array->items, re->array->typecode, re->offset+i*re->strides[0]);
}
}
ndarray_obj_t *out_im = create_new_ndarray(1, len, NDARRAY_FLOAT);
mp_float_t *data_im = (mp_float_t *)out_im->array->items;
ndarray_obj_t *ndarray_im = ndarray_new_linear_array(len, NDARRAY_FLOAT);
mp_float_t *data_im = (mp_float_t *)ndarray_im->array->items;
if(n_args == 2) {
ndarray_obj_t *im = MP_OBJ_TO_PTR(arg_im);
if (re->array->len != im->array->len) {
if (re->len != im->len) {
mp_raise_ValueError("real and imaginary parts must be of equal length");
}
if(im->array->typecode == NDARRAY_FLOAT) {
memcpy((mp_float_t *)out_im->array->items, (mp_float_t *)im->array->items, im->bytes);
} else {
for(size_t i=0; i < len; i++) {
data_im[i] = ndarray_get_float_value(im->array->items, im->array->typecode, i);
}
data_im[i] = ndarray_get_float_value(im->array->items, im->array->typecode, im->offset+i*im->strides[0]);
}
}
if((type == FFT_FFT) || (type == FFT_SPECTRUM)) {
@ -134,11 +125,11 @@ mp_obj_t fft_fft_ifft_spectrum(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im,
}
}
if(type == FFT_SPECTRUM) {
return MP_OBJ_TO_PTR(out_re);
return MP_OBJ_TO_PTR(ndarray_re);
} else {
mp_obj_t tuple[2];
tuple[0] = out_re;
tuple[1] = out_im;
tuple[0] = ndarray_re;
tuple[1] = ndarray_im;
return mp_obj_new_tuple(2, tuple);
}
}

View file

@ -20,4 +20,5 @@
mp_obj_t fft_fft(size_t , const mp_obj_t *);
mp_obj_t fft_ifft(size_t , const mp_obj_t *);
mp_obj_t fft_spectrum(size_t , const mp_obj_t *);
#endif

