Compare commits

..

No commits in common. "update-circuitpython-ci" and "2dim" have entirely different histories.

300 changed files with 21291 additions and 53323 deletions

View file

@ -1,25 +0,0 @@
---
name: Bug report
about: Create a report to help us improve
title: "[BUG]"
labels: bug
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is. Give the `ulab` version
```python
import ulab
print(ulab.__version__)
```
**To Reproduce**
Describe the steps to reproduce the behavior.
**Expected behavior**
A clear and concise description of what you expected to happen.
**Additional context**
Add any other context that might help to locate the root of the problem.

View file

@ -1,14 +0,0 @@
---
name: Feature request
about: Suggest an idea for this project
title: "[FEATURE REQUEST]"
labels: enhancement
assignees: ''
---
**Describe the solution you'd like**
A clear and concise description of what you want to happen. If possible, link to the `numpy/scipy` function.
**Additional context**
Add any other context about the feature request here.

View file

@ -3,41 +3,23 @@ name: Build CI
on:
push:
pull_request:
paths:
- 'code/**'
- 'tests/**'
- '.github/workflows/**'
- 'build*.sh'
- 'requirements*.txt'
release:
types: [published]
check_suite:
types: [rerequested]
jobs:
micropython:
strategy:
matrix:
os:
- ubuntu-20.04
- macOS-latest
dims: [1, 2, 3, 4]
runs-on: ${{ matrix.os }}
test:
runs-on: ubuntu-16.04
steps:
- name: Dump GitHub context
env:
GITHUB_CONTEXT: ${{ toJson(github) }}
run: echo "$GITHUB_CONTEXT"
- name: Set up Python 3.10
- name: Set up Python 3.5
uses: actions/setup-python@v1
with:
python-version: "3.10"
- name: Install requirements
run: |
if type -path apt-get; then
sudo apt-get install gcc-multilib
fi
python-version: 3.5
- name: Versions
run: |
@ -52,45 +34,25 @@ jobs:
repository: micropython/micropython
path: micropython
- name: Run build.sh
run: ./build.sh ${{ matrix.dims }}
- name: Checkout micropython submodules
run: (cd micropython && git submodule update --init)
circuitpython:
strategy:
matrix:
os:
- ubuntu-20.04
- macOS-latest
dims: [1, 2, 3, 4]
runs-on: ${{ matrix.os }}
steps:
- name: Dump GitHub context
env:
GITHUB_CONTEXT: ${{ toJson(github) }}
run: echo "$GITHUB_CONTEXT"
- name: Set up Python 3.10
uses: actions/setup-python@v1
with:
python-version: "3.10"
- name: Build mpy-cross
run: make -C micropython/mpy-cross -j2
- name: Versions
- name: Build micropython unix port
run: |
gcc --version
python3 --version
make -C micropython/ports/unix -j2 deplibs
make -C micropython/ports/unix -j2 USER_C_MODULES=$(readlink -f .)
- name: Checkout ulab
uses: actions/checkout@v1
- name: Install requirements
- name: Run tests
run: env MICROPYTHON_CPYTHON3=python3.5 MICROPY_MICROPYTHON=micropython/ports/unix/micropython micropython/tests/run-tests -d tests
- name: Print failure info
run: |
if type -path apt-get; then
sudo apt-get install gettext librsvg2-bin
else
brew install gettext librsvg
echo >>$GITHUB_PATH /usr/local/opt/gettext/bin
echo >>$GITHUB_PATH /usr/local/opt/librsvg/bin
fi
python3 -mpip install --upgrade -r requirements_cp_dev.txt
for exp in *.exp;
do testbase=$(basename $exp .exp);
echo -e "\nFAILURE $testbase";
diff -u $testbase.exp $testbase.out;
done
if: failure()
- name: Run build-cp.sh
run: ./build-cp.sh ${{ matrix.dims }}

13
.gitignore vendored
View file

@ -1,13 +0,0 @@
/micropython
/circuitpython
/*.exp
/*.out
/docs/manual/build/
/docs/manual/source/**/*.pyi
/docs/.ipynb_checkpoints/
/docs/ulab-test.ipynb
/code/.atom-build.yml
build/micropython
build/ulab
.idea

View file

@ -1,24 +0,0 @@
# .readthedocs.yaml
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
# Required
version: 2
# Set the version of Python and other tools you might need
build:
os: ubuntu-20.04
tools:
python: "3.9"
# Build documentation in the docs/ directory with Sphinx
sphinx:
configuration: docs/manual/source/conf.py
# If using Sphinx, optionally build your docs in additional formats such as PDF
formats: all
# Optionally declare the Python requirements required to build your docs
python:
install:
- requirements: requirements.txt

View file

@ -1,17 +0,0 @@
Contributions of any kind are always welcome.
# Contributing to the code base
If you feel like adding to the code, you can simply issue a pull request. If you do so, please, try to adhere to `micropython`'s [coding conventions](https://github.com/micropython/micropython/blob/master/CODECONVENTIONS.md#c-code-conventions).
# Documentation
However, you can also contribute to the documentation (preferably via the [jupyter notebooks](https://github.com/v923z/micropython-ulab/tree/master/docs).
## Testing
If you decide to lend a hand with testing, here are the steps:
1. Write a test script that checks a particular function, or a set of related functions!
1. Drop this script in one of the folders in [ulab tests](https://github.com/v923z/micropython-ulab/tree/master/tests)!
1. Run the [./build.sh](https://github.com/v923z/micropython-ulab/blob/master/build.sh) script in the root directory of `ulab`! This will clone the latest `micropython`, compile the firmware for `unix`, execute all scripts in the `ulab/tests`, and compare the results to those in the expected results files, which are also in `ulab/tests`, and have an extension `.exp`. In case you have a new snippet, i.e., you have no expected results file, or if the results differ from those in the expected file, a new expected file will be generated in the root directory. You should inspect the contents of this file, and if they are satisfactory, then the file can be moved to the `ulab/tests` folder, alongside your snippet.

441
README.md
View file

@ -1,447 +1,62 @@
# ulab
# micropython-ulab
[![Documentation Status](https://readthedocs.org/projects/micropython-ulab-robert/badge/?version=latest)](https://micropython-ulab-robert.readthedocs.io/en/latest/?badge=latest)
ulab is a numpy-like array manipulation library for micropython.
The module is written in C, defines compact containers for numerical
data, and is fast.
`ulab` is a `numpy`-like array manipulation library for [micropython](http://micropython.org/) and [CircuitPython](https://circuitpython.org/).
The module is written in C, defines compact containers (`ndarray`s) for numerical data of one to four
dimensions, and is fast. The library is a software-only standard `micropython` user module,
i.e., it has no hardware dependencies, and can be compiled for any platform. 8-, and 16-bit signed
and unsigned integer `dtypes`, as well as `float`, and, optionally, ` complex` are supported.
The `float` implementation of `micropython` (32-bit `float`, or 64-bit `double`) is automatically
detected and handled.
1. [Supported functions and methods](#supported-functions-and-methods)
1. [ndarray methods](#ndarray-methods)
2. [numpy and scipy functions](#numpy-and-scipy-functions)
3. [ulab utilities](#ulab-utilities)
4. [user module](#user-module)
4. [Usage](#usage)
5. [Finding help](#finding-help)
6. [Benchmarks](#benchmarks)
7. [Firmware](#firmware)
1. [Customising the firmware](#customising-the-firmware)
1. [Platforms including ulab](#platforms-including-ulab)
1. [Compiling](#compiling)
1. [UNIX](#unix-port)
1. [STM-based boards](#stm-based-boards)
1. [ESP32-based boards](#esp32-based-boards)
1. [RP2-based boards](#rp2-based-boards)
1. [Compiling for CircuitPython](#compiling-for-circuitpython)
8. [Issues, contributing, and testing](#issues-contributing-and-testing)
1. [Testing](#testing)
# Supported functions and methods
## ndarray methods
`ulab` implements `numpy`'s `ndarray` with the `==`, `!=`, `<`, `<=`, `>`, `>=`, `+`, `-`, `/`, `*`, `**`,
`+=`, `-=`, `*=`, `/=`, `**=` binary operators, and the `len`, `~`, `-`, `+`, `abs` unary operators that
operate element-wise. Type-aware `ndarray`s can be initialised from any `micropython` iterable, lists of
iterables via the `array` constructor, or by means of the `arange`, `concatenate`, `diag`, `eye`,
`frombuffer`, `full`, `linspace`, `logspace`, `ones`, or `zeros` functions.
`ndarray`s can be sliced, and iterated on, and have a number of their own methods, and properties, such as `flatten()`, `itemsize`, `reshape()`,
`shape`, `size`, `strides`, `tobytes()`, `tolist()`, and `transpose()` and `T`. If the firmware is compiled with `complex` support,
the `imag`, and `real` properties are automatically included.
## `numpy` and `scipy` functions
In addition, `ulab` includes [universal functions](https://micropython-ulab.readthedocs.io/en/latest/numpy-universal.html), [many `numpy` functions](https://micropython-ulab.readthedocs.io/en/latest/numpy-functions.html), and functions from the [`numpy.fft`](https://micropython-ulab.readthedocs.io/en/latest/numpy-fft.html), [`numpy.linalg`](https://micropython-ulab.readthedocs.io/en/latest/numpy-linalg.html), [`scipy.linalg`](https://micropython-ulab.readthedocs.io/en/latest/scipy-linalg.html), [`scipy.optimize`](https://micropython-ulab.readthedocs.io/en/latest/scipy-optimize.html), [`scipy.signal`](https://micropython-ulab.readthedocs.io/en/latest/scipy-signal.html), and [`scipy.special`](https://micropython-ulab.readthedocs.io/en/latest/scipy-special.html) modules. A complete list of available routines can be found under [micropython-ulab](https://micropython-ulab.readthedocs.io/en/latest).
## `ulab` utilities
The [`utils`](https://micropython-ulab.readthedocs.io/en/latest/ulab-utils.html) module contains functions for
interfacing with peripheral devices supporting the buffer protocol. These functions do not have an obvious
`numpy` equivalent, but share a similar programming interface, and allow direct data input-output between
numerical arrays and hardware components.
## `user` module
User-defined functions operating on numerical data can easily be added via the `user` module. This allows for transparent extensions, without having to change anything in the core. Hints as to how to work with `ndarray`s at the C level can be found in the [programming manual](https://micropython-ulab.readthedocs.io/en/latest/ulab-programming.html).
# Usage
`ulab` sports a `numpy/scipy`-compatible interface, which makes porting of `CPython` code straightforward. The following
snippet should run equally well in `micropython`, or on a PC.
```python
try:
from ulab import numpy
from ulab import scipy
except ImportError:
import numpy
import scipy.special
x = numpy.array([1, 2, 3])
scipy.special.erf(x)
```
# Finding help
Documentation can be found on [readthedocs](https://readthedocs.org/) under
[micropython-ulab](https://micropython-ulab.readthedocs.io/en/latest),
as well as at [circuitpython-ulab](https://circuitpython.readthedocs.io/en/latest/shared-bindings/ulab/__init__.html).
A number of practical examples are listed in Jeff Epler's excellent
[circuitpython-ulab](https://learn.adafruit.com/ulab-crunch-numbers-fast-with-circuitpython/overview) overview.
The [tricks](https://micropython-ulab.readthedocs.io/en/latest/ulab-tricks.html) chapter of the user manual discusses
methods by which RAM and speed can be leveraged in particular numerical problems.
# Benchmarks
Representative numbers on performance can be found under [ulab samples](https://github.com/thiagofe/ulab_samples).
Documentation can be found under https://micropython-ulab.readthedocs.io/en/latest/
The source for the manual is in https://github.com/v923z/micropython-ulab/blob/master/docs/ulab-manual.ipynb,
while developer help is in https://github.com/v923z/micropython-ulab/blob/master/docs/ulab.ipynb.
# Firmware
Pre-built, and up-to-date firmware files for select platforms can be downloaded
from [micropython-builder](https://github.com/v923z/micropython-builder).
## Customising the firmware
If flash space is a concern, unnecessary functions can be excluded from the compiled firmware with
pre-processor switches. In addition, `ulab` also has options for trading execution speed for firmware size.
A thorough discussion on how the firmware can be customised can be found in the
[corresponding section](https://micropython-ulab.readthedocs.io/en/latest/ulab-intro.html#customising-the-firmware)
of the user manual.
## Platforms including ulab
`ulab` is also included in the following compiled `micropython` variants and derivatives:
1. `CircuitPython` for SAMD51 and nRF microcontrollers https://github.com/adafruit/circuitpython
1. `MicroPython for K210` https://github.com/loboris/MicroPython_K210_LoBo
1. `MaixPy` https://github.com/sipeed/MaixPy
1. `OpenMV` https://github.com/openmv/openmv
1. `pimoroni-pico` https://github.com/pimoroni/pimoroni-pico
3. `pycom` https://pycom.io/
Firmware for pyboard.v.1.1, and PYBD_SF6 is updated once in a while, and can be downloaded
from https://github.com/v923z/micropython-ulab/releases.
## Compiling
If you want to try the latest version of `ulab` on `micropython` or one of its forks, the firmware can be compiled
If you want to try the latest version of `ulab`, or your hardware is
different to pyboard.v.1.1, or PYBD_SF6, the firmware can be compiled
from the source by following these steps:
### UNIX port
First, you have to clone the micropython repository by running
Simply clone the `ulab` repository with
```bash
git clone https://github.com/v923z/micropython-ulab.git ulab
```
and then run
```bash
./build.sh [matrix.dims] # Dimensions is 2 by default
```
This command will clone `micropython`, and build the `unix` port automatically, as well as run the test scripts. If you want an interactive `unix` session, you can launch it in
```bash
ulab/micropython/ports/unix
```
### STM-based boards
First, you have to clone the `micropython` repository by running
```bash
git clone https://github.com/micropython/micropython.git
```
on the command line. This will create a new repository with the name `micropython`. Staying there, clone the `ulab` repository with
```bash
```
git clone https://github.com/v923z/micropython-ulab.git ulab
```
If you don't have the cross-compiler installed, your might want to do that now, for instance on Linux by executing
```bash
sudo apt-get install gcc-arm-none-eabi
Then you have to include `ulab` in the compilation process by editing `mpconfigport.h` of the directory of the port for which you want to compile, so, still on the command line, navigate to `micropython/ports/unix`, or `micropython/ports/stm32`, or whichever port is your favourite, and edit the `mpconfigport.h` file there. All you have to do is add a single line at the end:
```
#define MODULE_ULAB_ENABLED (1)
```
If this step was successful, you can try to run the `make` command in the port's directory as
This line will inform the compiler that you want `ulab` in the resulting firmware. If you don't have the cross-compiler installed, your might want to do that now, for instance on Linux by executing
```bash
```
sudo apt-get install gcc-arm-none-eabi
```
If that was successful, you can try to run the make command in the port's directory as
```
make BOARD=PYBV11 USER_C_MODULES=../../../ulab all
```
which will prepare the firmware for pyboard.v.11. Similarly,
```bash
```
make BOARD=PYBD_SF6 USER_C_MODULES=../../../ulab all
```
will compile for the SF6 member of the PYBD series. If your target is `unix`, you don't need to specify the `BOARD` parameter.
Provided that you managed to compile the firmware, you would upload that by running either
```bash
will compile for the SF6 member of the PYBD series. Provided that you managed to compile the firmware, you would upload that by running
either
```
dfu-util --alt 0 -D firmware.dfu
```
or
```bash
```
python pydfu.py -u firmware.dfu
```
In case you got stuck somewhere in the process, a bit more detailed instructions can be found under https://github.com/micropython/micropython/wiki/Getting-Started, and https://github.com/micropython/micropython/wiki/Pyboard-Firmware-Update.
### ESP32-based boards
`ulab` can be tested on the ESP32 in [wokwi's micropython emulator](https://wokwi.com/arduino/projects/322114140704342610) without having to compile the C code. This utility also offers the possibility to save and share your `micropython` code.
Firmware for `Espressif` hardware can be built in two different ways, which are discussed in the next two paragraphs. A solution for issues with the firmware size is outlined in the [last paragraph](#what-to-do-if-the-firmware-is-too-large) of this section.
#### Compiling with cmake
Beginning with version 1.15, `micropython` switched to `cmake` on the ESP32 port. If your operating system supports `CMake > 3.12`, you can either simply download, and run the single [build script](https://github.com/v923z/micropython-ulab/blob/master/build/esp32-cmake.sh), or follow the step in this section. Otherwise, you should skip to the [next one](#compiling-with-make), where the old, `make`-based approach is discussed.
In case you encounter difficulties during the build process, you can consult the (general instructions for the ESP32)[https://github.com/micropython/micropython/tree/master/ports/esp32#micropython-port-to-the-esp32].
First, clone the `ulab`, the `micropython`, as well as the `espressif` repositories:
```bash
export BUILD_DIR=$(pwd)
git clone https://github.com/v923z/micropython-ulab.git ulab
git clone https://github.com/micropython/micropython.git
cd $BUILD_DIR/micropython/
git clone -b v4.0.2 --recursive https://github.com/espressif/esp-idf.git
```
Also later releases of `esp-idf` are possible (e.g. `v4.2.1`).
Then install the `ESP-IDF` tools:
```bash
cd esp-idf
./install.sh
. ./export.sh
```
Next, build the `micropython` cross-compiler, and the `ESP` sub-modules:
```bash
cd $BUILD_DIR/micropython/mpy-cross
make
cd $BUILD_DIR/micropython/ports/esp32
make submodules
```
At this point, all requirements are installed and built. We can now compile the firmware with `ulab`. In `$BUILD_DIR/micropython/ports/esp32` create a `makefile` with the following content:
```bash
BOARD = GENERIC
USER_C_MODULES = $(BUILD_DIR)/ulab/code/micropython.cmake
include Makefile
```
You specify with the `BOARD` variable, what you want to compile for, a generic board, or `TINYPICO` (for `micropython` version >1.1.5, use `UM_TINYPICO`), etc. Still in `$BUILD_DIR/micropython/ports/esp32`, you can now run `make`.
#### Compiling with make
If your operating system does not support a recent enough version of `CMake`, you have to stay with `micropython` version 1.14. The firmware can be compiled either by downloading and running the [build script](https://github.com/v923z/micropython-ulab/blob/master/build/esp32.sh), or following the steps below:
First, clone `ulab` with
```bash
git clone https://github.com/v923z/micropython-ulab.git ulab
```
and then, in the same directory, `micropython`
```bash
git clone https://github.com/micropython/micropython.git
```
At this point, you should have `ulab`, and `micropython` side by side.
With version 1.14, `micropython` switched to `cmake` on the `ESP32` port, thus breaking compatibility with user modules. `ulab` can, however, still be compiled with version 1.14. You can check out a particular version by pinning the release tag as
```bash
cd ./micropython/
git checkout tags/v1.14
```
Next, update the submodules,
```bash
git submodule update --init
cd ./mpy-cross && make # build cross-compiler (required)
```
and find the ESP commit hash
```bash
cd ./micropython/ports/esp32
make ESPIDF= # will display supported ESP-IDF commit hashes
# output should look like: """
# ...
# Supported git hash (v3.3): 9e70825d1e1cbf7988cf36981774300066580ea7
# Supported git hash (v4.0) (experimental): 4c81978a3e2220674a432a588292a4c860eef27b
```
Choose an ESPIDF version from one of the options printed by the previous command:
```bash
ESPIDF_VER=9e70825d1e1cbf7988cf36981774300066580ea7
```
In the `micropython` directory, create a new directory with
```bash
mkdir esp32
```
Your `micropython` directory should now look like
```bash
ls
ACKNOWLEDGEMENTS CONTRIBUTING.md esp32 lib mpy-cross README.md
CODECONVENTIONS.md docs examples LICENSE ports tests
CODEOFCONDUCT.md drivers extmod logo py tools
```
In `./micropython/esp32`, download the software development kit with
```bash
git clone https://github.com/espressif/esp-idf.git esp-idf
cd ./esp-idf
git checkout $ESPIDF_VER
git submodule update --init --recursive # get idf submodules
pip install -r ./requirements.txt # install python reqs
```
Next, still staying in `./micropython/eps32/esd-idf/`, install the ESP32 compiler. If using an ESP-IDF version >= 4.x (chosen by `$ESPIDF_VER` above), this can be done by running `. $BUILD_DIR/esp-idf/install.sh`. Otherwise, for version 3.x, run the following commands in in `.micropython/esp32/esp-idf`:
```bash
# for 64 bit linux
curl https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-80-g6c4433a-5.2.0.tar.gz | tar xvz
# for 32 bit
# curl https://dl.espressif.com/dl/xtensa-esp32-elf-linux32-1.22.0-80-g6c4433a-5.2.0.tar.gz | tar xvz
# don't worry about adding to path; we'll specify that later
# also, see https://docs.espressif.com/projects/esp-idf/en/v3.3.2/get-started for more info
```
Finally, build the firmware:
```bash
cd ./micropython/ports/esp32
# temporarily add esp32 compiler to path
export PATH=../../esp32/esp-idf/xtensa-esp32-elf/bin:$PATH
export ESPIDF=../../esp32/esp-idf # req'd by Makefile
export BOARD=GENERIC # options are dirs in ./boards
export USER_C_MODULES=../../../ulab # include ulab in firmware
make submodules & make all
```
If it compiles without error, you can plug in your ESP32 via USB and then flash it with:
```bash
make erase && make deploy
```
#### What to do, if the firmware is too large?
When selecting `BOARD=TINYPICO`, the firmware is built but fails to deploy, because it is too large for the standard partitions. We can rectify the problem by creating a new partition table. In order to do so, in `$BUILD_DIR/micropython/ports/esp32/`, copy the following 8 lines to a file named `partitions_ulab.cvs`:
```
# Notes: the offset of the partition table itself is set in
# $ESPIDF/components/partition_table/Kconfig.projbuild and the
# offset of the factory/ota_0 partition is set in makeimg.py
# Name, Type, SubType, Offset, Size, Flags
nvs, data, nvs, 0x9000, 0x6000,
phy_init, data, phy, 0xf000, 0x1000,
factory, app, factory, 0x10000, 0x200000,
vfs, data, fat, 0x220000, 0x180000,
```
This expands the `factory` partition by 128 kB, and reduces the size of `vfs` by the same amount. Having defined the new partition table, we should extend `sdkconfig.board` by adding the following two lines:
```
CONFIG_PARTITION_TABLE_CUSTOM=y
CONFIG_PARTITION_TABLE_CUSTOM_FILENAME="partitions_ulab.csv"
```
This file can be found in `$BUILD_DIR/micropython/ports/esp32/boards/TINYPICO/`. Finally, run `make clean`, and `make`. The new firmware contains the modified partition table, and should fit on the microcontroller.
### RP2-based boards
RP2 firmware can be compiled either by downloading and running the single [build script](https://github.com/v923z/micropython-ulab/blob/master/build/rp2.sh)/[build script for Pico W](https://github.com/v923z/micropython-ulab/blob/master/build/rp2w.sh), or executing the commands below.
First, clone `micropython`:
```bash
git clone https://github.com/micropython/micropython.git
```
Then, setup the required submodules:
```bash
cd micropython
git submodule update --init lib/tinyusb
git submodule update --init lib/pico-sdk
cd lib/pico-sdk
git submodule update --init lib/tinyusb
```
You'll also need to compile `mpy-cross`:
```bash
cd ../../mpy-cross
make
```
That's all you need to do for the `micropython` repository. Now, let us clone `ulab` (in a directory outside the micropython repository):
```bash
cd ../../
git clone https://github.com/v923z/micropython-ulab ulab
```
With this setup, we can now build the firmware. Back in the `micropython` repository, use these commands:
```bash
cd ports/rp2
make USER_C_MODULES=/path/to/ulab/code/micropython.cmake
```
If `micropython` and `ulab` were in the same folder on the computer, you can set `USER_C_MODULES=../../../ulab/code/micropython.cmake`. The compiled firmware will be placed in `micropython/ports/rp2/build`.
# Compiling for CircuitPython
[Adafruit Industries](www.adafruit.com) always include a relatively recent version of `ulab` in their nightly builds. However, if you really need the bleeding edge, you can easily compile the firmware from the source. Simply clone `circuitpython`, and move the commit pointer to the latest version of `ulab` (`ulab` will automatically be cloned with `circuitpython`):
```bash
git clone https://github.com/adafruit/circuitpython.git
cd circuitpyton/extmod/ulab
# update ulab here
git checkout master
git pull
```
You might have to check, whether the `CIRCUITPY_ULAB` variable is set to `1` for the port that you want to compile for. You find this piece of information in the `make` fragment:
```bash
circuitpython/ports/port_of_your_choice/mpconfigport.mk
```
After this, you would run `make` with the single `BOARD` argument, e.g.:
```bash
make BOARD=mini_sam_m4
```
# Issues, contributing, and testing
If you find a problem with the code, please, raise an [issue](https://github.com/v923z/micropython-ulab/issues)! An issue should address a single problem, and should contain a minimal code snippet that demonstrates the difference from the expected behaviour. Reducing a problem to the bare minimum significantly increases the chances of a quick fix.
Feature requests (porting a particular function from `numpy` or `scipy`) should also be posted at [ulab issue](https://github.com/v923z/micropython-ulab/issues).
Contributions of any kind are always welcome. If you feel like adding to the code, you can simply issue a pull request. If you do so, please, try to adhere to `micropython`'s [coding conventions](https://github.com/micropython/micropython/blob/master/CODECONVENTIONS.md#c-code-conventions).
However, you can also contribute to the documentation (preferably via the [jupyter notebooks](https://github.com/v923z/micropython-ulab/tree/master/docs), or improve the [tests](https://github.com/v923z/micropython-ulab/tree/master/tests).
## Testing
If you decide to lend a hand with testing, here are the steps:
1. Write a test script that checks a particular function, or a set of related functions!
1. Drop this script in one of the folders in [ulab tests](https://github.com/v923z/micropython-ulab/tree/master/tests)!
1. Run the [./build.sh](https://github.com/v923z/micropython-ulab/blob/master/build.sh) script in the root directory of `ulab`! This will clone the latest `micropython`, compile the firmware for `unix`, execute all scripts in the `ulab/tests`, and compare the results to those in the expected results files, which are also in `ulab/tests`, and have an extension `.exp`. In case you have a new snippet, i.e., you have no expected results file, or if the results differ from those in the expected file, a new expected file will be generated in the root directory. You should inspect the contents of this file, and if they are satisfactory, then the file can be moved to the `ulab/tests` folder, alongside your snippet.

View file

@ -1,53 +0,0 @@
#!/bin/sh
set -e
# POSIX compliant version
readlinkf_posix() {
[ "${1:-}" ] || return 1
max_symlinks=40
CDPATH='' # to avoid changing to an unexpected directory
target=$1
[ -e "${target%/}" ] || target=${1%"${1##*[!/]}"} # trim trailing slashes
[ -d "${target:-/}" ] && target="$target/"
cd -P . 2>/dev/null || return 1
while [ "$max_symlinks" -ge 0 ] && max_symlinks=$((max_symlinks - 1)); do
if [ ! "$target" = "${target%/*}" ]; then
case $target in
/*) cd -P "${target%/*}/" 2>/dev/null || break ;;
*) cd -P "./${target%/*}" 2>/dev/null || break ;;
esac
target=${target##*/}
fi
if [ ! -L "$target" ]; then
target="${PWD%/}${target:+/}${target}"
printf '%s\n' "${target:-/}"
return 0
fi
# `ls -dl` format: "%s %u %s %s %u %s %s -> %s\n",
# <file mode>, <number of links>, <owner name>, <group name>,
# <size>, <date and time>, <pathname of link>, <contents of link>
# https://pubs.opengroup.org/onlinepubs/9699919799/utilities/ls.html
link=$(ls -dl -- "$target" 2>/dev/null) || break
target=${link#*" $target -> "}
done
return 1
}
NPROC=$(python3 -c 'import multiprocessing; print(multiprocessing.cpu_count())')
HERE="$(dirname -- "$(readlinkf_posix -- "${0}")" )"
[ -e circuitpython/py/py.mk ] || (git clone --branch main https://github.com/adafruit/circuitpython && cd circuitpython && make fetch-all-submodules && git submodule update --init lib/uzlib tools)
rm -rf circuitpython/extmod/ulab; ln -s "$HERE" circuitpython/extmod/ulab
dims=${1-2}
make -C circuitpython/mpy-cross -j$NPROC
sed -e '/MICROPY_PY_UHASHLIB/s/1/0/' < circuitpython/ports/unix/mpconfigport.h > circuitpython/ports/unix/mpconfigport_ulab.h
make -k -C circuitpython/ports/unix -j$NPROC DEBUG=1 MICROPY_PY_FFI=0 MICROPY_PY_BTREE=0 MICROPY_SSL_AXTLS=0 MICROPY_PY_USSL=0 CFLAGS_EXTRA="-DMP_CONFIGFILE=\"<mpconfigport_ulab.h>\" -Wno-tautological-constant-out-of-range-compare -Wno-unknown-pragmas -DULAB_MAX_DIMS=$dims" BUILD=build-$dims PROG=micropython-$dims
# bash test-common.sh "${dims}" "circuitpython/ports/unix/micropython-$dims"
# Docs don't depend on the dimensionality, so only do it once
if [ "$dims" -eq 2 ]; then
(cd circuitpython && sphinx-build -E -W -b html . _build/html)
(cd circuitpython && make check-stubs)
fi