View file

@ -16,98 +16,6 @@
#include "py/misc.h"
#include "linalg.h"
mp_obj_t linalg_transpose(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
// the size of a single item in the array
uint8_t _sizeof = mp_binary_get_size('@', self->array->typecode, NULL);
// NOTE:
// if the matrices are square, we can simply swap items, but
// generic matrices can't be transposed in place, so we have to
// declare a temporary variable
// NOTE:
// In the old matrix, the coordinate (m, n) is m*self->n + n
// We have to assign this to the coordinate (n, m) in the new
// matrix, i.e., to n*self->m + m (since the new matrix has self->m columns)
// one-dimensional arrays can be transposed by simply swapping the dimensions
if((self->m != 1) && (self->n != 1)) {
uint8_t *c = (uint8_t *)self->array->items;
// self->bytes is the size of the bytearray, irrespective of the typecode
uint8_t *tmp = m_new(uint8_t, self->bytes);
for(size_t m=0; m < self->m; m++) {
for(size_t n=0; n < self->n; n++) {
memcpy(tmp+_sizeof*(n*self->m + m), c+_sizeof*(m*self->n + n), _sizeof);
}
}
memcpy(self->array->items, tmp, self->bytes);
m_del(uint8_t, tmp, self->bytes);
}
SWAP(size_t, self->m, self->n);
return mp_const_none;
}
mp_obj_t linalg_reshape(mp_obj_t self_in, mp_obj_t shape) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
if(!MP_OBJ_IS_TYPE(shape, &mp_type_tuple) || (MP_OBJ_SMALL_INT_VALUE(mp_obj_len_maybe(shape)) != 2)) {
mp_raise_ValueError("shape must be a 2-tuple");
}
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(shape, &iter_buf);
uint16_t m, n;
item = mp_iternext(iterable);
m = mp_obj_get_int(item);
item = mp_iternext(iterable);
n = mp_obj_get_int(item);
if(m*n != self->m*self->n) {
// TODO: the proper error message would be "cannot reshape array of size %d into shape (%d, %d)"
mp_raise_ValueError("cannot reshape array (incompatible input/output shape)");
}
self->m = m;
self->n = n;
return MP_OBJ_FROM_PTR(self);
}
mp_obj_t linalg_size(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj) } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError("size is defined for ndarrays only");
} else {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
if(args[1].u_obj == mp_const_none) {
return mp_obj_new_int(ndarray->array->len);
} else if(mp_obj_is_int(args[1].u_obj)) {
uint8_t ax = mp_obj_get_int(args[1].u_obj);
if(ax == 0) {
if(ndarray->m == 1) {
return mp_obj_new_int(ndarray->n);
} else {
return mp_obj_new_int(ndarray->m);
}
} else if(ax == 1) {
if(ndarray->m == 1) {
mp_raise_ValueError("tuple index out of range");
} else {
return mp_obj_new_int(ndarray->n);
}
} else {
mp_raise_ValueError("tuple index out of range");
}
} else {
mp_raise_TypeError("wrong argument type");
}
}
}
bool linalg_invert_matrix(mp_float_t *data, size_t N) {
// returns true, of the inversion was successful,
// false, if the matrix is singular
@ -151,39 +59,41 @@ bool linalg_invert_matrix(mp_float_t *data, size_t N) {
}
mp_obj_t linalg_inv(mp_obj_t o_in) {
// since inv is not a class method, we have to inspect the input argument first
if(!MP_OBJ_IS_TYPE(o_in, &ulab_ndarray_type)) {
mp_raise_TypeError("only ndarrays can be inverted");
}
ndarray_obj_t *o = MP_OBJ_TO_PTR(o_in);
if(!MP_OBJ_IS_TYPE(o_in, &ulab_ndarray_type)) {
mp_raise_TypeError("only ndarray objects can be inverted");
}
if(o->m != o->n) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(o_in);
if(ndarray->ndim != 2) {
mp_raise_ValueError("only two-dimensional tensors can be inverted");
}
if(ndarray->shape[0] != ndarray->shape[1]) {
mp_raise_ValueError("only square matrices can be inverted");
}
ndarray_obj_t *inverted = create_new_ndarray(o->m, o->n, NDARRAY_FLOAT);
size_t *shape = m_new(size_t, 2);
shape[0] = shape[1] = ndarray->shape[0];
ndarray_obj_t *inverted = ndarray_new_dense_ndarray(2, shape, NDARRAY_FLOAT);
mp_float_t *data = (mp_float_t *)inverted->array->items;
mp_obj_t elem;
for(size_t m=0; m < o->m; m++) { // rows first
for(size_t n=0; n < o->n; n++) { // columns next
for(size_t m=0; m < ndarray->shape[0]; m++) { // rows first
for(size_t n=0; n < ndarray->shape[1]; n++) { // columns next
// this could, perhaps, be done in single line...
// On the other hand, we probably spend little time here
elem = mp_binary_get_val_array(o->array->typecode, o->array->items, m*o->n+n);
data[m*o->n+n] = (mp_float_t)mp_obj_get_float(elem);
elem = mp_binary_get_val_array(ndarray->array->typecode, ndarray->array->items, m*ndarray->shape[1]+n);
data[m*ndarray->shape[1]+n] = (mp_float_t)mp_obj_get_float(elem);
}
}
if(!linalg_invert_matrix(data, o->m)) {
// TODO: I am not sure this is needed here. Otherwise,
// how should we free up the unused RAM of inverted?
m_del(mp_float_t, inverted->array->items, o->n*o->n);
if(!linalg_invert_matrix(data, ndarray->shape[0])) {
// TODO: I am not sure this is needed here. Otherwise, how should we free up the unused RAM of inverted?
m_del(mp_float_t, inverted->array->items, ndarray->shape[0]*ndarray->shape[1]);
mp_raise_ValueError("input matrix is singular");
}
return MP_OBJ_FROM_PTR(inverted);
}
mp_obj_t linalg_dot(mp_obj_t _m1, mp_obj_t _m2) {
return mp_const_none;
/*
// TODO: should the results be upcast?
ndarray_obj_t *m1 = MP_OBJ_TO_PTR(_m1);
ndarray_obj_t *m2 = MP_OBJ_TO_PTR(_m2);
@ -206,7 +116,7 @@ mp_obj_t linalg_dot(mp_obj_t _m1, mp_obj_t _m2) {
outdata[i*m1->m+j] = sum;
}
}
return MP_OBJ_FROM_PTR(out);
return MP_OBJ_FROM_PTR(out); */
}
mp_obj_t linalg_zeros_ones(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, uint8_t kind) {
@ -220,19 +130,21 @@ mp_obj_t linalg_zeros_ones(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw
uint8_t dtype = args[1].u_int;
if(!mp_obj_is_int(args[0].u_obj) && !mp_obj_is_type(args[0].u_obj, &mp_type_tuple)) {
mp_raise_TypeError("input argument must be an integer or a 2-tuple");
mp_raise_TypeError("input argument must be an integer or a tuple");
}
ndarray_obj_t *ndarray = NULL;
if(mp_obj_is_int(args[0].u_obj)) {
size_t n = mp_obj_get_int(args[0].u_obj);
ndarray = create_new_ndarray(1, n, dtype);
size_t *shape = m_new(size_t, 1);
shape[0] = n;
ndarray = ndarray_new_dense_ndarray(1, shape, dtype);
} else if(mp_obj_is_type(args[0].u_obj, &mp_type_tuple)) {
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(args[0].u_obj);
if(tuple->len != 2) {
mp_raise_TypeError("input argument must be an integer or a 2-tuple");
size_t *shape = m_new(size_t, tuple->len);
for(uint8_t i=0; i < tuple->len; i++) {
shape[i] = mp_obj_get_int(tuple->items[i]);
}
ndarray = create_new_ndarray(mp_obj_get_int(tuple->items[0]),
mp_obj_get_int(tuple->items[1]), dtype);
ndarray = ndarray_new_dense_ndarray(tuple->len, shape, dtype);
}
if(kind == 1) {
mp_obj_t one = mp_obj_new_int(1);
@ -252,6 +164,9 @@ mp_obj_t linalg_ones(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args)
}
mp_obj_t linalg_eye(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// TODO: this is a bit more problematic in higher dimensions
return mp_const_none;
/*
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_M, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj) } },
@ -289,43 +204,47 @@ mp_obj_t linalg_eye(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args)
i++;
}
}
return MP_OBJ_FROM_PTR(ndarray);
return MP_OBJ_FROM_PTR(ndarray); */
}
mp_obj_t linalg_det(mp_obj_t oin) {
if(!mp_obj_is_type(oin, &ulab_ndarray_type)) {
mp_raise_TypeError("function defined for ndarrays only");
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(oin);
if(in->m != in->n) {
mp_raise_ValueError("input must be square matrix");
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
if(ndarray->ndim != 2) {
mp_raise_ValueError("only two-dimensional tensors can be inverted");
}
if(ndarray->shape[0] != ndarray->shape[1]) {
mp_raise_ValueError("only square matrices can be inverted");
}
mp_float_t *tmp = m_new(mp_float_t, in->n*in->n);
for(size_t i=0; i < in->array->len; i++){
tmp[i] = ndarray_get_float_value(in->array->items, in->array->typecode, i);
mp_float_t *tmp = m_new(mp_float_t, ndarray->shape[0]*ndarray->shape[1]);
// TODO: this won't work for sliced arrays
for(size_t i=0; i < ndarray->len; i++){
tmp[i] = ndarray_get_float_value(ndarray->array->items, ndarray->array->typecode, i);
}
mp_float_t c;
for(size_t m=0; m < in->m-1; m++){
if(MICROPY_FLOAT_C_FUN(fabs)(tmp[m*(in->n+1)]) < epsilon) {
m_del(mp_float_t, tmp, in->n*in->n);
for(size_t m=0; m < ndarray->shape[0]-1; m++){
if(MICROPY_FLOAT_C_FUN(fabs)(tmp[m*(ndarray->shape[1]+1)]) < epsilon) {
m_del(mp_float_t, tmp, ndarray->shape[0]*ndarray->shape[1]);
return mp_obj_new_float(0.0);
}
for(size_t n=0; n < in->n; n++){
for(size_t n=0; n < ndarray->shape[1]; n++){
if(m != n) {
c = tmp[in->n*n+m] / tmp[m*(in->n+1)];
for(size_t k=0; k < in->n; k++){
tmp[in->n*n+k] -= c * tmp[in->n*m+k];
c = tmp[ndarray->shape[0]*n+m] / tmp[m*(ndarray->shape[1]+1)];
for(size_t k=0; k < ndarray->shape[1]; k++){
tmp[ndarray->shape[1]*n+k] -= c * tmp[ndarray->shape[1]*m+k];
}
}
}
}
mp_float_t det = 1.0;
for(size_t m=0; m < in->m; m++){
det *= tmp[m*(in->n+1)];
for(size_t m=0; m < ndarray->shape[0]; m++){
det *= tmp[m*(ndarray->shape[1]+1)];
}
m_del(mp_float_t, tmp, in->n*in->n);
m_del(mp_float_t, tmp, ndarray->shape[0]*ndarray->shape[1]);
return mp_obj_new_float(det);
}
@ -333,45 +252,50 @@ mp_obj_t linalg_eig(mp_obj_t oin) {
if(!mp_obj_is_type(oin, &ulab_ndarray_type)) {
mp_raise_TypeError("function defined for ndarrays only");
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(oin);
if(in->m != in->n) {
mp_raise_ValueError("input must be square matrix");
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
if(ndarray->ndim != 2) {
mp_raise_ValueError("only two-dimensional tensors can be inverted");
}
mp_float_t *array = m_new(mp_float_t, in->array->len);
for(size_t i=0; i < in->array->len; i++) {
array[i] = ndarray_get_float_value(in->array->items, in->array->typecode, i);
if(ndarray->shape[0] != ndarray->shape[1]) {
mp_raise_ValueError("only square matrices can be inverted");
}
mp_float_t *array = m_new(mp_float_t, ndarray->len);
// TODO: this won't work for sliced arrays
for(size_t i=0; i < ndarray->len; i++) {
array[i] = ndarray_get_float_value(ndarray->array->items, ndarray->array->typecode, i);
}
// make sure the matrix is symmetric
for(size_t m=0; m < in->m; m++) {
for(size_t n=m+1; n < in->n; n++) {
for(size_t m=0; m < ndarray->shape[0]; m++) {
for(size_t n=m+1; n < ndarray->shape[1]; n++) {
// compare entry (m, n) to (n, m)
// TODO: this must probably be scaled!
if(epsilon < MICROPY_FLOAT_C_FUN(fabs)(array[m*in->n + n] - array[n*in->n + m])) {
if(epsilon < MICROPY_FLOAT_C_FUN(fabs)(array[m*ndarray->shape[0] + n] - array[n*ndarray->shape[0] + m])) {
mp_raise_ValueError("input matrix is asymmetric");
}
}
}
// if we got this far, then the matrix will be symmetric
ndarray_obj_t *eigenvectors = create_new_ndarray(in->m, in->n, NDARRAY_FLOAT);
size_t *shape = m_new(size_t, 2);
shape[0] = shape[1] = ndarray->shape[0];
ndarray_obj_t *eigenvectors = ndarray_new_dense_ndarray(2, shape, NDARRAY_FLOAT);
mp_float_t *eigvectors = (mp_float_t *)eigenvectors->array->items;
// start out with the unit matrix
for(size_t m=0; m < in->m; m++) {
eigvectors[m*(in->n+1)] = 1.0;
for(size_t m=0; m < ndarray->shape[0]; m++) {
eigvectors[m*(ndarray->shape[1]+1)] = 1.0;
}
mp_float_t largest, w, t, c, s, tau, aMk, aNk, vm, vn;
size_t M, N;
size_t iterations = JACOBI_MAX*in->n*in->n;
size_t iterations = JACOBI_MAX*ndarray->shape[0]*ndarray->shape[0];
do {
iterations--;
// find the pivot here
M = 0;
N = 0;
largest = 0.0;
for(size_t m=0; m < in->m-1; m++) { // -1: no need to inspect last row
for(size_t n=m+1; n < in->n; n++) {
w = MICROPY_FLOAT_C_FUN(fabs)(array[m*in->n + n]);
for(size_t m=0; m < ndarray->shape[0]-1; m++) { // -1: no need to inspect last row
for(size_t n=m+1; n < ndarray->shape[0]; n++) {
w = MICROPY_FLOAT_C_FUN(fabs)(array[m*ndarray->shape[0] + n]);
if((largest < w) && (epsilon < w)) {
M = m;
N = n;
@ -384,7 +308,7 @@ mp_obj_t linalg_eig(mp_obj_t oin) {
}
// at this point, we have the pivot, and it is the entry (M, N)
// now we have to find the rotation angle
w = (array[N*in->n + N] - array[M*in->n + M]) / (2.0*array[M*in->n + N]);
w = (array[N*ndarray->shape[0] + N] - array[M*ndarray->shape[0] + M]) / (2.0*array[M*ndarray->shape[0] + N]);
// The following if/else chooses the smaller absolute value for the tangent
// of the rotation angle. Going with the smaller should be numerically stabler.
if(w > 0) {
@ -399,26 +323,26 @@ mp_obj_t linalg_eig(mp_obj_t oin) {
// at this point, we have the rotation angles, so we can transform the matrix
// first the two diagonal elements
// a(M, M) = a(M, M) - t*a(M, N)
array[M*in->n + M] = array[M*in->n + M] - t * array[M*in->n + N];
array[M*ndarray->shape[0] + M] = array[M*ndarray->shape[0] + M] - t * array[M*ndarray->shape[0] + N];
// a(N, N) = a(N, N) + t*a(M, N)
array[N*in->n + N] = array[N*in->n + N] + t * array[M*in->n + N];
array[N*ndarray->shape[0] + N] = array[N*ndarray->shape[0] + N] + t * array[M*ndarray->shape[0] + N];
// after the rotation, the a(M, N), and a(N, M) entries should become zero
array[M*in->n + N] = array[N*in->n + M] = 0.0;
array[M*ndarray->shape[0] + N] = array[N*ndarray->shape[0] + M] = 0.0;
// then all other elements in the column
for(size_t k=0; k < in->m; k++) {
for(size_t k=0; k < ndarray->shape[0]; k++) {
if((k == M) || (k == N)) {
continue;
}
aMk = array[M*in->n + k];
aNk = array[N*in->n + k];
aMk = array[M*ndarray->shape[0] + k];
aNk = array[N*ndarray->shape[0] + k];
// a(M, k) = a(M, k) - s*(a(N, k) + tau*a(M, k))
array[M*in->n + k] -= s*(aNk + tau*aMk);
array[M*ndarray->shape[0] + k] -= s*(aNk + tau*aMk);
// a(N, k) = a(N, k) + s*(a(M, k) - tau*a(N, k))
array[N*in->n + k] += s*(aMk - tau*aNk);
array[N*ndarray->shape[0] + k] += s*(aMk - tau*aNk);
// a(k, M) = a(M, k)
array[k*in->n + M] = array[M*in->n + k];
array[k*ndarray->shape[0] + M] = array[M*ndarray->shape[0] + k];
// a(k, N) = a(N, k)
array[k*in->n + N] = array[N*in->n + k];
array[k*ndarray->shape[0] + N] = array[N*ndarray->shape[0] + k];
}
// now we have to update the eigenvectors
// the rotation matrix, R, multiplies from the right
@ -427,27 +351,29 @@ mp_obj_t linalg_eig(mp_obj_t oin) {
// R(N, M) = s
// (M, N) = -s
// entries. This means that only the Mth, and Nth columns will change
for(size_t m=0; m < in->m; m++) {
vm = eigvectors[m*in->n+M];
vn = eigvectors[m*in->n+N];
for(size_t m=0; m < ndarray->shape[0]; m++) {
vm = eigvectors[m*ndarray->shape[0]+M];
vn = eigvectors[m*ndarray->shape[0]+N];
// the new value of eigvectors(m, M)
eigvectors[m*in->n+M] = c * vm - s * vn;
eigvectors[m*ndarray->shape[0]+M] = c * vm - s * vn;
// the new value of eigvectors(m, N)
eigvectors[m*in->n+N] = s * vm + c * vn;
eigvectors[m*ndarray->shape[0]+N] = s * vm + c * vn;
}
} while(iterations > 0);
if(iterations == 0) {
// the computation did not converge; numpy raises LinAlgError
m_del(mp_float_t, array, in->array->len);
m_del(mp_float_t, array, ndarray->len);
mp_raise_ValueError("iterations did not converge");
}
ndarray_obj_t *eigenvalues = create_new_ndarray(1, in->n, NDARRAY_FLOAT);
size_t *eigen_shape = m_new(size_t, 1);
eigen_shape[0] = ndarray->shape[0];
ndarray_obj_t *eigenvalues = ndarray_new_dense_ndarray(1, eigen_shape, NDARRAY_FLOAT);
mp_float_t *eigvalues = (mp_float_t *)eigenvalues->array->items;
for(size_t i=0; i < in->n; i++) {
eigvalues[i] = array[i*(in->n+1)];
for(size_t i=0; i < ndarray->shape[0]; i++) {
eigvalues[i] = array[i*(ndarray->shape[0]+1)];
}
m_del(mp_float_t, array, in->array->len);
m_del(mp_float_t, array, ndarray->len);
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
tuple->items[0] = MP_OBJ_FROM_PTR(eigenvalues);

View file

@ -13,8 +13,6 @@
#include "ndarray.h"
#define SWAP(t, a, b) { t tmp = a; a = b; b = tmp; }
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#define epsilon 1.2e-7
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
@ -23,9 +21,6 @@
#define JACOBI_MAX 20
mp_obj_t linalg_transpose(mp_obj_t );
mp_obj_t linalg_reshape(mp_obj_t , mp_obj_t );
mp_obj_t linalg_size(size_t , const mp_obj_t *, mp_map_t *);
bool linalg_invert_matrix(mp_float_t *, size_t );
mp_obj_t linalg_inv(mp_obj_t );
mp_obj_t linalg_dot(mp_obj_t , mp_obj_t );