View file

@ -1,70 +0,0 @@
#!/bin/sh
GIT_HASH=`git describe --abbrev=8 --always`
# POSIX compliant version
readlinkf_posix() {
[ "${1:-}" ] || return 1
max_symlinks=40
CDPATH='' # to avoid changing to an unexpected directory
target=$1
[ -e "${target%/}" ] || target=${1%"${1##*[!/]}"} # trim trailing slashes
[ -d "${target:-/}" ] && target="$target/"
cd -P . 2>/dev/null || return 1
while [ "$max_symlinks" -ge 0 ] && max_symlinks=$((max_symlinks - 1)); do
if [ ! "$target" = "${target%/*}" ]; then
case $target in
/*) cd -P "${target%/*}/" 2>/dev/null || break ;;
*) cd -P "./${target%/*}" 2>/dev/null || break ;;
esac
target=${target##*/}
fi
if [ ! -L "$target" ]; then
target="${PWD%/}${target:+/}${target}"
printf '%s\n' "${target:-/}"
return 0
fi
# `ls -dl` format: "%s %u %s %s %u %s %s -> %s\n",
# <file mode>, <number of links>, <owner name>, <group name>,
# <size>, <date and time>, <pathname of link>, <contents of link>
# https://pubs.opengroup.org/onlinepubs/9699919799/utilities/ls.html
link=$(ls -dl -- "$target" 2>/dev/null) || break
target=${link#*" $target -> "}
done
return 1
}
NPROC=`python3 -c 'import multiprocessing; print(multiprocessing.cpu_count())'`
PLATFORM=`python3 -c 'import sys; print(sys.platform)'`
set -e
HERE="$(dirname -- "$(readlinkf_posix -- "${0}")" )"
dims=${1-2}
if [ ! -d "micropython" ] ; then
git clone https://github.com/micropython/micropython
else
git -C micropython pull
fi
make -C micropython/mpy-cross -j${NPROC}
make -C micropython/ports/unix submodules
make -C micropython/ports/unix -j${NPROC} USER_C_MODULES="${HERE}" DEBUG=1 STRIP=: MICROPY_PY_FFI=0 MICROPY_PY_BTREE=0 CFLAGS_EXTRA=-DULAB_MAX_DIMS=$dims CFLAGS_EXTRA+=-DULAB_HASH=$GIT_HASH BUILD=build-$dims PROG=micropython-$dims
PROG="micropython/ports/unix/build-$dims/micropython-$dims"
if [ ! -e "$PROG" ]; then
# Older MicroPython revision, executable is still in ports/unix.
PROG="micropython/ports/unix/micropython-$dims"
fi
bash test-common.sh "${dims}" "$PROG"
# Build with single-precision float.
make -C micropython/ports/unix -j${NPROC} USER_C_MODULES="${HERE}" DEBUG=1 STRIP=: MICROPY_PY_FFI=0 MICROPY_PY_BTREE=0 CFLAGS_EXTRA=-DMICROPY_FLOAT_IMPL=MICROPY_FLOAT_IMPL_FLOAT CFLAGS_EXTRA+=-DULAB_MAX_DIMS=$dims CFLAGS_EXTRA+=-DULAB_HASH=$GIT_HASH BUILD=build-nanbox-$dims PROG=micropython-nanbox-$dims
# The unix nanbox variant builds as a 32-bit executable and requires gcc-multilib.
# macOS doesn't support i386 builds so only build on linux.
if [ $PLATFORM = linux ]; then
make -C micropython/ports/unix -j${NPROC} VARIANT=nanbox USER_C_MODULES="${HERE}" DEBUG=1 STRIP=: MICROPY_PY_FFI=0 MICROPY_PY_BTREE=0 CFLAGS_EXTRA=-DULAB_MAX_DIMS=$dims CFLAGS_EXTRA+=-DULAB_HASH=$GIT_HASH BUILD=build-nanbox-$dims PROG=micropython-nanbox-$dims
fi

View file

@ -1,35 +0,0 @@
#!/bin/bash
export BUILD_DIR=$(pwd)
echo "--- CLONING ULAB ---"
git clone --depth 1 https://github.com/v923z/micropython-ulab.git ulab
echo "--- CLONING MICROPYTHON ---"
git clone --depth 1 https://github.com/micropython/micropython.git
echo "--- CLONING ESP-IDF ---"
cd $BUILD_DIR/micropython/
git clone --depth 1 -b v4.0.2 --recursive https://github.com/espressif/esp-idf.git
echo "--- INSTALL ESP-IDF ---"
cd $BUILD_DIR/micropython/esp-idf
./install.sh
. ./export.sh
echo "--- MPY-CROSS ---"
cd $BUILD_DIR/micropython/mpy-cross
make
echo "--- ESP32 SUBMODULES ---"
cd $BUILD_DIR/micropython/ports/esp32
make submodules
echo "--- PATCH MAKEFILE ---"
cp $BUILD_DIR/micropython/ports/esp32/Makefile $BUILD_DIR/micropython/ports/esp32/MakefileOld
echo "BOARD = GENERIC" > $BUILD_DIR/micropython/ports/esp32/Makefile
echo "USER_C_MODULES = \$(BUILD_DIR)/ulab/code/micropython.cmake" >> $BUILD_DIR/micropython/ports/esp32/Makefile
cat $BUILD_DIR/micropython/ports/esp32/MakefileOld >> $BUILD_DIR/micropython/ports/esp32/Makefile
echo "--- MAKE ---"
make

View file

@ -1,41 +0,0 @@
#!/bin/bash
export BUILD_DIR=$(pwd)
git clone https://github.com/v923z/micropython-ulab.git ulab
git clone https://github.com/micropython/micropython.git
cd $BUILD_DIR/micropython/
git checkout tags/v1.14
git submodule update --init
cd ./mpy-cross && make # build cross-compiler (required)
cd $BUILD_DIR/micropython/ports/esp32
make ESPIDF= # will display supported ESP-IDF commit hashes
# output should look like: """
# ...
# Supported git hash (v3.3): 9e70825d1e1cbf7988cf36981774300066580ea7
# Supported git hash (v4.0) (experimental): 4c81978a3e2220674a432a588292a4c860eef27b
ESPIDF_VER=9e70825d1e1cbf7988cf36981774300066580ea7
mkdir $BUILD_DIR/micropython/esp32
cd $BUILD_DIR/micropython/esp32
git clone https://github.com/espressif/esp-idf.git esp-idf
cd $BUILD_DIR/micropython/esp32/esp-idf
git checkout $ESPIDF_VER
git submodule update --init --recursive # get idf submodules
pip install -r ./requirements.txt # install python reqs
curl https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-80-g6c4433a-5.2.0.tar.gz | tar xvz
cd $BUILD_DIR/micropython/ports/esp32
# temporarily add esp32 compiler to path
export PATH=$BUILD_DIR/micropython/esp32/esp-idf/xtensa-esp32-elf/bine:$PATH
export ESPIDF=$BUILD_DIR/micropython/esp32/esp-idf
export BOARD=GENERIC # board options are in ./board
export USER_C_MODULES=$BUILD_DIR/ulab # include ulab in firmware
make submodules & make all

View file

@ -1,24 +0,0 @@
#!/bin/bash
export BUILD_DIR=$(pwd)
export MPY_DIR=$BUILD_DIR/micropython
export ULAB_DIR=$BUILD_DIR/../code
if [ ! -d $ULAB_DIR ]; then
printf "Cloning ulab\n"
ULAB_DIR=$BUILD_DIR/ulab/code
git clone https://github.com/v923z/micropython-ulab.git ulab
fi
if [ ! -d $MPY_DIR ]; then
printf "Cloning MicroPython\n"
git clone https://github.com/micropython/micropython.git micropython
fi
cd $MPY_DIR
git submodule update --init
cd ./mpy-cross && make # build cross-compiler (required)
cd $MPY_DIR/ports/rp2
rm -r build
make USER_C_MODULES=$ULAB_DIR/micropython.cmake

View file

@ -1,25 +0,0 @@
#!/bin/bash
export BOARD=PICO_W
export BUILD_DIR=$(pwd)
export MPY_DIR=$BUILD_DIR/micropython
export ULAB_DIR=$BUILD_DIR/../code
if [ ! -d $ULAB_DIR ]; then
printf "Cloning ulab\n"
ULAB_DIR=$BUILD_DIR/ulab/code
git clone https://github.com/v923z/micropython-ulab.git ulab
fi
if [ ! -d $MPY_DIR ]; then
printf "Cloning MicroPython\n"
git clone https://github.com/micropython/micropython.git micropython
fi
cd $MPY_DIR
git submodule update --init
cd ./mpy-cross && make # build cross-compiler (required)
cd $MPY_DIR/ports/rp2
make BOARD=$BOARD clean
make USER_C_MODULES=$ULAB_DIR/micropython.cmake BOARD=$BOARD

33
code/extras.c Normal file
View file

@ -0,0 +1,33 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Zoltán Vörös
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "extras.h"
#if ULAB_EXTRAS_MODULE
STATIC const mp_rom_map_elem_t ulab_filter_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_extras) },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_extras_globals, ulab_extras_globals_table);
mp_obj_module_t ulab_filter_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_extras_globals,
};
#endif

23
code/extras.h Normal file
View file

@ -0,0 +1,23 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Zoltán Vörös
*/
#ifndef _EXTRA_
#define _EXTRA_
#include "ulab.h"
#include "ndarray.h"
#if ULAB_EXTRAS_MODULE
mp_obj_module_t ulab_extras_module;
#endif
#endif

201
code/fft.c Normal file
View file

@ -0,0 +1,201 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/runtime.h"
#include "py/builtin.h"
#include "py/binary.h"
#include "py/obj.h"
#include "py/objarray.h"
#include "ndarray.h"
#include "fft.h"
#if ULAB_FFT_MODULE
enum FFT_TYPE {
FFT_FFT,
FFT_IFFT,
FFT_SPECTRUM,
};
void fft_kernel(mp_float_t *real, mp_float_t *imag, int n, int isign) {
// This is basically a modification of four1 from Numerical Recipes
// The main difference is that this function takes two arrays, one
// for the real, and one for the imaginary parts.
int j, m, mmax, istep;
mp_float_t tempr, tempi;
mp_float_t wtemp, wr, wpr, wpi, wi, theta;
j = 0;
for(int i = 0; i < n; i++) {
if (j > i) {
SWAP(mp_float_t, real[i], real[j]);
SWAP(mp_float_t, imag[i], imag[j]);
}
m = n >> 1;
while (j >= m && m > 0) {
j -= m;
m >>= 1;
}
j += m;
}
mmax = 1;
while (n > mmax) {
istep = mmax << 1;
theta = -2.0*isign*MP_PI/istep;
wtemp = MICROPY_FLOAT_C_FUN(sin)(0.5 * theta);
wpr = -2.0 * wtemp * wtemp;
wpi = MICROPY_FLOAT_C_FUN(sin)(theta);
wr = 1.0;
wi = 0.0;
for(m = 0; m < mmax; m++) {
for(int i = m; i < n; i += istep) {
j = i + mmax;
tempr = wr * real[j] - wi * imag[j];
tempi = wr * imag[j] + wi * real[j];
real[j] = real[i] - tempr;
imag[j] = imag[i] - tempi;
real[i] += tempr;
imag[i] += tempi;
}
wtemp = wr;
wr = wr*wpr - wi*wpi + wr;
wi = wi*wpr + wtemp*wpi + wi;
}
mmax = istep;
}
}
mp_obj_t fft_fft_ifft_spectrum(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im, uint8_t type) {
if(!MP_OBJ_IS_TYPE(arg_re, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only"));
}
if(n_args == 2) {
if(!MP_OBJ_IS_TYPE(arg_im, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only"));
}
}
// Check if input is of length of power of 2
ndarray_obj_t *re = MP_OBJ_TO_PTR(arg_re);
uint16_t len = re->array->len;
if((len & (len-1)) != 0) {
mp_raise_ValueError(translate("input array length must be power of 2"));
}
ndarray_obj_t *out_re = create_new_ndarray(1, len, NDARRAY_FLOAT);
mp_float_t *data_re = (mp_float_t *)out_re->array->items;
if(re->array->typecode == NDARRAY_FLOAT) {
// By treating this case separately, we can save a bit of time.
// I don't know if it is worthwhile, though...
memcpy((mp_float_t *)out_re->array->items, (mp_float_t *)re->array->items, re->bytes);
} else {
for(size_t i=0; i < len; i++) {
*data_re++ = ndarray_get_float_value(re->array->items, re->array->typecode, i);
}
data_re -= len;
}
ndarray_obj_t *out_im = create_new_ndarray(1, len, NDARRAY_FLOAT);
mp_float_t *data_im = (mp_float_t *)out_im->array->items;
if(n_args == 2) {
ndarray_obj_t *im = MP_OBJ_TO_PTR(arg_im);
if (re->array->len != im->array->len) {
mp_raise_ValueError(translate("real and imaginary parts must be of equal length"));
}
if(im->array->typecode == NDARRAY_FLOAT) {
memcpy((mp_float_t *)out_im->array->items, (mp_float_t *)im->array->items, im->bytes);
} else {
for(size_t i=0; i < len; i++) {
*data_im++ = ndarray_get_float_value(im->array->items, im->array->typecode, i);
}
data_im -= len;
}
}
if((type == FFT_FFT) || (type == FFT_SPECTRUM)) {
fft_kernel(data_re, data_im, len, 1);
if(type == FFT_SPECTRUM) {
for(size_t i=0; i < len; i++) {
*data_re = MICROPY_FLOAT_C_FUN(sqrt)(*data_re * *data_re + *data_im * *data_im);
data_re++;
data_im++;
}
}
} else { // inverse transform
fft_kernel(data_re, data_im, len, -1);
// TODO: numpy accepts the norm keyword argument
for(size_t i=0; i < len; i++) {
*data_re++ /= len;
*data_im++ /= len;
}
}
if(type == FFT_SPECTRUM) {
return MP_OBJ_TO_PTR(out_re);
} else {
mp_obj_t tuple[2];
tuple[0] = out_re;
tuple[1] = out_im;
return mp_obj_new_tuple(2, tuple);
}
}
mp_obj_t fft_fft(size_t n_args, const mp_obj_t *args) {
if(n_args == 2) {
return fft_fft_ifft_spectrum(n_args, args[0], args[1], FFT_FFT);
} else {
return fft_fft_ifft_spectrum(n_args, args[0], mp_const_none, FFT_FFT);
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj, 1, 2, fft_fft);
mp_obj_t fft_ifft(size_t n_args, const mp_obj_t *args) {
if(n_args == 2) {
return fft_fft_ifft_spectrum(n_args, args[0], args[1], FFT_IFFT);
} else {
return fft_fft_ifft_spectrum(n_args, args[0], mp_const_none, FFT_IFFT);
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj, 1, 2, fft_ifft);
mp_obj_t fft_spectrum(size_t n_args, const mp_obj_t *args) {
if(n_args == 2) {
return fft_fft_ifft_spectrum(n_args, args[0], args[1], FFT_SPECTRUM);
} else {
return fft_fft_ifft_spectrum(n_args, args[0], mp_const_none, FFT_SPECTRUM);
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_spectrum_obj, 1, 2, fft_spectrum);
#if !CIRCUITPY
STATIC const mp_rom_map_elem_t ulab_fft_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_fft) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_fft), (mp_obj_t)&fft_fft_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ifft), (mp_obj_t)&fft_ifft_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_spectrum), (mp_obj_t)&fft_spectrum_obj },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_fft_globals, ulab_fft_globals_table);
mp_obj_module_t ulab_fft_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_fft_globals,
};
#endif
#endif