View file

@ -3,13 +3,11 @@ USERMODULES_DIR := $(USERMOD_DIR)
# Add all C files to SRC_USERMOD.
SRC_USERMOD += $(USERMODULES_DIR)/ndarray.c
SRC_USERMOD += $(USERMODULES_DIR)/linalg.c
SRC_USERMOD += $(USERMODULES_DIR)/vectorise.c
SRC_USERMOD += $(USERMODULES_DIR)/linalg.c
SRC_USERMOD += $(USERMODULES_DIR)/poly.c
SRC_USERMOD += $(USERMODULES_DIR)/fft.c
SRC_USERMOD += $(USERMODULES_DIR)/numerical.c
SRC_USERMOD += $(USERMODULES_DIR)/fft.c
SRC_USERMOD += $(USERMODULES_DIR)/ulab.c
# We can add our module folder to include paths if needed
# This is not actually needed in this example.
CFLAGS_USERMOD += -I$(USERMODULES_DIR)

File diff suppressed because it is too large Load diff

View file

@ -16,7 +16,10 @@
#include "py/objstr.h"
#include "py/objlist.h"
#define PRINT_MAX 10
#define SWAP(t, a, b) { t tmp = a; a = b; b = tmp; }
#define NDARRAY_NUMERIC 0
#define NDARRAY_BOOLEAN 1
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#define FLOAT_TYPECODE 'f'
@ -24,9 +27,10 @@
#define FLOAT_TYPECODE 'd'
#endif
const mp_obj_type_t ulab_ndarray_type;
extern const mp_obj_type_t ulab_ndarray_type;
enum NDARRAY_TYPE {
NDARRAY_BOOL = '?', // this must never be assigned to the typecode!
NDARRAY_UINT8 = 'B',
NDARRAY_INT8 = 'b',
NDARRAY_UINT16 = 'H',
@ -36,21 +40,77 @@ enum NDARRAY_TYPE {
typedef struct _ndarray_obj_t {
mp_obj_base_t base;
size_t m, n;
uint8_t boolean;
uint8_t ndim;
size_t *shape;
int32_t *strides;
size_t len;
size_t offset;
mp_obj_array_t *array;
size_t bytes;
} ndarray_obj_t;
mp_obj_t mp_obj_new_ndarray_iterator(mp_obj_t , size_t , mp_obj_iter_buf_t *);
// this is a helper structure, so that we can return shape AND strides from a function
typedef struct _ndarray_header_obj_t {
size_t *shape;
int32_t *strides;
int8_t axis;
size_t offset;
} ndarray_header_obj_t;
// various helper functions
size_t ndarray_index_from_flat(size_t , ndarray_obj_t *, int32_t *);
size_t ndarray_index_from_contracted(size_t , ndarray_obj_t * , int32_t * , uint8_t , uint8_t );
mp_float_t ndarray_get_float_value(void *, uint8_t , size_t );
void fill_array_iterable(mp_float_t *, mp_obj_t );
void ndarray_print_row(const mp_print_t *, mp_obj_array_t *, size_t , size_t );
// calculates the index (in the original linear array) of an item, if the index in the flat array is given
// this is the macro equivalent of ndarray_index_from_flat()
// TODO: This fails, when the last stride is not 1!!!
#define NDARRAY_INDEX_FROM_FLAT(ndarray, shape_strides, index, _tindex, _nindex) do {\
size_t Q;\
(_tindex) = (index);\
(_nindex) = (ndarray)->offset;\
for(size_t _x=0; _x < (ndarray)->ndim; _x++) {\
Q = (_tindex) / (shape_strides)[_x];\
(_tindex) -= Q * (shape_strides)[_x];\
(_nindex) += Q * (ndarray)->strides[_x];\
}\
} while(0)
#define NDARRAY_INDEX_FROM_FLAT2(ndarray, stride_array, shape_strides, index, _tindex, _nindex) do {\
size_t Q;\
(_tindex) = (index);\
(_nindex) = (ndarray)->offset;\
for(size_t _x=0; _x < (ndarray)->ndim; _x++) {\
Q = (_tindex) / (shape_strides)[_x];\
(_tindex) -= Q * (shape_strides)[_x];\
(_nindex) += Q * (stride_array)[_x];\
}\
} while(0)
#define CREATE_SINGLE_ITEM(ndarray, type, typecode, value) do {\
(ndarray) = ndarray_new_linear_array(1, (typecode));\
type *tmparr = (type *)(ndarray)->array->items;\
tmparr[0] = (type)(value);\
} while(0)
#define RUN_BINARY_LOOP(ndarray, typecode, type_out, type_left, type_right, lhs, rhs, shape, ndim, operator) do {\
uint8_t *left = (uint8_t *)(lhs)->array->items;\
uint8_t *right = (uint8_t *)(rhs)->array->items;\
(ndarray) = ndarray_new_dense_ndarray((ndim), (shape), (typecode));\
uint8_t size_left = sizeof(type_left), size_right = sizeof(type_right);\
type_out *out = (type_out *)ndarray->array->items;\
for(size_t i=0; i < (lhs)->len; i++) {\
out[i] = *(type_left *)left + *(type_right *)right;\
left += size_left; right += size_right;\
}\
} while(0)
mp_obj_t mp_obj_new_ndarray_iterator(mp_obj_t , size_t , mp_obj_iter_buf_t *);
void ndarray_print(const mp_print_t *, mp_obj_t , mp_print_kind_t );
void ndarray_assign_elements(mp_obj_array_t *, mp_obj_t , uint8_t , size_t *);
ndarray_obj_t *create_new_ndarray(size_t , size_t , uint8_t );
ndarray_obj_t *ndarray_new_ndarray(uint8_t , size_t *, int32_t *, uint8_t );
ndarray_obj_t *ndarray_new_dense_ndarray(uint8_t , size_t *, uint8_t );
ndarray_obj_t *ndarray_new_linear_array(size_t , uint8_t );
ndarray_obj_t *ndarray_copy_view(ndarray_obj_t *, uint8_t );
mp_obj_t ndarray_copy(mp_obj_t );
mp_obj_t ndarray_make_new(const mp_obj_type_t *, size_t , size_t , const mp_obj_t *);
@ -60,65 +120,11 @@ mp_obj_t ndarray_binary_op(mp_binary_op_t , mp_obj_t , mp_obj_t );
mp_obj_t ndarray_unary_op(mp_unary_op_t , mp_obj_t );
mp_obj_t ndarray_shape(mp_obj_t );
mp_obj_t ndarray_rawsize(mp_obj_t );
mp_obj_t ndarray_reshape(mp_obj_t , mp_obj_t );
mp_obj_t ndarray_transpose(mp_obj_t );
mp_obj_t ndarray_flatten(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t ndarray_asbytearray(mp_obj_t );
#define CREATE_SINGLE_ITEM(outarray, type, typecode, value) do {\
ndarray_obj_t *tmp = create_new_ndarray(1, 1, (typecode));\
type *tmparr = (type *)tmp->array->items;\
tmparr[0] = (type)(value);\
(outarray) = MP_OBJ_FROM_PTR(tmp);\
} while(0)
/*
mp_obj_t row = mp_obj_new_list(n, NULL);
mp_obj_list_t *row_ptr = MP_OBJ_TO_PTR(row);
should work outside the loop, but it doesn't. Go figure!
*/
#define RUN_BINARY_LOOP(typecode, type_out, type_left, type_right, ol, or, op) do {\
type_left *left = (type_left *)(ol)->array->items;\
type_right *right = (type_right *)(or)->array->items;\
uint8_t inc = 0;\
if((or)->array->len > 1) inc = 1;\
if(((op) == MP_BINARY_OP_ADD) || ((op) == MP_BINARY_OP_SUBTRACT) || ((op) == MP_BINARY_OP_MULTIPLY)) {\
ndarray_obj_t *out = create_new_ndarray(ol->m, ol->n, typecode);\
type_out *(odata) = (type_out *)out->array->items;\
if((op) == MP_BINARY_OP_ADD) { for(size_t i=0, j=0; i < (ol)->array->len; i++, j+=inc) odata[i] = left[i] + right[j];}\
if((op) == MP_BINARY_OP_SUBTRACT) { for(size_t i=0, j=0; i < (ol)->array->len; i++, j+=inc) odata[i] = left[i] - right[j];}\
if((op) == MP_BINARY_OP_MULTIPLY) { for(size_t i=0, j=0; i < (ol)->array->len; i++, j+=inc) odata[i] = left[i] * right[j];}\
return MP_OBJ_FROM_PTR(out);\
} else if((op) == MP_BINARY_OP_TRUE_DIVIDE) {\
ndarray_obj_t *out = create_new_ndarray(ol->m, ol->n, NDARRAY_FLOAT);\
mp_float_t *odata = (mp_float_t *)out->array->items;\
for(size_t i=0, j=0; i < (ol)->array->len; i++, j+=inc) odata[i] = (mp_float_t)left[i]/(mp_float_t)right[j];\
return MP_OBJ_FROM_PTR(out);\
} else if(((op) == MP_BINARY_OP_LESS) || ((op) == MP_BINARY_OP_LESS_EQUAL) || \
((op) == MP_BINARY_OP_MORE) || ((op) == MP_BINARY_OP_MORE_EQUAL)) {\
mp_obj_t out_list = mp_obj_new_list(0, NULL);\
size_t m = (ol)->m, n = (ol)->n;\
for(size_t i=0, r=0; i < m; i++, r+=inc) {\
mp_obj_t row = mp_obj_new_list(n, NULL);\
mp_obj_list_t *row_ptr = MP_OBJ_TO_PTR(row);\
for(size_t j=0, s=0; j < n; j++, s+=inc) {\
row_ptr->items[j] = mp_const_false;\
if((op) == MP_BINARY_OP_LESS) {\
if(left[i*n+j] < right[r*n+s]) row_ptr->items[j] = mp_const_true;\
} else if((op) == MP_BINARY_OP_LESS_EQUAL) {\
if(left[i*n+j] <= right[r*n+s]) row_ptr->items[j] = mp_const_true;\
} else if((op) == MP_BINARY_OP_MORE) {\
if(left[i*n+j] > right[r*n+s]) row_ptr->items[j] = mp_const_true;\
} else if((op) == MP_BINARY_OP_MORE_EQUAL) {\
if(left[i*n+j] >= right[r*n+s]) row_ptr->items[j] = mp_const_true;\
}\
}\
if(m == 1) return row;\
mp_obj_list_append(out_list, row);\
}\
return out_list;\
}\
} while(0)
mp_obj_t ndarray_itemsize(mp_obj_t );
mp_obj_t ndarray_strides(mp_obj_t );
mp_obj_t ndarray_info(mp_obj_t );
#endif

View file

@ -28,6 +28,32 @@ enum NUMERICAL_FUNCTION_TYPE {
NUMERICAL_STD,
};
// creates the shape and strides arrays of the contracted ndarray
ndarray_header_obj_t contracted_shape_strides(ndarray_obj_t *ndarray, int8_t axis) {
if(axis < 0) axis += ndarray->ndim;
if((axis > ndarray->ndim-1) || (axis < 0)) {
mp_raise_ValueError("tuple index out of range");
}
size_t *shape = m_new(size_t, ndarray->ndim-1);
int32_t *strides = m_new(int32_t, ndarray->ndim-1);
for(size_t i=0, j=0; i < ndarray->ndim; i++) {
if(axis != i) {
shape[j] = ndarray->shape[j];
j++;
}
}
int32_t stride = 1;
for(size_t i=0; i < ndarray->ndim-1; i++) {
strides[ndarray->ndim-2-i] = stride;
stride *= shape[ndarray->ndim-2-i];
}
ndarray_header_obj_t header;
header.shape = shape;
header.strides = strides;
header.axis = axis;
return header;
}
mp_obj_t numerical_linspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj) } },
@ -50,7 +76,7 @@ mp_obj_t numerical_linspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *k
uint8_t typecode = args[5].u_int;
if(args[3].u_obj == mp_const_true) step = (mp_obj_get_float(args[1].u_obj)-value)/(len-1);
else step = (mp_obj_get_float(args[1].u_obj)-value)/len;
ndarray_obj_t *ndarray = create_new_ndarray(1, len, typecode);
ndarray_obj_t *ndarray = ndarray_new_linear_array(len, typecode);
if(typecode == NDARRAY_UINT8) {
uint8_t *array = (uint8_t *)ndarray->array->items;
for(size_t i=0; i < len; i++, value += step) array[i] = (uint8_t)value;
@ -77,120 +103,71 @@ mp_obj_t numerical_linspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *k
}
}
mp_obj_t numerical_sum_mean_std_array(mp_obj_t oin, uint8_t optype) {
mp_float_t value, sum = 0.0, sq_sum = 0.0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(oin, &iter_buf);
mp_int_t len = mp_obj_get_int(mp_obj_len(oin));
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
value = mp_obj_get_float(item);
sum += value;
if(optype == NUMERICAL_STD) {
sq_sum += value*value;
mp_obj_t numerical_flat_sum_mean_std(ndarray_obj_t *ndarray, uint8_t optype, size_t ddof) {
mp_float_t value;
int32_t *shape_strides = m_new(int32_t, ndarray->ndim);
shape_strides[ndarray->ndim-1] = ndarray->strides[ndarray->ndim-1];
for(uint8_t i=ndarray->ndim-1; i > 0; i--) {
shape_strides[i-1] = shape_strides[i] * ndarray->shape[i-1];
}
if(ndarray->array->typecode == NDARRAY_UINT8) {
CALCULATE_FLAT_SUM_STD(ndarray, uint8_t, value, shape_strides, optype);
} else if(ndarray->array->typecode == NDARRAY_INT8) {
CALCULATE_FLAT_SUM_STD(ndarray, int8_t, value, shape_strides, optype);
} if(ndarray->array->typecode == NDARRAY_UINT16) {
CALCULATE_FLAT_SUM_STD(ndarray, uint16_t, value, shape_strides, optype);
} else if(ndarray->array->typecode == NDARRAY_INT16) {
CALCULATE_FLAT_SUM_STD(ndarray, int16_t, value, shape_strides, optype);
} else {
CALCULATE_FLAT_SUM_STD(ndarray, mp_float_t, value, shape_strides, optype);
}
m_del(int32_t, shape_strides, ndarray->ndim);
if(optype == NUMERICAL_SUM) {
return mp_obj_new_float(sum);
return mp_obj_new_float(value);
} else if(optype == NUMERICAL_MEAN) {
return mp_obj_new_float(sum/len);
return mp_obj_new_float(value/ndarray->len);
} else {
sum /= len; // this is now the mean!
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(sq_sum/len-sum*sum));
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(value/(ndarray->len-ddof)));
}
}
STATIC mp_float_t numerical_sum_mean_std_single_line(void *data, size_t start, size_t stop,
size_t stride, uint8_t typecode, uint8_t optype) {
mp_float_t sum = 0.0, sq_sum = 0.0, value;
size_t len = 0;
for(size_t i=start; i < stop; i+=stride, len++) {
value = ndarray_get_float_value(data, typecode, i);
sum += value;
if(optype == NUMERICAL_STD) {
sq_sum += value*value;
}
}
if(len == 0) {
mp_raise_ValueError("data length is 0!");
}
if(optype == NUMERICAL_SUM) {
return sum;
} else if(optype == NUMERICAL_MEAN) {
return sum/len;
// numerical functions for ndarrays
mp_obj_t numerical_sum_mean_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype) {
if(axis == mp_const_none) {
return numerical_flat_sum_mean_std(ndarray, optype, 0);
} else {
sum /= len; // this is now the mean!
return MICROPY_FLOAT_C_FUN(sqrt)(sq_sum/len-sum*sum);
}
}
STATIC mp_obj_t numerical_sum_mean_std_matrix(mp_obj_t oin, mp_obj_t axis, uint8_t optype) {
ndarray_obj_t *in = MP_OBJ_TO_PTR(oin);
if((axis == mp_const_none) || (in->m == 1) || (in->n == 1)) {
// return the value for the flattened array
return mp_obj_new_float(numerical_sum_mean_std_single_line(in->array->items, 0,
in->array->len, 1, in->array->typecode, optype));
int8_t ax = mp_obj_get_int(axis);
ndarray_header_obj_t header = contracted_shape_strides(ndarray, ax);
ndarray_obj_t *result = ndarray_new_ndarray(ndarray->ndim-1, header.shape, header.strides, NDARRAY_FLOAT);
mp_float_t *farray = (mp_float_t *)result->array->items;
size_t offset;
// iterate along the length of the output array, so as to avoid recursion
for(size_t i=0; i < result->array->len; i++) {
offset = ndarray_index_from_contracted(i, ndarray, result->strides, result->ndim, header.axis) + ndarray->offset;
if(ndarray->array->typecode == NDARRAY_UINT8) {
CALCULATE_SUM(ndarray, uint8_t, farray, ndarray->shape[header.axis], i, ndarray->strides[header.axis], offset, optype);
} else if(ndarray->array->typecode == NDARRAY_INT8) {
CALCULATE_SUM(ndarray, int8_t, farray, ndarray->shape[header.axis], i, ndarray->strides[header.axis], offset, optype);
} else if(ndarray->array->typecode == NDARRAY_UINT16) {
CALCULATE_SUM(ndarray, uint16_t, farray, ndarray->shape[header.axis], i, ndarray->strides[header.axis], offset, optype);
} else if(ndarray->array->typecode == NDARRAY_INT16) {
CALCULATE_SUM(ndarray, int16_t, farray, ndarray->shape[header.axis], i, ndarray->strides[header.axis], offset, optype);
} else {
uint8_t _axis = mp_obj_get_int(axis);
size_t m = (_axis == 0) ? 1 : in->m;
size_t n = (_axis == 0) ? in->n : 1;
size_t len = in->array->len;
mp_float_t sms;
// TODO: pass in->array->typcode to create_new_ndarray
ndarray_obj_t *out = create_new_ndarray(m, n, NDARRAY_FLOAT);
// TODO: these two cases could probably be combined in a more elegant fashion...
if(_axis == 0) { // vertical
for(size_t i=0; i < n; i++) {
sms = numerical_sum_mean_std_single_line(in->array->items, i, len,
n, in->array->typecode, optype);
((float_t *)out->array->items)[i] = sms;
CALCULATE_SUM(ndarray, mp_float_t, farray, ndarray->shape[header.axis], i, ndarray->strides[header.axis], offset, optype);
}
} else { // horizontal
for(size_t i=0; i < m; i++) {
sms = numerical_sum_mean_std_single_line(in->array->items, i*in->n,
(i+1)*in->n, 1, in->array->typecode, optype);
((float_t *)out->array->items)[i] = sms;
if(optype == NUMERICAL_MEAN) farray[i] /= ndarray->shape[header.axis];
}
return MP_OBJ_FROM_PTR(result);
}
return MP_OBJ_FROM_PTR(out);
}
return mp_const_none;
}
size_t numerical_argmin_argmax_array(ndarray_obj_t *in, size_t start,
size_t stop, size_t stride, uint8_t op) {
size_t best_idx = start;
if(in->array->typecode == NDARRAY_UINT8) {
ARG_MIN_LOOP(in, uint8_t, start, stop, stride, op);
} else if(in->array->typecode == NDARRAY_INT8) {
ARG_MIN_LOOP(in, int8_t, start, stop, stride, op);
} else if(in->array->typecode == NDARRAY_UINT16) {
ARG_MIN_LOOP(in, uint16_t, start, stop, stride, op);
} else if(in->array->typecode == NDARRAY_INT16) {
ARG_MIN_LOOP(in, uint16_t, start, stop, stride, op);
} else if(in->array->typecode == NDARRAY_FLOAT) {
ARG_MIN_LOOP(in, mp_float_t, start, stop, stride, op);
}
return best_idx;
mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype) {
return mp_const_none;
}
void copy_value_into_ndarray(ndarray_obj_t *target, ndarray_obj_t *source, size_t target_idx, size_t source_idx) {
// since we are simply copying, it doesn't matter, whether the arrays are signed or unsigned,
// we can cast them in any way we like
// This could also be done with byte copies. I don't know, whether that would have any benefits
if((target->array->typecode == NDARRAY_UINT8) || (target->array->typecode == NDARRAY_INT8)) {
((uint8_t *)target->array->items)[target_idx] = ((uint8_t *)source->array->items)[source_idx];
} else if((target->array->typecode == NDARRAY_UINT16) || (target->array->typecode == NDARRAY_INT16)) {
((uint16_t *)target->array->items)[target_idx] = ((uint16_t *)source->array->items)[source_idx];
} else {
((float *)target->array->items)[target_idx] = ((float *)source->array->items)[source_idx];
}
}
STATIC mp_obj_t numerical_argmin_argmax(mp_obj_t oin, mp_obj_t axis, uint8_t optype) {
if(MP_OBJ_IS_TYPE(oin, &mp_type_tuple) || MP_OBJ_IS_TYPE(oin, &mp_type_list) ||
MP_OBJ_IS_TYPE(oin, &mp_type_range)) {
// This case will work for single iterables only
// numerical function for interables (single axis)
mp_obj_t numerical_argmin_argmax_iterable(mp_obj_t oin, uint8_t optype) {
size_t idx = 0, best_idx = 0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t iterable = mp_getiter(oin, &iter_buf);
@ -210,105 +187,71 @@ STATIC mp_obj_t numerical_argmin_argmax(mp_obj_t oin, mp_obj_t axis, uint8_t opt
} else {
return best_obj;
}
} else if(mp_obj_is_type(oin, &ulab_ndarray_type)) {
ndarray_obj_t *in = MP_OBJ_TO_PTR(oin);
size_t best_idx;
if((axis == mp_const_none) || (in->m == 1) || (in->n == 1)) {
// return the value for the flattened array
best_idx = numerical_argmin_argmax_array(in, 0, in->array->len, 1, optype);
if((optype == NUMERICAL_ARGMIN) || (optype == NUMERICAL_ARGMAX)) {
return MP_OBJ_NEW_SMALL_INT(best_idx);
} else {
if(in->array->typecode == NDARRAY_FLOAT) {
return mp_obj_new_float(ndarray_get_float_value(in->array->items, in->array->typecode, best_idx));
} else {
return mp_binary_get_val_array(in->array->typecode, in->array->items, best_idx);
}
}
} else { // we have to work with a full matrix here
uint8_t _axis = mp_obj_get_int(axis);
size_t m = (_axis == 0) ? 1 : in->m;
size_t n = (_axis == 0) ? in->n : 1;
size_t len = in->array->len;
ndarray_obj_t *ndarray = NULL;
if((optype == NUMERICAL_MAX) || (optype == NUMERICAL_MIN)) {
ndarray = create_new_ndarray(m, n, in->array->typecode);
} else { // argmin/argmax
// TODO: one might get away with uint8_t, if both m, and n < 255
ndarray = create_new_ndarray(m, n, NDARRAY_UINT16);
}
// TODO: these two cases could probably be combined in a more elegant fashion...
if(_axis == 0) { // vertical
for(size_t i=0; i < n; i++) {
best_idx = numerical_argmin_argmax_array(in, i, len, n, optype);
if((optype == NUMERICAL_MIN) || (optype == NUMERICAL_MAX)) {
copy_value_into_ndarray(ndarray, in, i, best_idx);
} else {
((uint16_t *)ndarray->array->items)[i] = (uint16_t)(best_idx / n);
mp_obj_t numerical_sum_mean_std_iterable(mp_obj_t oin, uint8_t optype, size_t ddof) {
mp_float_t value, sum = 0.0, sq_sum = 0.0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(oin, &iter_buf);
mp_int_t len = mp_obj_get_int(mp_obj_len(oin));
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
value = mp_obj_get_float(item);
sum += value;
}
if(optype == NUMERICAL_SUM) {
return mp_obj_new_float(sum);
} else if(optype == NUMERICAL_MEAN) {
return mp_obj_new_float(sum/len);
} else { // this should be the case of the standard deviation
sum /= len; // this is the mean now
iterable = mp_getiter(oin, &iter_buf);
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
value = mp_obj_get_float(item) - sum;
sq_sum += value * value;
}
} else { // horizontal
for(size_t i=0; i < m; i++) {
best_idx = numerical_argmin_argmax_array(in, i*in->n, (i+1)*in->n, 1, optype);
if((optype == NUMERICAL_MIN) || (optype == NUMERICAL_MAX)) {
copy_value_into_ndarray(ndarray, in, i, best_idx);
} else {
((uint16_t *)ndarray->array->items)[i] = (uint16_t)(best_idx - i*in->n);
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(sq_sum/(len-ddof)));
}
}
}
return MP_OBJ_FROM_PTR(ndarray);
}
return mp_const_none;
}
mp_raise_TypeError("input type is not supported");
}
STATIC mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, uint8_t type) {
STATIC mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, uint8_t optype) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} } ,
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
{ MP_QSTR_axis, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t oin = args[0].u_obj;
mp_obj_t axis = args[1].u_obj;
if((axis != mp_const_none) && (mp_obj_get_int(axis) != 0) && (mp_obj_get_int(axis) != 1)) {
// this seems to pass with False, and True...
mp_raise_ValueError("axis must be None, 0, or 1");
}
if(MP_OBJ_IS_TYPE(oin, &mp_type_tuple) || MP_OBJ_IS_TYPE(oin, &mp_type_list) ||
MP_OBJ_IS_TYPE(oin, &mp_type_range)) {
switch(type) {
switch(optype) {
case NUMERICAL_MIN:
case NUMERICAL_ARGMIN:
case NUMERICAL_MAX:
case NUMERICAL_ARGMAX:
return numerical_argmin_argmax(oin, axis, type);
return numerical_argmin_argmax_iterable(oin, optype);
case NUMERICAL_SUM:
case NUMERICAL_MEAN:
case NUMERICAL_STD:
return numerical_sum_mean_std_array(oin, type);
default: // we should never reach this point, but whatever
return numerical_sum_mean_std_iterable(oin, optype, 0);
default: // we should never end up here
return mp_const_none;
}