31
code/fft.h Normal file
View file

@ -0,0 +1,31 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#ifndef _FFT_
#define _FFT_
#include "ulab.h"
#ifndef MP_PI
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
#endif
#define SWAP(t, a, b) { t tmp = a; a = b; b = tmp; }
#if ULAB_FFT_MODULE
extern mp_obj_module_t ulab_fft_module;
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj);
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj);
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(fft_spectrum_obj);
#endif
#endif

101
code/filter.c Normal file
View file

@ -0,0 +1,101 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "filter.h"
#if ULAB_FILTER_MODULE
mp_obj_t filter_convolve(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_a, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_v, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(2, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!MP_OBJ_IS_TYPE(args[0].u_obj, &ulab_ndarray_type) || !MP_OBJ_IS_TYPE(args[1].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("convolve arguments must be ndarrays"));
}
ndarray_obj_t *a = MP_OBJ_TO_PTR(args[0].u_obj);
ndarray_obj_t *c = MP_OBJ_TO_PTR(args[1].u_obj);
int len_a = a->array->len;
int len_c = c->array->len;
// deal with linear arrays only
if(a->m*a->n != len_a || c->m*c->n != len_c) {
mp_raise_TypeError(translate("convolve arguments must be linear arrays"));
}
if(len_a == 0 || len_c == 0) {
mp_raise_TypeError(translate("convolve arguments must not be empty"));
}
int len = len_a + len_c - 1; // convolve mode "full"
ndarray_obj_t *out = create_new_ndarray(1, len, NDARRAY_FLOAT);
mp_float_t *outptr = out->array->items;
int off = len_c-1;
if(a->array->typecode == NDARRAY_FLOAT && c->array->typecode == NDARRAY_FLOAT) {
mp_float_t* a_items = (mp_float_t*)a->array->items;
mp_float_t* c_items = (mp_float_t*)c->array->items;
for(int k=-off; k<len-off; k++) {
mp_float_t accum = (mp_float_t)0;
int top_n = MIN(len_c, len_a - k);
int bot_n = MAX(-k, 0);
mp_float_t* a_ptr = a_items + bot_n + k;
mp_float_t* a_end = a_ptr + (top_n - bot_n);
mp_float_t* c_ptr = c_items + len_c - bot_n - 1;
for(; a_ptr != a_end;) {
accum += *a_ptr++ * *c_ptr--;
}
*outptr++ = accum;
}
} else {
for(int k=-off; k<len-off; k++) {
mp_float_t accum = (mp_float_t)0;
int top_n = MIN(len_c, len_a - k);
int bot_n = MAX(-k, 0);
for(int n=bot_n; n<top_n; n++) {
int idx_c = len_c - n - 1;
int idx_a = n+k;
mp_float_t ai = ndarray_get_float_value(a->array->items, a->array->typecode, idx_a);
mp_float_t ci = ndarray_get_float_value(c->array->items, c->array->typecode, idx_c);
accum += ai * ci;
}
*outptr++ = accum;
}
}
return out;
}
MP_DEFINE_CONST_FUN_OBJ_KW(filter_convolve_obj, 2, filter_convolve);
#if !CIRCUITPY
STATIC const mp_rom_map_elem_t ulab_filter_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_filter) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_convolve), (mp_obj_t)&filter_convolve_obj },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_filter_globals, ulab_filter_globals_table);
mp_obj_module_t ulab_filter_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_filter_globals,
};
#endif
#endif

View file

@ -7,14 +7,19 @@
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2020-2021 Zoltán Vörös
*/
#ifndef _FILTER_
#define _FILTER_
#include "../ulab.h"
#include "../ndarray.h"
#include "ulab.h"
#include "ndarray.h"
#if ULAB_FILTER_MODULE
extern mp_obj_module_t ulab_filter_module;
MP_DECLARE_CONST_FUN_OBJ_KW(filter_convolve_obj);
#endif
#endif

448
code/linalg.c Normal file
View file

@ -0,0 +1,448 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "linalg.h"
#if ULAB_LINALG_MODULE
mp_obj_t linalg_size(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!MP_OBJ_IS_TYPE(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("size is defined for ndarrays only"));
} else {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
if(args[1].u_obj == mp_const_none) {
return mp_obj_new_int(ndarray->array->len);
} else if(MP_OBJ_IS_INT(args[1].u_obj)) {
uint8_t ax = mp_obj_get_int(args[1].u_obj);
if(ax == 0) {
if(ndarray->m == 1) {
return mp_obj_new_int(ndarray->n);
} else {
return mp_obj_new_int(ndarray->m);
}
} else if(ax == 1) {
if(ndarray->m == 1) {
mp_raise_ValueError(translate("tuple index out of range"));
} else {
return mp_obj_new_int(ndarray->n);
}
} else {
mp_raise_ValueError(translate("tuple index out of range"));
}
} else {
mp_raise_TypeError(translate("wrong argument type"));
}
}
}
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_size_obj, 1, linalg_size);
bool linalg_invert_matrix(mp_float_t *data, size_t N) {
// returns true, of the inversion was successful,
// false, if the matrix is singular
// initially, this is the unit matrix: the contents of this matrix is what
// will be returned after all the transformations
mp_float_t *unit = m_new(mp_float_t, N*N);
mp_float_t elem = 1.0;
// initialise the unit matrix
memset(unit, 0, sizeof(mp_float_t)*N*N);
for(size_t m=0; m < N; m++) {
memcpy(&unit[m*(N+1)], &elem, sizeof(mp_float_t));
}
for(size_t m=0; m < N; m++){
// this could be faster with ((c < epsilon) && (c > -epsilon))
if(MICROPY_FLOAT_C_FUN(fabs)(data[m*(N+1)]) < epsilon) {
m_del(mp_float_t, unit, N*N);
return false;
}
for(size_t n=0; n < N; n++){
if(m != n){
elem = data[N*n+m] / data[m*(N+1)];
for(size_t k=0; k < N; k++){
data[N*n+k] -= elem * data[N*m+k];
unit[N*n+k] -= elem * unit[N*m+k];
}
}
}
}
for(size_t m=0; m < N; m++){
elem = data[m*(N+1)];
for(size_t n=0; n < N; n++){
data[N*m+n] /= elem;
unit[N*m+n] /= elem;
}
}
memcpy(data, unit, sizeof(mp_float_t)*N*N);
m_del(mp_float_t, unit, N*N);
return true;
}
mp_obj_t linalg_inv(mp_obj_t o_in) {
// since inv is not a class method, we have to inspect the input argument first
if(!MP_OBJ_IS_TYPE(o_in, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("only ndarrays can be inverted"));
}
ndarray_obj_t *o = MP_OBJ_TO_PTR(o_in);
if(!MP_OBJ_IS_TYPE(o_in, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("only ndarray objects can be inverted"));
}
if(o->m != o->n) {
mp_raise_ValueError(translate("only square matrices can be inverted"));
}
ndarray_obj_t *inverted = create_new_ndarray(o->m, o->n, NDARRAY_FLOAT);
mp_float_t *data = (mp_float_t *)inverted->array->items;
mp_obj_t elem;
for(size_t m=0; m < o->m; m++) { // rows first
for(size_t n=0; n < o->n; n++) { // columns next
// this could, perhaps, be done in single line...
// On the other hand, we probably spend little time here
elem = mp_binary_get_val_array(o->array->typecode, o->array->items, m*o->n+n);
data[m*o->n+n] = (mp_float_t)mp_obj_get_float(elem);
}
}
if(!linalg_invert_matrix(data, o->m)) {
// TODO: I am not sure this is needed here. Otherwise,
// how should we free up the unused RAM of inverted?
m_del(mp_float_t, inverted->array->items, o->n*o->n);
mp_raise_ValueError(translate("input matrix is singular"));
}
return MP_OBJ_FROM_PTR(inverted);
}
MP_DEFINE_CONST_FUN_OBJ_1(linalg_inv_obj, linalg_inv);
mp_obj_t linalg_dot(mp_obj_t _m1, mp_obj_t _m2) {
// TODO: should the results be upcast?
if(!MP_OBJ_IS_TYPE(_m1, &ulab_ndarray_type) || !MP_OBJ_IS_TYPE(_m2, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("arguments must be ndarrays"));
}
ndarray_obj_t *m1 = MP_OBJ_TO_PTR(_m1);
ndarray_obj_t *m2 = MP_OBJ_TO_PTR(_m2);
if(m1->n != m2->m) {
mp_raise_ValueError(translate("matrix dimensions do not match"));
}
// TODO: numpy uses upcasting here
ndarray_obj_t *out = create_new_ndarray(m1->m, m2->n, NDARRAY_FLOAT);
mp_float_t *outdata = (mp_float_t *)out->array->items;
mp_float_t sum, v1, v2;
for(size_t i=0; i < m1->m; i++) { // rows of m1
for(size_t j=0; j < m2->n; j++) { // columns of m2
sum = 0.0;
for(size_t k=0; k < m2->m; k++) {
// (i, k) * (k, j)
v1 = ndarray_get_float_value(m1->array->items, m1->array->typecode, i*m1->n+k);
v2 = ndarray_get_float_value(m2->array->items, m2->array->typecode, k*m2->n+j);
sum += v1 * v2;
}
outdata[j*m1->m+i] = sum;
}
}
return MP_OBJ_FROM_PTR(out);
}
MP_DEFINE_CONST_FUN_OBJ_2(linalg_dot_obj, linalg_dot);
mp_obj_t linalg_zeros_ones(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, uint8_t kind) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} } ,
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = NDARRAY_FLOAT} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = args[1].u_int;
if(!MP_OBJ_IS_INT(args[0].u_obj) && !MP_OBJ_IS_TYPE(args[0].u_obj, &mp_type_tuple)) {
mp_raise_TypeError(translate("input argument must be an integer or a 2-tuple"));
}
ndarray_obj_t *ndarray = NULL;
if(MP_OBJ_IS_INT(args[0].u_obj)) {
size_t n = mp_obj_get_int(args[0].u_obj);
ndarray = create_new_ndarray(1, n, dtype);
} else if(MP_OBJ_IS_TYPE(args[0].u_obj, &mp_type_tuple)) {
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(args[0].u_obj);
if(tuple->len != 2) {
mp_raise_TypeError(translate("input argument must be an integer or a 2-tuple"));
}
ndarray = create_new_ndarray(mp_obj_get_int(tuple->items[0]),
mp_obj_get_int(tuple->items[1]), dtype);
}
if(kind == 1) {
mp_obj_t one = mp_obj_new_int(1);
for(size_t i=0; i < ndarray->array->len; i++) {
mp_binary_set_val_array(dtype, ndarray->array->items, i, one);
}
}
return MP_OBJ_FROM_PTR(ndarray);
}
mp_obj_t linalg_zeros(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return linalg_zeros_ones(n_args, pos_args, kw_args, 0);
}
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_zeros_obj, 0, linalg_zeros);
mp_obj_t linalg_ones(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return linalg_zeros_ones(n_args, pos_args, kw_args, 1);
}
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_ones_obj, 0, linalg_ones);
mp_obj_t linalg_eye(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_M, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_k, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = NDARRAY_FLOAT} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
size_t n = args[0].u_int, m;
int16_t k = args[2].u_int;
uint8_t dtype = args[3].u_int;
if(args[1].u_rom_obj == mp_const_none) {
m = n;
} else {
m = mp_obj_get_int(args[1].u_rom_obj);
}
ndarray_obj_t *ndarray = create_new_ndarray(m, n, dtype);
mp_obj_t one = mp_obj_new_int(1);
size_t i = 0;
if((k >= 0) && (k < n)) {
while(k < n) {
mp_binary_set_val_array(dtype, ndarray->array->items, i*n+k, one);
k++;
i++;
}
} else if((k < 0) && (-k < m)) {
k = -k;
i = 0;
while(k < m) {
mp_binary_set_val_array(dtype, ndarray->array->items, k*n+i, one);
k++;
i++;
}
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_eye_obj, 0, linalg_eye);
mp_obj_t linalg_det(mp_obj_t oin) {
if(!MP_OBJ_IS_TYPE(oin, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("function defined for ndarrays only"));
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(oin);
if(in->m != in->n) {
mp_raise_ValueError(translate("input must be square matrix"));
}
mp_float_t *tmp = m_new(mp_float_t, in->n*in->n);
for(size_t i=0; i < in->array->len; i++){
tmp[i] = ndarray_get_float_value(in->array->items, in->array->typecode, i);
}
mp_float_t c;
for(size_t m=0; m < in->m-1; m++){
if(MICROPY_FLOAT_C_FUN(fabs)(tmp[m*(in->n+1)]) < epsilon) {
m_del(mp_float_t, tmp, in->n*in->n);
return mp_obj_new_float(0.0);
}
for(size_t n=0; n < in->n; n++){
if(m != n) {
c = tmp[in->n*n+m] / tmp[m*(in->n+1)];
for(size_t k=0; k < in->n; k++){
tmp[in->n*n+k] -= c * tmp[in->n*m+k];
}
}
}
}
mp_float_t det = 1.0;
for(size_t m=0; m < in->m; m++){
det *= tmp[m*(in->n+1)];
}
m_del(mp_float_t, tmp, in->n*in->n);
return mp_obj_new_float(det);
}
MP_DEFINE_CONST_FUN_OBJ_1(linalg_det_obj, linalg_det);
mp_obj_t linalg_eig(mp_obj_t oin) {
if(!MP_OBJ_IS_TYPE(oin, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("function defined for ndarrays only"));
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(oin);
if(in->m != in->n) {
mp_raise_ValueError(translate("input must be square matrix"));
}
mp_float_t *array = m_new(mp_float_t, in->array->len);
for(size_t i=0; i < in->array->len; i++) {
array[i] = ndarray_get_float_value(in->array->items, in->array->typecode, i);
}
// make sure the matrix is symmetric
for(size_t m=0; m < in->m; m++) {
for(size_t n=m+1; n < in->n; n++) {
// compare entry (m, n) to (n, m)
// TODO: this must probably be scaled!
if(epsilon < MICROPY_FLOAT_C_FUN(fabs)(array[m*in->n + n] - array[n*in->n + m])) {
mp_raise_ValueError(translate("input matrix is asymmetric"));
}
}
}
// if we got this far, then the matrix will be symmetric
ndarray_obj_t *eigenvectors = create_new_ndarray(in->m, in->n, NDARRAY_FLOAT);
mp_float_t *eigvectors = (mp_float_t *)eigenvectors->array->items;
// start out with the unit matrix
for(size_t m=0; m < in->m; m++) {
eigvectors[m*(in->n+1)] = 1.0;
}
mp_float_t largest, w, t, c, s, tau, aMk, aNk, vm, vn;
size_t M, N;
size_t iterations = JACOBI_MAX*in->n*in->n;
do {
iterations--;
// find the pivot here
M = 0;
N = 0;
largest = 0.0;
for(size_t m=0; m < in->m-1; m++) { // -1: no need to inspect last row
for(size_t n=m+1; n < in->n; n++) {
w = MICROPY_FLOAT_C_FUN(fabs)(array[m*in->n + n]);
if((largest < w) && (epsilon < w)) {
M = m;
N = n;
largest = w;
}
}
}
if(M+N == 0) { // all entries are smaller than epsilon, there is not much we can do...
break;
}
// at this point, we have the pivot, and it is the entry (M, N)
// now we have to find the rotation angle
w = (array[N*in->n + N] - array[M*in->n + M]) / (2.0*array[M*in->n + N]);
// The following if/else chooses the smaller absolute value for the tangent
// of the rotation angle. Going with the smaller should be numerically stabler.
if(w > 0) {
t = MICROPY_FLOAT_C_FUN(sqrt)(w*w + 1.0) - w;
} else {
t = -1.0*(MICROPY_FLOAT_C_FUN(sqrt)(w*w + 1.0) + w);
}
s = t / MICROPY_FLOAT_C_FUN(sqrt)(t*t + 1.0); // the sine of the rotation angle
c = 1.0 / MICROPY_FLOAT_C_FUN(sqrt)(t*t + 1.0); // the cosine of the rotation angle
tau = (1.0-c)/s; // this is equal to the tangent of the half of the rotation angle
// at this point, we have the rotation angles, so we can transform the matrix
// first the two diagonal elements
// a(M, M) = a(M, M) - t*a(M, N)
array[M*in->n + M] = array[M*in->n + M] - t * array[M*in->n + N];
// a(N, N) = a(N, N) + t*a(M, N)
array[N*in->n + N] = array[N*in->n + N] + t * array[M*in->n + N];
// after the rotation, the a(M, N), and a(N, M) entries should become zero
array[M*in->n + N] = array[N*in->n + M] = 0.0;
// then all other elements in the column
for(size_t k=0; k < in->m; k++) {
if((k == M) || (k == N)) {
continue;
}
aMk = array[M*in->n + k];
aNk = array[N*in->n + k];
// a(M, k) = a(M, k) - s*(a(N, k) + tau*a(M, k))
array[M*in->n + k] -= s*(aNk + tau*aMk);
// a(N, k) = a(N, k) + s*(a(M, k) - tau*a(N, k))
array[N*in->n + k] += s*(aMk - tau*aNk);
// a(k, M) = a(M, k)
array[k*in->n + M] = array[M*in->n + k];
// a(k, N) = a(N, k)
array[k*in->n + N] = array[N*in->n + k];
}
// now we have to update the eigenvectors
// the rotation matrix, R, multiplies from the right
// R is the unit matrix, except for the
// R(M,M) = R(N, N) = c
// R(N, M) = s
// (M, N) = -s
// entries. This means that only the Mth, and Nth columns will change
for(size_t m=0; m < in->m; m++) {
vm = eigvectors[m*in->n+M];
vn = eigvectors[m*in->n+N];
// the new value of eigvectors(m, M)
eigvectors[m*in->n+M] = c * vm - s * vn;
// the new value of eigvectors(m, N)
eigvectors[m*in->n+N] = s * vm + c * vn;
}
} while(iterations > 0);
if(iterations == 0) {
// the computation did not converge; numpy raises LinAlgError
m_del(mp_float_t, array, in->array->len);
mp_raise_ValueError(translate("iterations did not converge"));
}
ndarray_obj_t *eigenvalues = create_new_ndarray(1, in->n, NDARRAY_FLOAT);
mp_float_t *eigvalues = (mp_float_t *)eigenvalues->array->items;
for(size_t i=0; i < in->n; i++) {
eigvalues[i] = array[i*(in->n+1)];
}
m_del(mp_float_t, array, in->array->len);
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
tuple->items[0] = MP_OBJ_FROM_PTR(eigenvalues);
tuple->items[1] = MP_OBJ_FROM_PTR(eigenvectors);
return tuple;
return MP_OBJ_FROM_PTR(eigenvalues);
}
MP_DEFINE_CONST_FUN_OBJ_1(linalg_eig_obj, linalg_eig);
#if !CIRCUITPY
STATIC const mp_rom_map_elem_t ulab_linalg_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_linalg) },
{ MP_ROM_QSTR(MP_QSTR_size), (mp_obj_t)&linalg_size_obj },
{ MP_ROM_QSTR(MP_QSTR_inv), (mp_obj_t)&linalg_inv_obj },
{ MP_ROM_QSTR(MP_QSTR_dot), (mp_obj_t)&linalg_dot_obj },
{ MP_ROM_QSTR(MP_QSTR_zeros), (mp_obj_t)&linalg_zeros_obj },
{ MP_ROM_QSTR(MP_QSTR_ones), (mp_obj_t)&linalg_ones_obj },
{ MP_ROM_QSTR(MP_QSTR_eye), (mp_obj_t)&linalg_eye_obj },
{ MP_ROM_QSTR(MP_QSTR_det), (mp_obj_t)&linalg_det_obj },
{ MP_ROM_QSTR(MP_QSTR_eig), (mp_obj_t)&linalg_eig_obj },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_linalg_globals, ulab_linalg_globals_table);
mp_obj_module_t ulab_linalg_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_linalg_globals,
};
#endif
#endif

35
code/linalg.h Normal file
View file

@ -0,0 +1,35 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#ifndef _LINALG_
#define _LINALG_
#include "ulab.h"
#include "ndarray.h"
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#define epsilon 1.2e-7
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
#define epsilon 2.3e-16
#endif
#define JACOBI_MAX 20
#if ULAB_LINALG_MODULE || ULAB_POLY_MODULE
bool linalg_invert_matrix(mp_float_t *, size_t );
#endif
#if ULAB_LINALG_MODULE
extern mp_obj_module_t ulab_linalg_module;
#endif
#endif

View file

@ -1,18 +0,0 @@
add_library(usermod_ulab INTERFACE)
file(GLOB_RECURSE ULAB_SOURCES ${CMAKE_CURRENT_LIST_DIR}/*.c)
target_sources(usermod_ulab INTERFACE
${ULAB_SOURCES}
)
target_include_directories(usermod_ulab INTERFACE
${CMAKE_CURRENT_LIST_DIR}
)
target_compile_definitions(usermod_ulab INTERFACE
MODULE_ULAB_ENABLED=1
)
target_link_libraries(usermod INTERFACE usermod_ulab)

View file

@ -2,38 +2,18 @@
USERMODULES_DIR := $(USERMOD_DIR)
# Add all C files to SRC_USERMOD.
SRC_USERMOD += $(USERMODULES_DIR)/scipy/linalg/linalg.c
SRC_USERMOD += $(USERMODULES_DIR)/scipy/optimize/optimize.c
SRC_USERMOD += $(USERMODULES_DIR)/scipy/signal/signal.c
SRC_USERMOD += $(USERMODULES_DIR)/scipy/special/special.c
SRC_USERMOD += $(USERMODULES_DIR)/ndarray_operators.c
SRC_USERMOD += $(USERMODULES_DIR)/ulab_tools.c
SRC_USERMOD += $(USERMODULES_DIR)/ndarray.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/ndarray/ndarray_iter.c
SRC_USERMOD += $(USERMODULES_DIR)/ndarray_properties.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/approx.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/compare.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/carray/carray.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/carray/carray_tools.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/create.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/fft/fft.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/fft/fft_tools.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/filter.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/io/io.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/linalg/linalg.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/linalg/linalg_tools.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/numerical.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/poly.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/stats.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/transform.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/vector.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/numpy.c
SRC_USERMOD += $(USERMODULES_DIR)/scipy/scipy.c
SRC_USERMOD += $(USERMODULES_DIR)/user/user.c
SRC_USERMOD += $(USERMODULES_DIR)/utils/utils.c
SRC_USERMOD += $(USERMODULES_DIR)/linalg.c
SRC_USERMOD += $(USERMODULES_DIR)/vectorise.c
SRC_USERMOD += $(USERMODULES_DIR)/poly.c
SRC_USERMOD += $(USERMODULES_DIR)/fft.c
SRC_USERMOD += $(USERMODULES_DIR)/numerical.c
SRC_USERMOD += $(USERMODULES_DIR)/filter.c
SRC_USERMOD += $(USERMODULES_DIR)/extras.c
SRC_USERMOD += $(USERMODULES_DIR)/ulab.c
# We can add our module folder to include paths if needed
# This is not actually needed in this example.
CFLAGS_USERMOD += -I$(USERMODULES_DIR)
override CFLAGS_EXTRA += -DMODULE_ULAB_ENABLED=1
CFLAGS_EXTRA = -DMODULE_ULAB_ENABLED=1