} else if(MP_OBJ_IS_TYPE(oin, &ulab_ndarray_type)) {
switch(type) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
switch(optype) {
case NUMERICAL_MIN:
case NUMERICAL_MAX:
case NUMERICAL_ARGMIN:
case NUMERICAL_MAX:
case NUMERICAL_ARGMAX:
return numerical_argmin_argmax(oin, axis, type);
return numerical_argmin_argmax_ndarray(ndarray, axis, optype);
case NUMERICAL_SUM:
case NUMERICAL_MEAN:
case NUMERICAL_STD:
return numerical_sum_mean_std_matrix(oin, axis, type);
return numerical_sum_mean_ndarray(ndarray, args[1].u_obj, optype);
default:
mp_raise_NotImplementedError("operation is not implemented on ndarrays");
return mp_const_none;
}
} else {
mp_raise_TypeError("input must be tuple, list, range, or ndarray");
@ -316,22 +259,6 @@ STATIC mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m
return mp_const_none;
}
mp_obj_t numerical_min(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_MIN);
}
mp_obj_t numerical_max(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_MAX);
}
mp_obj_t numerical_argmin(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_ARGMIN);
}
mp_obj_t numerical_argmax(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_ARGMAX);
}
mp_obj_t numerical_sum(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_SUM);
}
@ -341,351 +268,49 @@ mp_obj_t numerical_mean(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar
}
mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_STD);
}
mp_obj_t numerical_roll(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} } ,
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj) } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
{ MP_QSTR_axis, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
{ MP_QSTR_ddof, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(2, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t oin = args[0].u_obj;
int16_t shift = mp_obj_get_int(args[1].u_obj);
if((args[2].u_obj != mp_const_none) &&
(mp_obj_get_int(args[2].u_obj) != 0) &&
(mp_obj_get_int(args[2].u_obj) != 1)) {
mp_raise_ValueError("axis must be None, 0, or 1");
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(oin);
uint8_t _sizeof = mp_binary_get_size('@', in->array->typecode, NULL);
size_t len;
int16_t _shift;
uint8_t *array = (uint8_t *)in->array->items;
// TODO: transpose the matrix, if axis == 0. Though, that is hard on the RAM...
if(shift < 0) {
_shift = -shift;
mp_obj_t axis = args[1].u_obj;
size_t ddof = args[2].u_int;
if(MP_OBJ_IS_TYPE(oin, &mp_type_tuple) || MP_OBJ_IS_TYPE(oin, &mp_type_list) || MP_OBJ_IS_TYPE(oin, &mp_type_range)) {
return numerical_sum_mean_std_iterable(oin, NUMERICAL_STD, ddof);
} else if(MP_OBJ_IS_TYPE(oin, &ulab_ndarray_type)) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
if(axis == mp_const_none) { // calculate for the flat array
return numerical_flat_sum_mean_std(ndarray, NUMERICAL_STD, ddof);
} else {
_shift = shift;
}
if((args[2].u_obj == mp_const_none) || (mp_obj_get_int(args[2].u_obj) == 1)) { // shift horizontally
uint16_t M;
if(args[2].u_obj == mp_const_none) {
len = in->array->len;
M = 1;
int8_t ax = mp_obj_get_int(axis);
ndarray_header_obj_t header = contracted_shape_strides(ndarray, ax);
ndarray_obj_t *result = ndarray_new_ndarray(ndarray->ndim-1, header.shape, header.strides, NDARRAY_FLOAT);
mp_float_t *farray = (mp_float_t *)result->array->items, sum_sq;
size_t offset;
// iterate along the length of the output array, so as to avoid recursion
for(size_t i=0; i < result->array->len; i++) {
offset = ndarray_index_from_contracted(i, ndarray, result->strides, result->ndim, header.axis) + ndarray->offset;
if(ndarray->array->typecode == NDARRAY_UINT8) {
CALCULATE_STD(ndarray, uint8_t, sum_sq, ndarray->shape[header.axis], ndarray->strides[header.axis], offset);
} else if(ndarray->array->typecode == NDARRAY_INT8) {
CALCULATE_STD(ndarray, int8_t, sum_sq, ndarray->shape[header.axis], ndarray->strides[header.axis], offset);
} else if(ndarray->array->typecode == NDARRAY_UINT16) {
CALCULATE_STD(ndarray, uint16_t, sum_sq, ndarray->shape[header.axis], ndarray->strides[header.axis], offset);
} else if(ndarray->array->typecode == NDARRAY_INT16) {
CALCULATE_STD(ndarray, int16_t, sum_sq, ndarray->shape[header.axis], ndarray->strides[header.axis], offset);
} else {
len = in->n;
M = in->m;
CALCULATE_STD(ndarray, mp_float_t, sum_sq, ndarray->shape[header.axis], ndarray->strides[header.axis], offset);
}
_shift = _shift % len;
if(shift < 0) _shift = len - _shift;
// TODO: if(shift > len/2), we should move in the opposite direction. That would save RAM
_shift *= _sizeof;
uint8_t *tmp = m_new(uint8_t, _shift);
for(size_t m=0; m < M; m++) {
memmove(tmp, &array[m*len*_sizeof], _shift);
memmove(&array[m*len*_sizeof], &array[m*len*_sizeof+_shift], len*_sizeof-_shift);
memmove(&array[(m+1)*len*_sizeof-_shift], tmp, _shift);
farray[i] = MICROPY_FLOAT_C_FUN(sqrt)(sum_sq / (ndarray->shape[header.axis] - ddof));
}
m_del(uint8_t, tmp, _shift);
return mp_const_none;
} else {
len = in->m;
// temporary buffer
uint8_t *_data = m_new(uint8_t, _sizeof*len);
_shift = _shift % len;
if(shift < 0) _shift = len - _shift;
_shift *= _sizeof;
uint8_t *tmp = m_new(uint8_t, _shift);
for(size_t n=0; n < in->n; n++) {
for(size_t m=0; m < len; m++) {
// this loop should fill up the temporary buffer
memmove(&_data[m*_sizeof], &array[(m*in->n+n)*_sizeof], _sizeof);
return MP_OBJ_FROM_PTR(result);
}
// now, the actual shift
memmove(tmp, _data, _shift);
memmove(_data, &_data[_shift], len*_sizeof-_shift);
memmove(&_data[len*_sizeof-_shift], tmp, _shift);
for(size_t m=0; m < len; m++) {
// this loop should dump the content of the temporary buffer into data
memmove(&array[(m*in->n+n)*_sizeof], &_data[m*_sizeof], _sizeof);
mp_raise_TypeError("input must be tuple, list, range, or ndarray");
}
}
m_del(uint8_t, tmp, _shift);
m_del(uint8_t, _data, _sizeof*len);
return mp_const_none;
}
}
mp_obj_t numerical_flip(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj) } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError("flip argument must be an ndarray");
}
if((args[1].u_obj != mp_const_none) &&
(mp_obj_get_int(args[1].u_obj) != 0) &&
(mp_obj_get_int(args[1].u_obj) != 1)) {
mp_raise_ValueError("axis must be None, 0, or 1");
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(args[0].u_obj);
mp_obj_t oout = ndarray_copy(args[0].u_obj);
ndarray_obj_t *out = MP_OBJ_TO_PTR(oout);
uint8_t _sizeof = mp_binary_get_size('@', in->array->typecode, NULL);
uint8_t *array_in = (uint8_t *)in->array->items;
uint8_t *array_out = (uint8_t *)out->array->items;
size_t len;
if((args[1].u_obj == mp_const_none) || (mp_obj_get_int(args[1].u_obj) == 1)) { // flip horizontally
uint16_t M = in->m;
len = in->n;
if(args[1].u_obj == mp_const_none) { // flip flattened array
len = in->array->len;
M = 1;
}
for(size_t m=0; m < M; m++) {
for(size_t n=0; n < len; n++) {
memcpy(array_out+_sizeof*(m*len+n), array_in+_sizeof*((m+1)*len-n-1), _sizeof);
}
}
} else { // flip vertically
for(size_t m=0; m < in->m; m++) {
for(size_t n=0; n < in->n; n++) {
memcpy(array_out+_sizeof*(m*in->n+n), array_in+_sizeof*((in->m-m-1)*in->n+n), _sizeof);
}
}
}
return out;
}
mp_obj_t numerical_diff(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj) } },
{ MP_QSTR_n, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1 } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError("diff argument must be an ndarray");
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(args[0].u_obj);
size_t increment, N, M;
if((args[2].u_int == -1) || (args[2].u_int == 1)) { // differentiate along the horizontal axis
increment = 1;
} else if(args[2].u_int == 0) { // differtiate along vertical axis
increment = in->n;
} else {
mp_raise_ValueError("axis must be -1, 0, or 1");
}
if((args[1].u_int < 0) || (args[1].u_int > 9)) {
mp_raise_ValueError("n must be between 0, and 9");
}
uint8_t n = args[1].u_int;
int8_t *stencil = m_new(int8_t, n+1);
stencil[0] = 1;
for(uint8_t i=1; i < n+1; i++) {
stencil[i] = -stencil[i-1]*(n-i+1)/i;
}
ndarray_obj_t *out;
if(increment == 1) { // differentiate along the horizontal axis
if(n >= in->n) {
out = create_new_ndarray(in->m, 0, in->array->typecode);
m_del(uint8_t, stencil, n);
return MP_OBJ_FROM_PTR(out);
}
N = in->n - n;
M = in->m;
} else { // differentiate along vertical axis
if(n >= in->m) {
out = create_new_ndarray(0, in->n, in->array->typecode);
m_del(uint8_t, stencil, n);
return MP_OBJ_FROM_PTR(out);
}
M = in->m - n;
N = in->n;
}
out = create_new_ndarray(M, N, in->array->typecode);
if(in->array->typecode == NDARRAY_UINT8) {
CALCULATE_DIFF(in, out, uint8_t, M, N, in->n, increment);
} else if(in->array->typecode == NDARRAY_INT8) {
CALCULATE_DIFF(in, out, int8_t, M, N, in->n, increment);
} else if(in->array->typecode == NDARRAY_UINT16) {
CALCULATE_DIFF(in, out, uint16_t, M, N, in->n, increment);
} else if(in->array->typecode == NDARRAY_INT16) {
CALCULATE_DIFF(in, out, int16_t, M, N, in->n, increment);
} else {
CALCULATE_DIFF(in, out, mp_float_t, M, N, in->n, increment);
}
m_del(int8_t, stencil, n);
return MP_OBJ_FROM_PTR(out);
}
mp_obj_t numerical_sort_helper(mp_obj_t oin, mp_obj_t axis, uint8_t inplace) {
if(!mp_obj_is_type(oin, &ulab_ndarray_type)) {
mp_raise_TypeError("sort argument must be an ndarray");
}
ndarray_obj_t *ndarray;
mp_obj_t out;
if(inplace == 1) {
ndarray = MP_OBJ_TO_PTR(oin);
} else {
out = ndarray_copy(oin);
ndarray = MP_OBJ_TO_PTR(out);
}
size_t increment, start_inc, end, N;
if(axis == mp_const_none) { // flatten the array
ndarray->m = 1;
ndarray->n = ndarray->array->len;
increment = 1;
start_inc = ndarray->n;
end = ndarray->n;
N = ndarray->n;
} else if((mp_obj_get_int(axis) == -1) ||
(mp_obj_get_int(axis) == 1)) { // sort along the horizontal axis
increment = 1;
start_inc = ndarray->n;
end = ndarray->array->len;
N = ndarray->n;
} else if(mp_obj_get_int(axis) == 0) { // sort along vertical axis
increment = ndarray->n;
start_inc = 1;
end = ndarray->m;
N = ndarray->m;
} else {
mp_raise_ValueError("axis must be -1, 0, None, or 1");
}
size_t q, k, p, c;
for(size_t start=0; start < end; start+=start_inc) {
q = N;
k = (q >> 1);
if((ndarray->array->typecode == NDARRAY_UINT8) || (ndarray->array->typecode == NDARRAY_INT8)) {
HEAPSORT(uint8_t, ndarray);
} else if((ndarray->array->typecode == NDARRAY_INT16) || (ndarray->array->typecode == NDARRAY_INT16)) {
HEAPSORT(uint16_t, ndarray);
} else {
HEAPSORT(mp_float_t, ndarray);
}
}
if(inplace == 1) {
return mp_const_none;
} else {
return out;
}
}
// numpy function
mp_obj_t numerical_sort(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj) } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_int = -1 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
return numerical_sort_helper(args[0].u_obj, args[1].u_obj, 0);
}
// method of an ndarray
mp_obj_t numerical_sort_inplace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj) } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_int = -1 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
return numerical_sort_helper(args[0].u_obj, args[1].u_obj, 1);
}
mp_obj_t numerical_argsort(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj) } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_int = -1 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError("argsort argument must be an ndarray");
}
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
size_t increment, start_inc, end, N, m, n;
if(args[1].u_obj == mp_const_none) { // flatten the array
m = 1;
n = ndarray->array->len;
ndarray->m = m;
ndarray->n = n;
increment = 1;
start_inc = ndarray->n;
end = ndarray->n;
N = n;
} else if((mp_obj_get_int(args[1].u_obj) == -1) ||
(mp_obj_get_int(args[1].u_obj) == 1)) { // sort along the horizontal axis
m = ndarray->m;
n = ndarray->n;
increment = 1;
start_inc = n;
end = ndarray->array->len;
N = n;
} else if(mp_obj_get_int(args[1].u_obj) == 0) { // sort along vertical axis
m = ndarray->m;
n = ndarray->n;
increment = n;
start_inc = 1;
end = m;
N = m;
} else {
mp_raise_ValueError("axis must be -1, 0, None, or 1");
}
// at the expense of flash, we could save RAM by creating
// an NDARRAY_UINT16 ndarray only, if needed, otherwise, NDARRAY_UINT8
ndarray_obj_t *indices = create_new_ndarray(m, n, NDARRAY_UINT16);
uint16_t *index_array = (uint16_t *)indices->array->items;
// initialise the index array
// if array is flat: 0 to indices->n
// if sorting vertically, identical indices are arranged row-wise
// if sorting horizontally, identical indices are arranged colunn-wise
for(uint16_t start=0; start < end; start+=start_inc) {
for(uint16_t s=0; s < N; s++) {
index_array[start+s*increment] = s;
}
}
size_t q, k, p, c;
for(size_t start=0; start < end; start+=start_inc) {
q = N;
k = (q >> 1);
if((ndarray->array->typecode == NDARRAY_UINT8) || (ndarray->array->typecode == NDARRAY_INT8)) {
HEAP_ARGSORT(uint8_t, ndarray, index_array);
} else if((ndarray->array->typecode == NDARRAY_INT16) || (ndarray->array->typecode == NDARRAY_INT16)) {
HEAP_ARGSORT(uint16_t, ndarray, index_array);
} else {
HEAP_ARGSORT(mp_float_t, ndarray, index_array);
}
}
return MP_OBJ_FROM_PTR(indices);
}