File diff suppressed because it is too large Load diff

View file

@ -6,8 +6,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
* 2020 Jeff Epler for Adafruit Industries
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#ifndef _NDARRAY_
@ -18,14 +17,7 @@
#include "py/objstr.h"
#include "py/objlist.h"
#include "ulab.h"
#ifndef MP_PI
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
#endif
#ifndef MP_E
#define MP_E MICROPY_FLOAT_CONST(2.71828182845904523536)
#endif
#define PRINT_MAX 10
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#define FLOAT_TYPECODE 'f'
@ -33,686 +25,121 @@
#define FLOAT_TYPECODE 'd'
#endif
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_A || MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_B
// For object representations A and B a Python float object is allocated as a
// concrete object in a struct, with the first entry pointing to &mp_type_float.
// Constant float objects are a struct in ROM and are referenced via their pointer.
// Use ULAB_DEFINE_FLOAT_CONST to define a constant float object.
// id is the name of the constant, num is it's floating point value.
// hex32 is computed as: hex(int.from_bytes(array.array('f', [num]), 'little'))
// hex64 is computed as: hex(int.from_bytes(array.array('d', [num]), 'little'))
// Use ULAB_REFERENCE_FLOAT_CONST to reference a constant float object in code.
#define ULAB_DEFINE_FLOAT_CONST(id, num, hex32, hex64) \
const mp_obj_float_t id##_obj = {{&mp_type_float}, (num)}
#define ULAB_REFERENCE_FLOAT_CONST(id) MP_ROM_PTR(&id##_obj)
// this typedef is lifted from objfloat.c, because mp_obj_float_t is not exposed
typedef struct _mp_obj_float_t {
mp_obj_base_t base;
mp_float_t value;
} mp_obj_float_t;
#elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
// For object representation C a Python float object is stored directly in the
// mp_obj_t value.
// See above for how to use ULAB_DEFINE_FLOAT_CONST and ULAB_REFERENCE_FLOAT_CONST.
#define ULAB_DEFINE_FLOAT_CONST(id, num, hex32, hex64) \
enum { \
id = (((((uint32_t)hex32) & ~3) | 2) + 0x80800000) \
}
#define ULAB_REFERENCE_FLOAT_CONST(id) ((mp_obj_t)(id))
#elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
// For object representation D (nan-boxing) a Python float object is stored
// directly in the mp_obj_t value.
// See above for how to use ULAB_DEFINE_FLOAT_CONST and ULAB_REFERENCE_FLOAT_CONST.
#define ULAB_DEFINE_FLOAT_CONST(id, num, hex32, hex64) \
const uint64_t id = (((uint64_t)hex64) + 0x8004000000000000ULL)
#define ULAB_REFERENCE_FLOAT_CONST(id) {id}
#endif
#if defined(MICROPY_VERSION_MAJOR) && MICROPY_VERSION_MAJOR == 1 && MICROPY_VERSION_MINOR == 11
typedef struct _mp_obj_slice_t {
mp_obj_base_t base;
mp_obj_t start;
mp_obj_t stop;
mp_obj_t step;
} mp_obj_slice_t;
#define MP_ERROR_TEXT(x) x
#endif
#if !defined(MP_OBJ_TYPE_GET_SLOT)
#if defined(MP_TYPE_FLAG_EXTENDED)
// Provide MP_OBJ_TYPE_{HAS,GET}_SLOT for CircuitPython.
#define MP_OBJ_TYPE_HAS_SLOT(t, f) (mp_type_get_##f##_slot(t) != NULL)
#define MP_OBJ_TYPE_GET_SLOT(t, f) mp_type_get_##f##_slot(t)
#else
// Provide MP_OBJ_TYPE_{HAS,GET}_SLOT for older revisions of MicroPython.
#define MP_OBJ_TYPE_HAS_SLOT(t, f) ((t)->f != NULL)
#define MP_OBJ_TYPE_GET_SLOT(t, f) (t)->f
// Also allow CiruitPython-style mp_obj_type_t definitions.
#define MP_TYPE_FLAG_EXTENDED (0)
#define MP_TYPE_EXTENDED_FIELDS(...) __VA_ARGS__
#endif
#endif
#if !CIRCUITPY
#define translate(x) MP_ERROR_TEXT(x)
#define ndarray_set_value(a, b, c, d) mp_binary_set_val_array(a, b, c, d)
#else
void ndarray_set_value(char , void *, size_t , mp_obj_t );
#define translate(x) x
#endif
void ndarray_set_complex_value(void *, size_t , mp_obj_t );
#define NDARRAY_NUMERIC 0
#define NDARRAY_BOOLEAN 1
#define NDARRAY_NDARRAY_TYPE 1
#define NDARRAY_ITERABLE_TYPE 2
#define SWAP(t, a, b) { t tmp = a; a = b; b = tmp; }
extern const mp_obj_type_t ulab_ndarray_type;
enum NDARRAY_TYPE {
NDARRAY_BOOL = '?', // this must never be assigned to the dtype!
NDARRAY_UINT8 = 'B',
NDARRAY_INT8 = 'b',
NDARRAY_UINT16 = 'H',
NDARRAY_INT16 = 'h',
#if ULAB_SUPPORTS_COMPLEX
NDARRAY_COMPLEX = 'c',
#endif
NDARRAY_FLOAT = FLOAT_TYPECODE,
};
typedef struct _ndarray_obj_t {
mp_obj_base_t base;
uint8_t dtype;
uint8_t itemsize;
uint8_t boolean;
uint8_t ndim;
size_t m, n;
size_t len;
size_t shape[ULAB_MAX_DIMS];
int32_t strides[ULAB_MAX_DIMS];
void *array;
void *origin;
mp_obj_array_t *array;
size_t bytes;
} ndarray_obj_t;
#if ULAB_HAS_DTYPE_OBJECT
extern const mp_obj_type_t ulab_dtype_type;
mp_obj_t mp_obj_new_ndarray_iterator(mp_obj_t , size_t , mp_obj_iter_buf_t *);
typedef struct _dtype_obj_t {
mp_obj_base_t base;
uint8_t dtype;
} dtype_obj_t;
void ndarray_dtype_print(const mp_print_t *, mp_obj_t , mp_print_kind_t );
mp_obj_t ndarray_dtype_make_new(const mp_obj_type_t *, size_t , size_t , const mp_obj_t *);
#endif /* ULAB_HAS_DTYPE_OBJECT */
extern const mp_obj_type_t ndarray_flatiter_type;
mp_obj_t ndarray_new_ndarray_iterator(mp_obj_t , mp_obj_iter_buf_t *);
mp_obj_t ndarray_get_item(ndarray_obj_t *, void *);
mp_float_t ndarray_get_float_value(void *, uint8_t );
mp_float_t ndarray_get_float_index(void *, uint8_t , size_t );
bool ndarray_object_is_array_like(mp_obj_t );
mp_float_t ndarray_get_float_value(void *, uint8_t , size_t );
void fill_array_iterable(mp_float_t *, mp_obj_t );
size_t *ndarray_shape_vector(size_t , size_t , size_t , size_t );
void ndarray_print_row(const mp_print_t *, mp_obj_array_t *, size_t , size_t );
void ndarray_print(const mp_print_t *, mp_obj_t , mp_print_kind_t );
void ndarray_assign_elements(mp_obj_array_t *, mp_obj_t , uint8_t , size_t *);
ndarray_obj_t *create_new_ndarray(size_t , size_t , uint8_t );
#if ULAB_HAS_PRINTOPTIONS
mp_obj_t ndarray_set_printoptions(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(ndarray_set_printoptions_obj);
mp_obj_t ndarray_get_printoptions(void);
MP_DECLARE_CONST_FUN_OBJ_0(ndarray_get_printoptions_obj);
#endif
void ndarray_assign_elements(ndarray_obj_t *, mp_obj_t , uint8_t , size_t *);
size_t *ndarray_contract_shape(ndarray_obj_t *, uint8_t );
int32_t *ndarray_contract_strides(ndarray_obj_t *, uint8_t );
ndarray_obj_t *ndarray_from_iterable(mp_obj_t , uint8_t );
ndarray_obj_t *ndarray_new_dense_ndarray(uint8_t , size_t *, uint8_t );
ndarray_obj_t *ndarray_new_ndarray_from_tuple(mp_obj_tuple_t *, uint8_t );
ndarray_obj_t *ndarray_new_ndarray(uint8_t , size_t *, int32_t *, uint8_t );
ndarray_obj_t *ndarray_new_linear_array(size_t , uint8_t );
ndarray_obj_t *ndarray_new_view(ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t );
bool ndarray_is_dense(ndarray_obj_t *);
ndarray_obj_t *ndarray_copy_view(ndarray_obj_t *);
ndarray_obj_t *ndarray_copy_view_convert_type(ndarray_obj_t *, uint8_t );
void ndarray_copy_array(ndarray_obj_t *, ndarray_obj_t *, uint8_t );
MP_DECLARE_CONST_FUN_OBJ_KW(ndarray_array_constructor_obj);
mp_obj_t ndarray_copy(mp_obj_t );
#ifdef CIRCUITPY
mp_obj_t ndarray_make_new(const mp_obj_type_t *type, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args);
#else
mp_obj_t ndarray_make_new(const mp_obj_type_t *, size_t , size_t , const mp_obj_t *);
#endif
mp_obj_t ndarray_subscr(mp_obj_t , mp_obj_t , mp_obj_t );
mp_obj_t ndarray_getiter(mp_obj_t , mp_obj_iter_buf_t *);
bool ndarray_can_broadcast(ndarray_obj_t *, ndarray_obj_t *, uint8_t *, size_t *, int32_t *, int32_t *);
bool ndarray_can_broadcast_inplace(ndarray_obj_t *, ndarray_obj_t *, int32_t *);
mp_obj_t ndarray_binary_op(mp_binary_op_t , mp_obj_t , mp_obj_t );
mp_obj_t ndarray_unary_op(mp_unary_op_t , mp_obj_t );
size_t *ndarray_new_coords(uint8_t );
void ndarray_rewind_array(uint8_t , uint8_t *, size_t *, int32_t *, size_t *);
// various ndarray methods
#if NDARRAY_HAS_BYTESWAP
mp_obj_t ndarray_byteswap(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(ndarray_byteswap_obj);
#endif
#if NDARRAY_HAS_COPY
mp_obj_t ndarray_copy(mp_obj_t );
MP_DECLARE_CONST_FUN_OBJ_1(ndarray_copy_obj);
#endif
#if NDARRAY_HAS_FLATTEN
mp_obj_t ndarray_flatten(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(ndarray_flatten_obj);
#endif
#if NDARRAY_HAS_DTYPE
mp_obj_t ndarray_dtype(mp_obj_t );
#endif
#if NDARRAY_HAS_ITEMSIZE
mp_obj_t ndarray_itemsize(mp_obj_t );
#endif
#if NDARRAY_HAS_SIZE
mp_obj_t ndarray_size(mp_obj_t );
#endif
#if NDARRAY_HAS_SHAPE
mp_obj_t ndarray_shape(mp_obj_t );
#endif
mp_obj_t ndarray_size(mp_obj_t );
mp_obj_t ndarray_itemsize(mp_obj_t );
mp_obj_t ndarray_flatten(size_t , const mp_obj_t *, mp_map_t *);
#if NDARRAY_HAS_STRIDES
mp_obj_t ndarray_strides(mp_obj_t );
#endif
#if NDARRAY_HAS_RESHAPE
mp_obj_t ndarray_reshape_core(mp_obj_t , mp_obj_t , bool );
mp_obj_t ndarray_reshape(mp_obj_t , mp_obj_t );
MP_DECLARE_CONST_FUN_OBJ_2(ndarray_reshape_obj);
#endif
#if NDARRAY_HAS_TOBYTES
mp_obj_t ndarray_tobytes(mp_obj_t );
MP_DECLARE_CONST_FUN_OBJ_1(ndarray_tobytes_obj);
#endif
#if NDARRAY_HAS_TOLIST
mp_obj_t ndarray_tolist(mp_obj_t );
MP_DECLARE_CONST_FUN_OBJ_1(ndarray_tolist_obj);
#endif
#if NDARRAY_HAS_TRANSPOSE
mp_obj_t ndarray_transpose(mp_obj_t );
MP_DECLARE_CONST_FUN_OBJ_1(ndarray_transpose_obj);
#endif
#if ULAB_NUMPY_HAS_NDINFO
mp_obj_t ndarray_info(mp_obj_t );
MP_DECLARE_CONST_FUN_OBJ_1(ndarray_info_obj);
#endif
mp_int_t ndarray_get_buffer(mp_obj_t , mp_buffer_info_t *, mp_uint_t );
mp_int_t ndarray_get_buffer(mp_obj_t obj, mp_buffer_info_t *bufinfo, mp_uint_t flags);
//void ndarray_attributes(mp_obj_t , qstr , mp_obj_t *);
ndarray_obj_t *ndarray_from_mp_obj(mp_obj_t , uint8_t );
#define CREATE_SINGLE_ITEM(outarray, type, typecode, value) do {\
ndarray_obj_t *tmp = create_new_ndarray(1, 1, (typecode));\
type *tmparr = (type *)tmp->array->items;\
tmparr[0] = (type)(value);\
(outarray) = MP_OBJ_FROM_PTR(tmp);\
} while(0)
#define BOOLEAN_ASSIGNMENT_LOOP(type_left, type_right, ndarray, lstrides, iarray, istride, varray, vstride)\
type_left *array = (type_left *)(ndarray)->array;\
for(size_t i=0; i < (ndarray)->len; i++) {\
if(*(iarray)) {\
*array = (type_left)(*((type_right *)(varray)));\
(varray) += (vstride);\
/*
mp_obj_t row = mp_obj_new_list(n, NULL);
mp_obj_list_t *row_ptr = MP_OBJ_TO_PTR(row);
should work outside the loop, but it doesn't. Go figure!
*/
#define RUN_BINARY_LOOP(typecode, type_out, type_left, type_right, ol, or, op) do {\
type_left *left = (type_left *)(ol)->array->items;\
type_right *right = (type_right *)(or)->array->items;\
uint8_t inc = 0;\
if((or)->array->len > 1) inc = 1;\
if(((op) == MP_BINARY_OP_ADD) || ((op) == MP_BINARY_OP_SUBTRACT) || ((op) == MP_BINARY_OP_MULTIPLY)) {\
ndarray_obj_t *out = create_new_ndarray(ol->m, ol->n, typecode);\
type_out *(odata) = (type_out *)out->array->items;\
if((op) == MP_BINARY_OP_ADD) { for(size_t i=0, j=0; i < (ol)->array->len; i++, j+=inc) odata[i] = left[i] + right[j];}\
if((op) == MP_BINARY_OP_SUBTRACT) { for(size_t i=0, j=0; i < (ol)->array->len; i++, j+=inc) odata[i] = left[i] - right[j];}\
if((op) == MP_BINARY_OP_MULTIPLY) { for(size_t i=0, j=0; i < (ol)->array->len; i++, j+=inc) odata[i] = left[i] * right[j];}\
return MP_OBJ_FROM_PTR(out);\
} else if((op) == MP_BINARY_OP_TRUE_DIVIDE) {\
ndarray_obj_t *out = create_new_ndarray(ol->m, ol->n, NDARRAY_FLOAT);\
mp_float_t *odata = (mp_float_t *)out->array->items;\
for(size_t i=0, j=0; i < (ol)->array->len; i++, j+=inc) odata[i] = (mp_float_t)left[i]/(mp_float_t)right[j];\
return MP_OBJ_FROM_PTR(out);\
} else if(((op) == MP_BINARY_OP_LESS) || ((op) == MP_BINARY_OP_LESS_EQUAL) || \
((op) == MP_BINARY_OP_MORE) || ((op) == MP_BINARY_OP_MORE_EQUAL)) {\
mp_obj_t out_list = mp_obj_new_list(0, NULL);\
size_t m = (ol)->m, n = (ol)->n;\
for(size_t i=0, r=0; i < m; i++, r+=inc) {\
mp_obj_t row = mp_obj_new_list(n, NULL);\
mp_obj_list_t *row_ptr = MP_OBJ_TO_PTR(row);\
for(size_t j=0, s=0; j < n; j++, s+=inc) {\
row_ptr->items[j] = mp_const_false;\
if((op) == MP_BINARY_OP_LESS) {\
if(left[i*n+j] < right[r*n+s]) row_ptr->items[j] = mp_const_true;\
} else if((op) == MP_BINARY_OP_LESS_EQUAL) {\
if(left[i*n+j] <= right[r*n+s]) row_ptr->items[j] = mp_const_true;\
} else if((op) == MP_BINARY_OP_MORE) {\
if(left[i*n+j] > right[r*n+s]) row_ptr->items[j] = mp_const_true;\
} else if((op) == MP_BINARY_OP_MORE_EQUAL) {\
if(left[i*n+j] >= right[r*n+s]) row_ptr->items[j] = mp_const_true;\
}\
array += (lstrides);\
(iarray) += (istride);\
} while(0)
#if ULAB_HAS_FUNCTION_ITERATOR
#define BINARY_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
type_out *array = (type_out *)(results)->array;\
size_t *lcoords = ndarray_new_coords((results)->ndim);\
size_t *rcoords = ndarray_new_coords((results)->ndim);\
for(size_t i=0; i < (results)->len/(results)->shape[ULAB_MAX_DIMS -1]; i++) {\
size_t l = 0;\
do {\
*array++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
ndarray_rewind_array((results)->ndim, (larray), (results)->shape, (lstrides), lcoords);\
ndarray_rewind_array((results)->ndim, (rarray), (results)->shape, (rstrides), rcoords);\
} while(0)
#define INPLACE_LOOP(results, type_left, type_right, larray, rarray, rstrides, OPERATOR)\
size_t *lcoords = ndarray_new_coords((results)->ndim);\
size_t *rcoords = ndarray_new_coords((results)->ndim);\
for(size_t i=0; i < (results)->len/(results)->shape[ULAB_MAX_DIMS -1]; i++) {\
size_t l = 0;\
do {\
*((type_left *)(larray)) OPERATOR *((type_right *)(rarray));\
(larray) += (results)->strides[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
ndarray_rewind_array((results)->ndim, (larray), (results)->shape, (results)->strides, lcoords);\
ndarray_rewind_array((results)->ndim, (rarray), (results)->shape, (rstrides), rcoords);\
} while(0)
#define EQUALITY_LOOP(results, array, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t *lcoords = ndarray_new_coords((results)->ndim);\
size_t *rcoords = ndarray_new_coords((results)->ndim);\
for(size_t i=0; i < (results)->len/(results)->shape[ULAB_MAX_DIMS -1]; i++) {\
size_t l = 0;\
do {\
*(array)++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray)) ? 1 : 0;\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
ndarray_rewind_array((results)->ndim, (larray), (results)->shape, (lstrides), lcoords);\
ndarray_rewind_array((results)->ndim, (rarray), (results)->shape, (rstrides), rcoords);\
} while(0)
#define POWER_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides)\
type_out *array = (type_out *)(results)->array;\
size_t *lcoords = ndarray_new_coords((results)->ndim);\
size_t *rcoords = ndarray_new_coords((results)->ndim);\
for(size_t i=0; i < (results)->len/(results)->shape[ULAB_MAX_DIMS -1]; i++) {\
size_t l = 0;\
do {\
*array++ = MICROPY_FLOAT_C_FUN(pow)(*((type_left *)(larray)), *((type_right *)(rarray)));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
ndarray_rewind_array((results)->ndim, (larray), (results)->shape, (lstrides), lcoords);\
ndarray_rewind_array((results)->ndim, (rarray), (results)->shape, (rstrides), rcoords);\
} while(0)
#else
#if ULAB_MAX_DIMS == 1
#define BINARY_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
type_out *array = (type_out *)results->array;\
size_t l = 0;\
do {\
*array++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
#define INPLACE_LOOP(results, type_left, type_right, larray, rarray, rstrides, OPERATOR)\
size_t l = 0;\
do {\
*((type_left *)(larray)) OPERATOR *((type_right *)(rarray));\
(larray) += (results)->strides[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
#define EQUALITY_LOOP(results, array, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t l = 0;\
do {\
*(array)++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray)) ? 1 : 0;\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
#define POWER_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides)\
type_out *array = (type_out *)results->array;\
size_t l = 0;\
do {\
*array++ = MICROPY_FLOAT_C_FUN(pow)(*((type_left *)(larray)), *((type_right *)(rarray)));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
#endif /* ULAB_MAX_DIMS == 1 */
#if ULAB_MAX_DIMS == 2
#define BINARY_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
type_out *array = (type_out *)(results)->array;\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*array++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
#define INPLACE_LOOP(results, type_left, type_right, larray, rarray, rstrides, OPERATOR)\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*((type_left *)(larray)) OPERATOR *((type_right *)(rarray));\
(larray) += (results)->strides[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
#define EQUALITY_LOOP(results, array, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*(array)++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray)) ? 1 : 0;\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
#define POWER_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides)\
type_out *array = (type_out *)(results)->array;\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*array++ = MICROPY_FLOAT_C_FUN(pow)(*((type_left *)(larray)), *((type_right *)(rarray)));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
#endif /* ULAB_MAX_DIMS == 2 */
#if ULAB_MAX_DIMS == 3
#define BINARY_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
type_out *array = (type_out *)results->array;\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*array++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
#define INPLACE_LOOP(results, type_left, type_right, larray, rarray, rstrides, OPERATOR)\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*((type_left *)(larray)) OPERATOR *((type_right *)(rarray));\
(larray) += (results)->strides[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
#define EQUALITY_LOOP(results, array, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*(array)++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray)) ? 1 : 0;\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
#define POWER_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides)\
type_out *array = (type_out *)results->array;\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*array++ = MICROPY_FLOAT_C_FUN(pow)(*((type_left *)(larray)), *((type_right *)(rarray)));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
#endif /* ULAB_MAX_DIMS == 3 */
#if ULAB_MAX_DIMS == 4
#define BINARY_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
type_out *array = (type_out *)results->array;\
size_t i = 0;\
do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*array++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS-3];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS-3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < (results)->shape[ULAB_MAX_DIMS - 4]);\
#define INPLACE_LOOP(results, type_left, type_right, larray, rarray, rstrides, OPERATOR)\
size_t i = 0;\
do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*((type_left *)(larray)) OPERATOR *((type_right *)(rarray));\
(larray) += (results)->strides[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS-3];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS-3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < (results)->shape[ULAB_MAX_DIMS - 4]);\
#define EQUALITY_LOOP(results, array, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t i = 0;\
do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*(array)++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray)) ? 1 : 0;\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS-3];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS-3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < (results)->shape[ULAB_MAX_DIMS - 4]);\
#define POWER_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides)\
type_out *array = (type_out *)results->array;\
size_t i = 0;\
do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*array++ = MICROPY_FLOAT_C_FUN(pow)(*((type_left *)(larray)), *((type_right *)(rarray)));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS-3];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS-3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < (results)->shape[ULAB_MAX_DIMS - 4]);\
#endif /* ULAB_MAX_DIMS == 4 */
#endif /* ULAB_HAS_FUNCTION_ITERATOR */
}\
if(m == 1) return row;\
mp_obj_list_append(out_list, row);\
}\
return out_list;\
}\
} while(0)
#endif

View file

@ -1,935 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*/
#include <math.h>
#include "py/runtime.h"
#include "py/objtuple.h"
#include "ndarray.h"
#include "ndarray_operators.h"
#include "ulab.h"
#include "ulab_tools.h"
#include "numpy/carray/carray.h"
/*
This file contains the actual implementations of the various
ndarray operators.
These are the upcasting rules of the binary operators
- if complex is supported, and if one of the operarands is a complex, the result is always complex
- if both operarands are real one of them is a float, then the result is also a float
- operation on identical types preserves type
uint8 + int8 => int16
uint8 + int16 => int16
uint8 + uint16 => uint16
int8 + int16 => int16
int8 + uint16 => uint16
uint16 + int16 => float
*/
#if NDARRAY_HAS_BINARY_OP_EQUAL | NDARRAY_HAS_BINARY_OP_NOT_EQUAL
mp_obj_t ndarray_binary_equality(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides, mp_binary_op_t op) {
#if ULAB_SUPPORTS_COMPLEX
if((lhs->dtype == NDARRAY_COMPLEX) || (rhs->dtype == NDARRAY_COMPLEX)) {
return carray_binary_equal_not_equal(lhs, rhs, ndim, shape, lstrides, rstrides, op);
}
#endif
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT8);
results->boolean = 1;
uint8_t *array = (uint8_t *)results->array;
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
#if NDARRAY_HAS_BINARY_OP_EQUAL
if(op == MP_BINARY_OP_EQUAL) {
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
EQUALITY_LOOP(results, array, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, ==);
} else if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, uint8_t, int8_t, larray, lstrides, rarray, rstrides, ==);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, ==);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, uint8_t, int16_t, larray, lstrides, rarray, rstrides, ==);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides, ==);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, int8_t, int8_t, larray, lstrides, rarray, rstrides, ==);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, int8_t, uint16_t, larray, lstrides, rarray, rstrides, ==);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, int8_t, int16_t, larray, lstrides, rarray, rstrides, ==);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, int8_t, mp_float_t, larray, lstrides, rarray, rstrides, ==);
} else {
return ndarray_binary_op(op, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, ==);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, uint16_t, int16_t, larray, lstrides, rarray, rstrides, ==);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, ==);
} else {
return ndarray_binary_op(op, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, int16_t, int16_t, larray, lstrides, rarray, rstrides, ==);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, int16_t, mp_float_t, larray, lstrides, rarray, rstrides, ==);
} else {
return ndarray_binary_op(op, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides, ==);
} else {
return ndarray_binary_op(op, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
}
}
#endif /* NDARRAY_HAS_BINARY_OP_EQUAL */
#if NDARRAY_HAS_BINARY_OP_NOT_EQUAL
if(op == MP_BINARY_OP_NOT_EQUAL) {
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
EQUALITY_LOOP(results, array, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, !=);
} else if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, uint8_t, int8_t, larray, lstrides, rarray, rstrides, !=);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, !=);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, uint8_t, int16_t, larray, lstrides, rarray, rstrides, !=);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides, !=);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, int8_t, int8_t, larray, lstrides, rarray, rstrides, !=);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, int8_t, uint16_t, larray, lstrides, rarray, rstrides, !=);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, int8_t, int16_t, larray, lstrides, rarray, rstrides, !=);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, int8_t, mp_float_t, larray, lstrides, rarray, rstrides, !=);
} else {
return ndarray_binary_op(op, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, !=);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, uint16_t, int16_t, larray, lstrides, rarray, rstrides, !=);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, !=);
} else {
return ndarray_binary_op(op, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, int16_t, int16_t, larray, lstrides, rarray, rstrides, !=);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, int16_t, mp_float_t, larray, lstrides, rarray, rstrides, !=);
} else {
return ndarray_binary_op(op, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides, !=);
} else {
return ndarray_binary_op(op, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
}
}
#endif /* NDARRAY_HAS_BINARY_OP_NOT_EQUAL */
return MP_OBJ_FROM_PTR(results);
}
#endif /* NDARRAY_HAS_BINARY_OP_EQUAL | NDARRAY_HAS_BINARY_OP_NOT_EQUAL */
#if NDARRAY_HAS_BINARY_OP_ADD
mp_obj_t ndarray_binary_add(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
#if ULAB_SUPPORTS_COMPLEX
if((lhs->dtype == NDARRAY_COMPLEX) || (rhs->dtype == NDARRAY_COMPLEX)) {
return carray_binary_add(lhs, rhs, ndim, shape, lstrides, rstrides);
}
#endif
ndarray_obj_t *results = NULL;
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
BINARY_LOOP(results, uint16_t, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, +);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, uint8_t, int8_t, larray, lstrides, rarray, rstrides, +);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
BINARY_LOOP(results, uint16_t, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, +);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, uint8_t, int16_t, larray, lstrides, rarray, rstrides, +);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides, +);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT8);
BINARY_LOOP(results, int8_t, int8_t, int8_t, larray, lstrides, rarray, rstrides, +);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int8_t, uint16_t, larray, lstrides, rarray, rstrides, +);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int8_t, int16_t, larray, lstrides, rarray, rstrides, +);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, int8_t, mp_float_t, larray, lstrides, rarray, rstrides, +);
} else {
return ndarray_binary_op(MP_BINARY_OP_ADD, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
BINARY_LOOP(results, uint16_t, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, +);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, uint16_t, int16_t, larray, lstrides, rarray, rstrides, +);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, +);
} else {
return ndarray_binary_op(MP_BINARY_OP_ADD, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int16_t, int16_t, larray, lstrides, rarray, rstrides, +);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, int16_t, mp_float_t, larray, lstrides, rarray, rstrides, +);
} else {
return ndarray_binary_op(MP_BINARY_OP_ADD, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides, +);
} else {
return ndarray_binary_op(MP_BINARY_OP_ADD, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
}
return MP_OBJ_FROM_PTR(results);
}
#endif /* NDARRAY_HAS_BINARY_OP_ADD */
#if NDARRAY_HAS_BINARY_OP_MULTIPLY
mp_obj_t ndarray_binary_multiply(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
#if ULAB_SUPPORTS_COMPLEX
if((lhs->dtype == NDARRAY_COMPLEX) || (rhs->dtype == NDARRAY_COMPLEX)) {
return carray_binary_multiply(lhs, rhs, ndim, shape, lstrides, rstrides);
}
#endif
ndarray_obj_t *results = NULL;
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
BINARY_LOOP(results, uint16_t, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, *);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, uint8_t, int8_t, larray, lstrides, rarray, rstrides, *);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
BINARY_LOOP(results, uint16_t, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, *);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, uint8_t, int16_t, larray, lstrides, rarray, rstrides, *);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides, *);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT8);
BINARY_LOOP(results, int8_t, int8_t, int8_t, larray, lstrides, rarray, rstrides, *);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int8_t, uint16_t, larray, lstrides, rarray, rstrides, *);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int8_t, int16_t, larray, lstrides, rarray, rstrides, *);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, int8_t, mp_float_t, larray, lstrides, rarray, rstrides, *);
} else {
return ndarray_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
BINARY_LOOP(results, uint16_t, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, *);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, uint16_t, int16_t, larray, lstrides, rarray, rstrides, *);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, *);
} else {
return ndarray_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int16_t, int16_t, larray, lstrides, rarray, rstrides, *);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, int16_t, mp_float_t, larray, lstrides, rarray, rstrides, *);
} else {
return ndarray_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides, *);
} else {
return ndarray_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_FROM_PTR(rhs), MP_OBJ_FROM_PTR(lhs));
}
}
return MP_OBJ_FROM_PTR(results);
}
#endif /* NDARRAY_HAS_BINARY_OP_MULTIPLY */
#if NDARRAY_HAS_BINARY_OP_MORE | NDARRAY_HAS_BINARY_OP_MORE_EQUAL | NDARRAY_HAS_BINARY_OP_LESS | NDARRAY_HAS_BINARY_OP_LESS_EQUAL
mp_obj_t ndarray_binary_more(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides, mp_binary_op_t op) {
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT8);
results->boolean = 1;
uint8_t *array = (uint8_t *)results->array;
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
#if NDARRAY_HAS_BINARY_OP_MORE | NDARRAY_HAS_BINARY_OP_LESS
if(op == MP_BINARY_OP_MORE) {
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
EQUALITY_LOOP(results, array, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, uint8_t, int8_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, uint8_t, int16_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides, >);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_UINT8) {
EQUALITY_LOOP(results, array, int8_t, uint8_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, int8_t, int8_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, int8_t, uint16_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, int8_t, int16_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, int8_t, mp_float_t, larray, lstrides, rarray, rstrides, >);
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT8) {
EQUALITY_LOOP(results, array, uint16_t, uint8_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, uint16_t, int8_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, uint16_t, int16_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, >);
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_UINT8) {
EQUALITY_LOOP(results, array, int16_t, uint8_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, int16_t, int8_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, int16_t, uint16_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, int16_t, int16_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, >);
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_UINT8) {
EQUALITY_LOOP(results, array, mp_float_t, uint8_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, mp_float_t, int8_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, mp_float_t, uint16_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, mp_float_t, int16_t, larray, lstrides, rarray, rstrides, >);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides, >);
}
}
}
#endif /* NDARRAY_HAS_BINARY_OP_MORE | NDARRAY_HAS_BINARY_OP_LESS*/
#if NDARRAY_HAS_BINARY_OP_MORE_EQUAL | NDARRAY_HAS_BINARY_OP_LESS_EQUAL
if(op == MP_BINARY_OP_MORE_EQUAL) {
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
EQUALITY_LOOP(results, array, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, uint8_t, int8_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, uint8_t, int16_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides, >=);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_UINT8) {
EQUALITY_LOOP(results, array, int8_t, uint8_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, int8_t, int8_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, int8_t, uint16_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, int8_t, int16_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, int8_t, mp_float_t, larray, lstrides, rarray, rstrides, >=);
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT8) {
EQUALITY_LOOP(results, array, uint16_t, uint8_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, uint16_t, int8_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, uint16_t, int16_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, >=);
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_UINT8) {
EQUALITY_LOOP(results, array, int16_t, uint8_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, int16_t, int8_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, int16_t, uint16_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, int16_t, int16_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, >=);
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_UINT8) {
EQUALITY_LOOP(results, array, mp_float_t, uint8_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_INT8) {
EQUALITY_LOOP(results, array, mp_float_t, int8_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_UINT16) {
EQUALITY_LOOP(results, array, mp_float_t, uint16_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_INT16) {
EQUALITY_LOOP(results, array, mp_float_t, int16_t, larray, lstrides, rarray, rstrides, >=);
} else if(rhs->dtype == NDARRAY_FLOAT) {
EQUALITY_LOOP(results, array, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides, >=);
}
}
}
#endif /* NDARRAY_HAS_BINARY_OP_MORE_EQUAL | NDARRAY_HAS_BINARY_OP_LESS_EQUAL */
return MP_OBJ_FROM_PTR(results);
}
#endif /* NDARRAY_HAS_BINARY_OP_MORE | NDARRAY_HAS_BINARY_OP_MORE_EQUAL | NDARRAY_HAS_BINARY_OP_LESS | NDARRAY_HAS_BINARY_OP_LESS_EQUAL */
#if NDARRAY_HAS_BINARY_OP_SUBTRACT
mp_obj_t ndarray_binary_subtract(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
#if ULAB_SUPPORTS_COMPLEX
if((lhs->dtype == NDARRAY_COMPLEX) || (rhs->dtype == NDARRAY_COMPLEX)) {
return carray_binary_subtract(lhs, rhs, ndim, shape, lstrides, rstrides);
}
#endif
ndarray_obj_t *results = NULL;
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT8);
BINARY_LOOP(results, uint8_t, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, uint8_t, int8_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
BINARY_LOOP(results, uint16_t, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, uint8_t, int16_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides, -);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int8_t, uint8_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT8);
BINARY_LOOP(results, int8_t, int8_t, int8_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int8_t, uint16_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int8_t, int16_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, int8_t, mp_float_t, larray, lstrides, rarray, rstrides, -);
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
BINARY_LOOP(results, uint16_t, uint16_t, uint8_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
BINARY_LOOP(results, uint16_t, uint16_t, int8_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
BINARY_LOOP(results, uint16_t, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, uint16_t, int16_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, -);
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int16_t, uint8_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int16_t, int8_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, int16_t, uint16_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int16_t, int16_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, -);
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, mp_float_t, uint8_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, mp_float_t, int8_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, mp_float_t, uint16_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, mp_float_t, int16_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides, -);
}
}
return MP_OBJ_FROM_PTR(results);
}
#endif /* NDARRAY_HAS_BINARY_OP_SUBTRACT */
#if NDARRAY_HAS_BINARY_OP_TRUE_DIVIDE
mp_obj_t ndarray_binary_true_divide(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
#if ULAB_SUPPORTS_COMPLEX
if((lhs->dtype == NDARRAY_COMPLEX) || (rhs->dtype == NDARRAY_COMPLEX)) {
return carray_binary_divide(lhs, rhs, ndim, shape, lstrides, rstrides);
}
#endif
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
#if NDARRAY_BINARY_USES_FUN_POINTER
mp_float_t (*get_lhs)(void *) = ndarray_get_float_function(lhs->dtype);
mp_float_t (*get_rhs)(void *) = ndarray_get_float_function(rhs->dtype);
uint8_t *array = (uint8_t *)results->array;
void (*set_result)(void *, mp_float_t ) = ndarray_set_float_function(NDARRAY_FLOAT);
// Note that lvalue and rvalue are local variables in the macro itself
FUNC_POINTER_LOOP(results, array, get_lhs, get_rhs, larray, lstrides, rarray, rstrides, lvalue/rvalue);
#else
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
BINARY_LOOP(results, mp_float_t, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_INT8) {
BINARY_LOOP(results, mp_float_t, uint8_t, int8_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_UINT16) {
BINARY_LOOP(results, mp_float_t, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_INT16) {
BINARY_LOOP(results, mp_float_t, uint8_t, int16_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_FLOAT) {
BINARY_LOOP(results, mp_float_t, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides, /);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_UINT8) {
BINARY_LOOP(results, mp_float_t, int8_t, uint8_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_INT8) {
BINARY_LOOP(results, mp_float_t, int8_t, int8_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_UINT16) {
BINARY_LOOP(results, mp_float_t, int8_t, uint16_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_INT16) {
BINARY_LOOP(results, mp_float_t, int8_t, int16_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_FLOAT) {
BINARY_LOOP(results, mp_float_t, int8_t, mp_float_t, larray, lstrides, rarray, rstrides, /);
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT8) {
BINARY_LOOP(results, mp_float_t, uint16_t, uint8_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_INT8) {
BINARY_LOOP(results, mp_float_t, uint16_t, int8_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_UINT16) {
BINARY_LOOP(results, mp_float_t, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_INT16) {
BINARY_LOOP(results, mp_float_t, uint16_t, int16_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_FLOAT) {
BINARY_LOOP(results, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, /);
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_UINT8) {
BINARY_LOOP(results, mp_float_t, int16_t, uint8_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_INT8) {
BINARY_LOOP(results, mp_float_t, int16_t, int8_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_UINT16) {
BINARY_LOOP(results, mp_float_t, int16_t, uint16_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_INT16) {
BINARY_LOOP(results, mp_float_t, int16_t, int16_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_FLOAT) {
BINARY_LOOP(results, mp_float_t, int16_t, mp_float_t, larray, lstrides, rarray, rstrides, /);
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_UINT8) {
BINARY_LOOP(results, mp_float_t, mp_float_t, uint8_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_INT8) {
BINARY_LOOP(results, mp_float_t, mp_float_t, int8_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_UINT16) {
BINARY_LOOP(results, mp_float_t, mp_float_t, uint16_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_INT16) {
BINARY_LOOP(results, mp_float_t, mp_float_t, int16_t, larray, lstrides, rarray, rstrides, /);
} else if(rhs->dtype == NDARRAY_FLOAT) {
BINARY_LOOP(results, mp_float_t, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides, /);
}
}
#endif /* NDARRAY_BINARY_USES_FUN_POINTER */
return MP_OBJ_FROM_PTR(results);
}
#endif /* NDARRAY_HAS_BINARY_OP_TRUE_DIVIDE */
#if NDARRAY_HAS_BINARY_OP_FLOOR_DIVIDE
mp_obj_t ndarray_binary_floor_divide(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
ndarray_obj_t *results = NULL;
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT8);
FLOOR_DIVIDE_LOOP_UINT(results, uint8_t, uint8_t, uint8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
FLOOR_DIVIDE_LOOP(results, int16_t, uint8_t, int8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
FLOOR_DIVIDE_LOOP_UINT(results, uint16_t, uint8_t, uint16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
FLOOR_DIVIDE_LOOP(results, int16_t, uint8_t, int16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
FLOOR_DIVIDE_LOOP_FLOAT(results, mp_float_t, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
FLOOR_DIVIDE_LOOP(results, int16_t, int8_t, uint8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT8);
FLOOR_DIVIDE_LOOP(results, int8_t, int8_t, int8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
FLOOR_DIVIDE_LOOP(results, uint16_t, int8_t, uint16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
FLOOR_DIVIDE_LOOP(results, int16_t, int8_t, int16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
FLOOR_DIVIDE_LOOP_FLOAT(results, mp_float_t, int8_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
FLOOR_DIVIDE_LOOP_UINT(results, uint16_t, uint16_t, uint8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
FLOOR_DIVIDE_LOOP(results, uint16_t, uint16_t, int8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
FLOOR_DIVIDE_LOOP_UINT(results, uint16_t, uint16_t, uint16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
FLOOR_DIVIDE_LOOP_FLOAT(results, mp_float_t, uint16_t, int16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
FLOOR_DIVIDE_LOOP_FLOAT(results, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
FLOOR_DIVIDE_LOOP(results, int16_t, int16_t, uint8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
FLOOR_DIVIDE_LOOP(results, int16_t, int16_t, int8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
FLOOR_DIVIDE_LOOP_FLOAT(results, mp_float_t, int16_t, uint16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
FLOOR_DIVIDE_LOOP(results, int16_t, int16_t, int16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
FLOOR_DIVIDE_LOOP_FLOAT(results, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
if(rhs->dtype == NDARRAY_UINT8) {
FLOOR_DIVIDE_LOOP_FLOAT(results, mp_float_t, mp_float_t, uint8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT8) {
FLOOR_DIVIDE_LOOP_FLOAT(results, mp_float_t, mp_float_t, int8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
FLOOR_DIVIDE_LOOP_FLOAT(results, mp_float_t, mp_float_t, uint16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
FLOOR_DIVIDE_LOOP_FLOAT(results, mp_float_t, mp_float_t, int16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_FLOAT) {
FLOOR_DIVIDE_LOOP_FLOAT(results, mp_float_t, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
}
return MP_OBJ_FROM_PTR(results);
}
#endif /* NDARRAY_HAS_BINARY_OP_FLOOR_DIVIDE */
#if NDARRAY_HAS_BINARY_OP_POWER
mp_obj_t ndarray_binary_power(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
// Note that numpy upcasts the results to int64, if the inputs are of integer type,
// while we always return a float array.
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
#if NDARRAY_BINARY_USES_FUN_POINTER
mp_float_t (*get_lhs)(void *) = ndarray_get_float_function(lhs->dtype);
mp_float_t (*get_rhs)(void *) = ndarray_get_float_function(rhs->dtype);
uint8_t *array = (uint8_t *)results->array;
void (*set_result)(void *, mp_float_t ) = ndarray_set_float_function(NDARRAY_FLOAT);
// Note that lvalue and rvalue are local variables in the macro itself
FUNC_POINTER_LOOP(results, array, get_lhs, get_rhs, larray, lstrides, rarray, rstrides, MICROPY_FLOAT_C_FUN(pow)(lvalue, rvalue));
#else
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
POWER_LOOP(results, mp_float_t, uint8_t, uint8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT8) {
POWER_LOOP(results, mp_float_t, uint8_t, int8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
POWER_LOOP(results, mp_float_t, uint8_t, uint16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
POWER_LOOP(results, mp_float_t, uint8_t, int16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_FLOAT) {
POWER_LOOP(results, mp_float_t, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_UINT8) {
POWER_LOOP(results, mp_float_t, int8_t, uint8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT8) {
POWER_LOOP(results, mp_float_t, int8_t, int8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
POWER_LOOP(results, mp_float_t, int8_t, uint16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
POWER_LOOP(results, mp_float_t, int8_t, int16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_FLOAT) {
POWER_LOOP(results, mp_float_t, int8_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT8) {
POWER_LOOP(results, mp_float_t, uint16_t, uint8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT8) {
POWER_LOOP(results, mp_float_t, uint16_t, int8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
POWER_LOOP(results, mp_float_t, uint16_t, uint16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
POWER_LOOP(results, mp_float_t, uint16_t, int16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_FLOAT) {
POWER_LOOP(results, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_UINT8) {
POWER_LOOP(results, mp_float_t, int16_t, uint8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT8) {
POWER_LOOP(results, mp_float_t, int16_t, int8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
POWER_LOOP(results, mp_float_t, int16_t, uint16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
POWER_LOOP(results, mp_float_t, int16_t, int16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_FLOAT) {
POWER_LOOP(results, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_UINT8) {
POWER_LOOP(results, mp_float_t, mp_float_t, uint8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT8) {
POWER_LOOP(results, mp_float_t, mp_float_t, int8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
POWER_LOOP(results, mp_float_t, mp_float_t, uint16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
POWER_LOOP(results, mp_float_t, mp_float_t, int16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_FLOAT) {
POWER_LOOP(results, mp_float_t, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
}
#endif /* NDARRAY_BINARY_USES_FUN_POINTER */
return MP_OBJ_FROM_PTR(results);
}
#endif /* NDARRAY_HAS_BINARY_OP_POWER */
#if NDARRAY_HAS_INPLACE_ADD || NDARRAY_HAS_INPLACE_MULTIPLY || NDARRAY_HAS_INPLACE_SUBTRACT
mp_obj_t ndarray_inplace_ams(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rstrides, uint8_t optype) {
if((lhs->dtype != NDARRAY_FLOAT) && (rhs->dtype == NDARRAY_FLOAT)) {
mp_raise_TypeError(translate("cannot cast output with casting rule"));
}
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
#if NDARRAY_HAS_INPLACE_ADD
if(optype == MP_BINARY_OP_INPLACE_ADD) {
UNWRAP_INPLACE_OPERATOR(lhs, larray, rarray, rstrides, +=);
}
#endif
#if NDARRAY_HAS_INPLACE_ADD
if(optype == MP_BINARY_OP_INPLACE_MULTIPLY) {
UNWRAP_INPLACE_OPERATOR(lhs, larray, rarray, rstrides, *=);
}
#endif
#if NDARRAY_HAS_INPLACE_SUBTRACT
if(optype == MP_BINARY_OP_INPLACE_SUBTRACT) {
UNWRAP_INPLACE_OPERATOR(lhs, larray, rarray, rstrides, -=);
}
#endif
return MP_OBJ_FROM_PTR(lhs);
}
#endif /* NDARRAY_HAS_INPLACE_ADD || NDARRAY_HAS_INPLACE_MULTIPLY || NDARRAY_HAS_INPLACE_SUBTRACT */
#if NDARRAY_HAS_INPLACE_TRUE_DIVIDE
mp_obj_t ndarray_inplace_divide(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rstrides) {
if((lhs->dtype != NDARRAY_FLOAT)) {
mp_raise_TypeError(translate("results cannot be cast to specified type"));
}
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
if(rhs->dtype == NDARRAY_UINT8) {
INPLACE_LOOP(lhs, mp_float_t, uint8_t, larray, rarray, rstrides, /=);
} else if(rhs->dtype == NDARRAY_INT8) {
INPLACE_LOOP(lhs, mp_float_t, int8_t, larray, rarray, rstrides, /=);
} else if(rhs->dtype == NDARRAY_UINT16) {
INPLACE_LOOP(lhs, mp_float_t, uint16_t, larray, rarray, rstrides, /=);
} else if(rhs->dtype == NDARRAY_INT16) {
INPLACE_LOOP(lhs, mp_float_t, int16_t, larray, rarray, rstrides, /=);
} else if(lhs->dtype == NDARRAY_FLOAT) {
INPLACE_LOOP(lhs, mp_float_t, mp_float_t, larray, rarray, rstrides, /=);
}
return MP_OBJ_FROM_PTR(lhs);
}
#endif /* NDARRAY_HAS_INPLACE_TRUE_DIVIDE */
#if NDARRAY_HAS_INPLACE_POWER
mp_obj_t ndarray_inplace_power(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rstrides) {
if((lhs->dtype != NDARRAY_FLOAT)) {
mp_raise_TypeError(translate("results cannot be cast to specified type"));
}
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
if(rhs->dtype == NDARRAY_UINT8) {
INPLACE_POWER(lhs, mp_float_t, uint8_t, larray, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT8) {
INPLACE_POWER(lhs, mp_float_t, int8_t, larray, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
INPLACE_POWER(lhs, mp_float_t, uint16_t, larray, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
INPLACE_POWER(lhs, mp_float_t, int16_t, larray, rarray, rstrides);
} else if(lhs->dtype == NDARRAY_FLOAT) {
INPLACE_POWER(lhs, mp_float_t, mp_float_t, larray, rarray, rstrides);
}
return MP_OBJ_FROM_PTR(lhs);
}
#endif /* NDARRAY_HAS_INPLACE_POWER */