View file

@ -14,121 +14,52 @@
#include "ndarray.h"
mp_obj_t numerical_linspace(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_sum(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_mean(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_std(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_min(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_max(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_argmin(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_argmax(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_roll(size_t , const mp_obj_t *, mp_map_t *);
// TODO: implement minimum/maximum, and cumsum
mp_obj_t numerical_minimum(mp_obj_t , mp_obj_t );
mp_obj_t numerical_maximum(mp_obj_t , mp_obj_t );
mp_obj_t numerical_cumsum(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_flip(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_diff(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_sort(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_sort_inplace(size_t , const mp_obj_t *, mp_map_t *);
mp_obj_t numerical_argsort(size_t , const mp_obj_t *, mp_map_t *);
// this macro could be tighter, if we moved the ifs to the argmin function, assigned <, as well as >
#define ARG_MIN_LOOP(in, type, start, stop, stride, op) do {\
type *array = (type *)(in)->array->items;\
if(((op) == NUMERICAL_MAX) || ((op) == NUMERICAL_ARGMAX)) {\
for(size_t i=(start)+(stride); i < (stop); i+=(stride)) {\
if((array)[i] > (array)[best_idx]) {\
best_idx = i;\
}\
}\
} else{\
for(size_t i=(start)+(stride); i < (stop); i+=(stride)) {\
if((array)[i] < (array)[best_idx]) best_idx = i;\
}\
}\
} while(0)
#define CALCULATE_DIFF(in, out, type, M, N, inn, increment) do {\
type *source = (type *)(in)->array->items;\
type *target = (type *)(out)->array->items;\
for(size_t i=0; i < (M); i++) {\
for(size_t j=0; j < (N); j++) {\
for(uint8_t k=0; k < n+1; k++) {\
target[i*(N)+j] -= stencil[k]*source[i*(inn)+j+k*(increment)];\
}\
}\
}\
} while(0)
#define HEAPSORT(type, ndarray) do {\
#define CALCULATE_SUM(ndarray, type, farray, shape_ax, index, stride, offset, optype) do {\
type *array = (type *)(ndarray)->array->items;\
type tmp;\
for (;;) {\
if (k > 0) {\
tmp = array[start+(--k)*increment];\
} else {\
q--;\
if(q == 0) {\
break;\
}\
tmp = array[start+q*increment];\
array[start+q*increment] = array[start];\
}\
p = k;\
c = k + k + 1;\
while (c < q) {\
if((c + 1 < q) && (array[start+(c+1)*increment] > array[start+c*increment])) {\
c++;\
}\
if(array[start+c*increment] > tmp) {\
array[start+p*increment] = array[start+c*increment];\
p = c;\
c = p + p + 1;\
} else {\
break;\
}\
}\
array[start+p*increment] = tmp;\
(farray)[(index)] = 0.0;\
for(size_t j=0; j < (shape_ax); j++, (offset) += (stride)) {\
(farray)[(index)] += array[(offset)];\
}\
} while(0)
// This is pretty similar to HEAPSORT above; perhaps, the two could be combined somehow
// On the other hand, since this is a macro, it doesn't really matter
// Keep in mind that initially, index_array[start+s*increment] = s
#define HEAP_ARGSORT(type, ndarray, index_array) do {\
// TODO: this can be done without the NDARRAY_INDEX_FROM_FLAT macro
// Welford algorithm for the standard deviation
#define CALCULATE_FLAT_SUM_STD(ndarray, type, value, shape_strides, optype) do {\
type *array = (type *)(ndarray)->array->items;\
type tmp;\
uint16_t itmp;\
for (;;) {\
if (k > 0) {\
k--;\
tmp = array[start+index_array[start+k*increment]*increment];\
itmp = index_array[start+k*increment];\
(value) = 0.0;\
mp_float_t m = 0.0, mtmp;\
size_t index, nindex;\
for(size_t j=0; j < (ndarray)->len; j++) {\
NDARRAY_INDEX_FROM_FLAT((ndarray), (shape_strides), j, index, nindex);\
if((optype) == NUMERICAL_STD) {\
mtmp = m;\
m = mtmp + (array[nindex] - mtmp) / (j+1);\
(value) += (array[nindex] - mtmp) * (array[nindex] - m);\
} else {\
q--;\
if(q == 0) {\
break;\
}\
tmp = array[start+index_array[start+q*increment]*increment];\
itmp = index_array[start+q*increment];\
index_array[start+q*increment] = index_array[start];\
}\
p = k;\
c = k + k + 1;\
while (c < q) {\
if((c + 1 < q) && (array[start+index_array[start+(c+1)*increment]*increment] > array[start+index_array[start+c*increment]*increment])) {\
c++;\
}\
if(array[start+index_array[start+c*increment]*increment] > tmp) {\
index_array[start+p*increment] = index_array[start+c*increment];\
p = c;\
c = p + p + 1;\
} else {\
break;\
(value) += array[nindex];\
}\
}\
index_array[start+p*increment] = itmp;\
} while(0)
// we calculate the standard deviation in two passes, in order to avoid negative values through truncation errors
// We could do in a single pass, if we resorted to the Welford algorithm above
#define CALCULATE_STD(ndarray, type, sq_sum, shape_ax, stride, offset) do {\
type *array = (type *)(ndarray)->array->items;\
mp_float_t x, ave = 0.0;\
(sq_sum) = 0.0;\
size_t j, _offset = (offset);\
for(j=0; j < (shape_ax); j++, _offset += (stride)) {\
ave += array[_offset];\
}\
ave /= j;\
for(j=0; j < (shape_ax); j++, (offset) += (stride)) {\
x = array[(offset)] - ave;\
(sq_sum) += x * x;\
}\
} while(0)

View file

@ -15,102 +15,62 @@
#include "linalg.h"
#include "poly.h"
bool object_is_nditerable(mp_obj_t o_in) {
if(mp_obj_is_type(o_in, &ulab_ndarray_type) ||
mp_obj_is_type(o_in, &mp_type_tuple) ||
mp_obj_is_type(o_in, &mp_type_list) ||
mp_obj_is_type(o_in, &mp_type_range)) {
return true;
}
return false;
}
size_t get_nditerable_len(mp_obj_t o_in) {
if(mp_obj_is_type(o_in, &ulab_ndarray_type)) {
ndarray_obj_t *in = MP_OBJ_TO_PTR(o_in);
return in->array->len;
} else {
return (size_t)mp_obj_get_int(mp_obj_len_maybe(o_in));
void fill_array_iterable(mp_float_t *array, mp_obj_t oin) {
mp_obj_iter_buf_t buf;
mp_obj_t item, iterable = mp_getiter(oin, &buf);
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
*array++ = mp_obj_get_float(item);
}
}
mp_obj_t poly_polyval(mp_obj_t o_p, mp_obj_t o_x) {
// TODO: return immediately, if o_p is not an iterable
// TODO: there is a bug here: matrices won't work,
// because there is a single iteration loop
size_t m, n;
if(MP_OBJ_IS_TYPE(o_x, &ulab_ndarray_type)) {
ndarray_obj_t *ndx = MP_OBJ_TO_PTR(o_x);
m = ndx->m;
n = ndx->n;
} else {
mp_obj_array_t *ix = MP_OBJ_TO_PTR(o_x);
m = 1;
n = ix->len;
}
// polynomials are going to be of type float, except, when both
// the coefficients and the independent variable are integers
ndarray_obj_t *out = create_new_ndarray(m, n, NDARRAY_FLOAT);
mp_obj_iter_buf_t x_buf;
mp_obj_t x_item, x_iterable = mp_getiter(o_x, &x_buf);
mp_obj_iter_buf_t p_buf;
mp_obj_t p_item, p_iterable;
mp_float_t x, y;
mp_float_t *outf = (mp_float_t *)out->array->items;
// we always return floats: polynomials are going to be of type float, except,
// when both the coefficients and the independent variable are integers;
uint8_t plen = mp_obj_get_int(mp_obj_len_maybe(o_p));
mp_float_t *p = m_new(mp_float_t, plen);
p_iterable = mp_getiter(o_p, &p_buf);
uint16_t i = 0;
while((p_item = mp_iternext(p_iterable)) != MP_OBJ_STOP_ITERATION) {
p[i] = mp_obj_get_float(p_item);
i++;
fill_array_iterable(p, o_p);
ndarray_obj_t *ndarray;
mp_float_t *array;
if(MP_OBJ_IS_TYPE(o_x, &ulab_ndarray_type)) {
ndarray_obj_t *input = MP_OBJ_TO_PTR(o_x);
ndarray = ndarray_copy_view(input, NDARRAY_FLOAT);
array = (mp_float_t *)ndarray->array->items;
} else { // at this point, we should have a 1-D iterable
size_t len = mp_obj_get_int(mp_obj_len_maybe(o_x));
ndarray = ndarray_new_linear_array(len, NDARRAY_FLOAT);
array = (mp_float_t *)ndarray->array->items;
fill_array_iterable(array, o_x);
}
i = 0;
while ((x_item = mp_iternext(x_iterable)) != MP_OBJ_STOP_ITERATION) {
x = mp_obj_get_float(x_item);
mp_float_t x, y;
for(size_t i=0; i < ndarray->len; i++) {
x = array[i];
y = p[0];
for(uint8_t j=0; j < plen-1; j++) {
y *= x;
y += p[j+1];
}
outf[i++] = y;
array[i] = y;
}
m_del(mp_float_t, p, plen);
return MP_OBJ_FROM_PTR(out);
return MP_OBJ_FROM_PTR(ndarray);
}
mp_obj_t poly_polyfit(size_t n_args, const mp_obj_t *args) {
if((n_args != 2) && (n_args != 3)) {
mp_raise_ValueError("number of arguments must be 2, or 3");
if(n_args != 3) {
mp_raise_ValueError("number of arguments must be 3");
}
if(!object_is_nditerable(args[0])) {
mp_raise_ValueError("input data must be an iterable");
if(!MP_OBJ_IS_TYPE(args[0], &ulab_ndarray_type) && !MP_OBJ_IS_TYPE(args[0], &mp_type_tuple) &&
!MP_OBJ_IS_TYPE(args[0], &mp_type_list) && !MP_OBJ_IS_TYPE(args[0], &mp_type_range) &&
!MP_OBJ_IS_TYPE(args[1], &ulab_ndarray_type) && !MP_OBJ_IS_TYPE(args[1], &mp_type_tuple) &&
!MP_OBJ_IS_TYPE(args[1], &mp_type_list) && !MP_OBJ_IS_TYPE(args[1], &mp_type_range)) {
mp_raise_ValueError("input data must be a 1D iterable");
}
uint16_t lenx = 0, leny = 0;
uint8_t deg = 0;
uint16_t lenx, leny;
uint8_t deg;
mp_float_t *x, *XT, *y, *prod;
if(n_args == 2) { // only the y values are supplied
// TODO: this is actually not enough: the first argument can very well be a matrix,
// in which case we are between the rock and a hard place
leny = (uint16_t)mp_obj_get_int(mp_obj_len_maybe(args[0]));
deg = (uint8_t)mp_obj_get_int(args[1]);
if(leny < deg) {
mp_raise_ValueError("more degrees of freedom than data points");
}
lenx = leny;
x = m_new(mp_float_t, lenx); // assume uniformly spaced data points
for(size_t i=0; i < lenx; i++) {
x[i] = i;
}
y = m_new(mp_float_t, leny);
fill_array_iterable(y, args[0]);
} else if(n_args == 3) {
lenx = (uint16_t)mp_obj_get_int(mp_obj_len_maybe(args[0]));
leny = (uint16_t)mp_obj_get_int(mp_obj_len_maybe(args[0]));
leny = (uint16_t)mp_obj_get_int(mp_obj_len_maybe(args[1]));
if(lenx != leny) {
mp_raise_ValueError("input vectors must be of equal length");
}
@ -122,7 +82,6 @@ mp_obj_t poly_polyfit(size_t n_args, const mp_obj_t *args) {
fill_array_iterable(x, args[0]);
y = m_new(mp_float_t, leny);
fill_array_iterable(y, args[1]);
}
// one could probably express X as a function of XT,
// and thereby save RAM, because X is used only in the product
@ -170,7 +129,7 @@ mp_obj_t poly_polyfit(size_t n_args, const mp_obj_t *args) {
// XT is no longer needed
m_del(mp_float_t, XT, (deg+1)*leny);
ndarray_obj_t *beta = create_new_ndarray(deg+1, 1, NDARRAY_FLOAT);
ndarray_obj_t *beta = ndarray_new_linear_array(deg+1, NDARRAY_FLOAT);
mp_float_t *betav = (mp_float_t *)beta->array->items;
// x[0..(deg+1)] contains now the product X^T * y; we can get rid of y
m_del(float, y, leny);

View file

@ -18,13 +18,13 @@
#include "py/objarray.h"
#include "ndarray.h"
#include "linalg.h"
#include "vectorise.h"
#include "linalg.h"
#include "poly.h"
#include "fft.h"
#include "numerical.h"
#include "fft.h"
#define ULAB_VERSION 0.262
#define ULAB_VERSION 1.0
typedef struct _mp_obj_float_t {
mp_obj_base_t base;
@ -34,20 +34,12 @@ typedef struct _mp_obj_float_t {
mp_obj_float_t ulab_version = {{&mp_type_float}, ULAB_VERSION};
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_shape_obj, ndarray_shape);
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_rawsize_obj, ndarray_rawsize);
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_strides_obj, ndarray_strides);
MP_DEFINE_CONST_FUN_OBJ_2(ndarray_reshape_obj, ndarray_reshape);
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_transpose_obj, ndarray_transpose);
MP_DEFINE_CONST_FUN_OBJ_KW(ndarray_flatten_obj, 1, ndarray_flatten);
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_asbytearray_obj, ndarray_asbytearray);
MP_DEFINE_CONST_FUN_OBJ_1(linalg_transpose_obj, linalg_transpose);
MP_DEFINE_CONST_FUN_OBJ_2(linalg_reshape_obj, linalg_reshape);
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_size_obj, 1, linalg_size);
MP_DEFINE_CONST_FUN_OBJ_1(linalg_inv_obj, linalg_inv);
MP_DEFINE_CONST_FUN_OBJ_2(linalg_dot_obj, linalg_dot);
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_zeros_obj, 0, linalg_zeros);
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_ones_obj, 0, linalg_ones);
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_eye_obj, 0, linalg_eye);
MP_DEFINE_CONST_FUN_OBJ_1(linalg_det_obj, linalg_det);
MP_DEFINE_CONST_FUN_OBJ_1(linalg_eig_obj, linalg_eig);
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_itemsize_obj, ndarray_itemsize);
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_info_obj, ndarray_info);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_acos_obj, vectorise_acos);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_acosh_obj, vectorise_acosh);
@ -73,36 +65,34 @@ MP_DEFINE_CONST_FUN_OBJ_1(vectorise_sqrt_obj, vectorise_sqrt);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_tan_obj, vectorise_tan);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_tanh_obj, vectorise_tanh);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_linspace_obj, 2, numerical_linspace);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sum_obj, 1, numerical_sum);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_mean_obj, 1, numerical_mean);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_std_obj, 1, numerical_std);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_min_obj, 1, numerical_min);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_max_obj, 1, numerical_max);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argmin_obj, 1, numerical_argmin);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argmax_obj, 1, numerical_argmax);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_roll_obj, 2, numerical_roll);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_flip_obj, 1, numerical_flip);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_diff_obj, 1, numerical_diff);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sort_obj, 1, numerical_sort);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sort_inplace_obj, 1, numerical_sort_inplace);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argsort_obj, 1, numerical_argsort);
MP_DEFINE_CONST_FUN_OBJ_1(linalg_inv_obj, linalg_inv);
MP_DEFINE_CONST_FUN_OBJ_2(linalg_dot_obj, linalg_dot);
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_zeros_obj, 0, linalg_zeros);
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_ones_obj, 0, linalg_ones);
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_eye_obj, 0, linalg_eye);
MP_DEFINE_CONST_FUN_OBJ_1(linalg_det_obj, linalg_det);
MP_DEFINE_CONST_FUN_OBJ_1(linalg_eig_obj, linalg_eig);
STATIC MP_DEFINE_CONST_FUN_OBJ_2(poly_polyval_obj, poly_polyval);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(poly_polyfit_obj, 2, 3, poly_polyfit);
MP_DEFINE_CONST_FUN_OBJ_2(poly_polyval_obj, poly_polyval);
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(poly_polyfit_obj, 2, 3, poly_polyfit);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj, 1, 2, fft_fft);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj, 1, 2, fft_ifft);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_spectrum_obj, 1, 2, fft_spectrum);
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_linspace_obj, 2, numerical_linspace);
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sum_obj, 1, numerical_sum);
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_mean_obj, 1, numerical_mean);
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_std_obj, 1, numerical_std);
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj, 1, 2, fft_fft);
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj, 1, 2, fft_ifft);
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_spectrum_obj, 1, 2, fft_spectrum);
STATIC const mp_rom_map_elem_t ulab_ndarray_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_shape), MP_ROM_PTR(&ndarray_shape_obj) },
{ MP_ROM_QSTR(MP_QSTR_rawsize), MP_ROM_PTR(&ndarray_rawsize_obj) },
{ MP_ROM_QSTR(MP_QSTR_strides), MP_ROM_PTR(&ndarray_strides_obj) },
{ MP_ROM_QSTR(MP_QSTR_reshape), MP_ROM_PTR(&ndarray_reshape_obj) },
{ MP_ROM_QSTR(MP_QSTR_transpose), MP_ROM_PTR(&ndarray_transpose_obj) },
{ MP_ROM_QSTR(MP_QSTR_flatten), MP_ROM_PTR(&ndarray_flatten_obj) },
{ MP_ROM_QSTR(MP_QSTR_asbytearray), MP_ROM_PTR(&ndarray_asbytearray_obj) },
{ MP_ROM_QSTR(MP_QSTR_transpose), MP_ROM_PTR(&linalg_transpose_obj) },
{ MP_ROM_QSTR(MP_QSTR_reshape), MP_ROM_PTR(&linalg_reshape_obj) },
{ MP_ROM_QSTR(MP_QSTR_sort), MP_ROM_PTR(&numerical_sort_inplace_obj) },
{ MP_ROM_QSTR(MP_QSTR_itemsize), MP_ROM_PTR(&ndarray_itemsize_obj) },
};
STATIC MP_DEFINE_CONST_DICT(ulab_ndarray_locals_dict, ulab_ndarray_locals_dict_table);
@ -123,14 +113,7 @@ STATIC const mp_map_elem_t ulab_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_ulab) },
{ MP_ROM_QSTR(MP_QSTR___version__), MP_ROM_PTR(&ulab_version) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_array), (mp_obj_t)&ulab_ndarray_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_size), (mp_obj_t)&linalg_size_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_inv), (mp_obj_t)&linalg_inv_obj },
{ MP_ROM_QSTR(MP_QSTR_dot), (mp_obj_t)&linalg_dot_obj },
{ MP_ROM_QSTR(MP_QSTR_zeros), (mp_obj_t)&linalg_zeros_obj },
{ MP_ROM_QSTR(MP_QSTR_ones), (mp_obj_t)&linalg_ones_obj },
{ MP_ROM_QSTR(MP_QSTR_eye), (mp_obj_t)&linalg_eye_obj },
{ MP_ROM_QSTR(MP_QSTR_det), (mp_obj_t)&linalg_det_obj },
{ MP_ROM_QSTR(MP_QSTR_eig), (mp_obj_t)&linalg_eig_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ndinfo), (mp_obj_t)&ndarray_info_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_acos), (mp_obj_t)&vectorise_acos_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_acosh), (mp_obj_t)&vectorise_acosh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_asin), (mp_obj_t)&vectorise_asin_obj },
@ -154,25 +137,24 @@ STATIC const mp_map_elem_t ulab_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_sqrt), (mp_obj_t)&vectorise_sqrt_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_tan), (mp_obj_t)&vectorise_tan_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_tanh), (mp_obj_t)&vectorise_tanh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_polyval), (mp_obj_t)&poly_polyval_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_polyfit), (mp_obj_t)&poly_polyfit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_inv), (mp_obj_t)&linalg_inv_obj },
{ MP_ROM_QSTR(MP_QSTR_dot), (mp_obj_t)&linalg_dot_obj },
{ MP_ROM_QSTR(MP_QSTR_zeros), (mp_obj_t)&linalg_zeros_obj },
{ MP_ROM_QSTR(MP_QSTR_ones), (mp_obj_t)&linalg_ones_obj },
{ MP_ROM_QSTR(MP_QSTR_eye), (mp_obj_t)&linalg_eye_obj },
{ MP_ROM_QSTR(MP_QSTR_det), (mp_obj_t)&linalg_det_obj },
{ MP_ROM_QSTR(MP_QSTR_eig), (mp_obj_t)&linalg_eig_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_linspace), (mp_obj_t)&numerical_linspace_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sum), (mp_obj_t)&numerical_sum_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_mean), (mp_obj_t)&numerical_mean_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_std), (mp_obj_t)&numerical_std_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_min), (mp_obj_t)&numerical_min_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_max), (mp_obj_t)&numerical_max_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_argmin), (mp_obj_t)&numerical_argmin_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_argmax), (mp_obj_t)&numerical_argmax_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_roll), (mp_obj_t)&numerical_roll_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_flip), (mp_obj_t)&numerical_flip_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_diff), (mp_obj_t)&numerical_diff_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sort), (mp_obj_t)&numerical_sort_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_argsort), (mp_obj_t)&numerical_argsort_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_polyval), (mp_obj_t)&poly_polyval_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_polyfit), (mp_obj_t)&poly_polyfit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_fft), (mp_obj_t)&fft_fft_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ifft), (mp_obj_t)&fft_ifft_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_spectrum), (mp_obj_t)&fft_spectrum_obj },
// class constants
{ MP_ROM_QSTR(MP_QSTR_bool), MP_ROM_INT(NDARRAY_BOOL) },
{ MP_ROM_QSTR(MP_QSTR_uint8), MP_ROM_INT(NDARRAY_UINT8) },
{ MP_ROM_QSTR(MP_QSTR_int8), MP_ROM_INT(NDARRAY_INT8) },
{ MP_ROM_QSTR(MP_QSTR_uint16), MP_ROM_INT(NDARRAY_UINT16) },

View file

@ -26,34 +26,41 @@ mp_obj_t vectorise_generic_vector(mp_obj_t o_in, mp_float_t (*f)(mp_float_t)) {
if(mp_obj_is_float(o_in) || mp_obj_is_integer(o_in)) {
return mp_obj_new_float(f(mp_obj_get_float(o_in)));
}
mp_float_t x;
if(MP_OBJ_IS_TYPE(o_in, &ulab_ndarray_type)) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(o_in);
ndarray_obj_t *ndarray = create_new_ndarray(source->m, source->n, NDARRAY_FLOAT);
mp_float_t *dataout = (mp_float_t *)ndarray->array->items;
ndarray_obj_t *ndarray;
if(source->len == source->array->len) { // this is a dense array
ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_FLOAT);
mp_float_t *array = (mp_float_t *)ndarray->array->items;
if(source->array->typecode == NDARRAY_UINT8) {
ITERATE_VECTOR(uint8_t, source, dataout);
ITERATE_VECTOR(uint8_t, source, array);
} else if(source->array->typecode == NDARRAY_INT8) {
ITERATE_VECTOR(int8_t, source, dataout);
ITERATE_VECTOR(int8_t, source, array);
} else if(source->array->typecode == NDARRAY_UINT16) {
ITERATE_VECTOR(uint16_t, source, dataout);
ITERATE_VECTOR(uint16_t, source, array);
} else if(source->array->typecode == NDARRAY_INT16) {
ITERATE_VECTOR(int16_t, source, dataout);
ITERATE_VECTOR(int16_t, source, array);
} else {
ITERATE_VECTOR(mp_float_t, source, dataout);
ITERATE_VECTOR(mp_float_t, source, array);
}
} else {
ndarray = ndarray_copy_view(source, NDARRAY_FLOAT);
mp_float_t *dataout = (mp_float_t *)ndarray->array->items;
ITERATE_VECTOR(mp_float_t, ndarray, dataout);
}
return MP_OBJ_FROM_PTR(ndarray);
} else if(MP_OBJ_IS_TYPE(o_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(o_in, &mp_type_list) ||
MP_OBJ_IS_TYPE(o_in, &mp_type_range)) { // i.e., the input is a generic iterable
MP_OBJ_IS_TYPE(o_in, &mp_type_range)) { // i.e., the input is a generic, one-dimensional iterable
mp_obj_array_t *o = MP_OBJ_TO_PTR(o_in);
ndarray_obj_t *out = create_new_ndarray(1, o->len, NDARRAY_FLOAT);
ndarray_obj_t *out = ndarray_new_linear_array(o->len, NDARRAY_FLOAT);
mp_float_t *dataout = (mp_float_t *)out->array->items;
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(o_in, &iter_buf);
size_t i=0;
mp_float_t x;
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
x = mp_obj_get_float(item);
dataout[i++] = f(x);
*dataout++ = f(x);
}
return MP_OBJ_FROM_PTR(out);
}

View file

@ -40,7 +40,7 @@ mp_obj_t vectorise_tanh(mp_obj_t );
#define ITERATE_VECTOR(type, source, out) do {\
type *input = (type *)(source)->array->items;\
for(size_t i=0; i < (source)->array->len; i++) {\
(out)[i] = f(input[i]);\
*(out)++ = f(*input++);\
}\
} while(0)

File diff suppressed because it is too large Load diff

1243
tests/tests.ipynb Normal file

File diff suppressed because it is too large Load diff