View file

@ -1,538 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2023 Zoltán Vörös
*/
#include "ndarray.h"
mp_obj_t ndarray_binary_equality(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *, mp_binary_op_t );
mp_obj_t ndarray_binary_add(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t ndarray_binary_multiply(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t ndarray_binary_more(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *, mp_binary_op_t );
mp_obj_t ndarray_binary_power(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t ndarray_binary_subtract(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t ndarray_binary_true_divide(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t ndarray_binary_floor_divide(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t ndarray_inplace_ams(ndarray_obj_t *, ndarray_obj_t *, int32_t *, uint8_t );
mp_obj_t ndarray_inplace_power(ndarray_obj_t *, ndarray_obj_t *, int32_t *);
mp_obj_t ndarray_inplace_divide(ndarray_obj_t *, ndarray_obj_t *, int32_t *);
#define UNWRAP_INPLACE_OPERATOR(lhs, larray, rarray, rstrides, OPERATOR)\
({\
if((lhs)->dtype == NDARRAY_UINT8) {\
if((rhs)->dtype == NDARRAY_UINT8) {\
INPLACE_LOOP((lhs), uint8_t, uint8_t, (larray), (rarray), (rstrides), OPERATOR);\
} else if(rhs->dtype == NDARRAY_INT8) {\
INPLACE_LOOP((lhs), uint8_t, int8_t, (larray), (rarray), (rstrides), OPERATOR);\
} else if(rhs->dtype == NDARRAY_UINT16) {\
INPLACE_LOOP((lhs), uint8_t, uint16_t, (larray), (rarray), (rstrides), OPERATOR);\
} else {\
INPLACE_LOOP((lhs), uint8_t, int16_t, (larray), (rarray), (rstrides), OPERATOR);\
}\
} else if(lhs->dtype == NDARRAY_INT8) {\
if(rhs->dtype == NDARRAY_UINT8) {\
INPLACE_LOOP((lhs), int8_t, uint8_t, (larray), (rarray), (rstrides), OPERATOR);\
} else if(rhs->dtype == NDARRAY_INT8) {\
INPLACE_LOOP((lhs), int8_t, int8_t, (larray), (rarray), (rstrides), OPERATOR);\
} else if(rhs->dtype == NDARRAY_UINT16) {\
INPLACE_LOOP((lhs), int8_t, uint16_t, (larray), (rarray), (rstrides), OPERATOR);\
} else {\
INPLACE_LOOP((lhs), int8_t, int16_t, (larray), (rarray), (rstrides), OPERATOR);\
}\
} else if(lhs->dtype == NDARRAY_UINT16) {\
if(rhs->dtype == NDARRAY_UINT8) {\
INPLACE_LOOP((lhs), uint16_t, uint8_t, (larray), (rarray), (rstrides), OPERATOR);\
} else if(rhs->dtype == NDARRAY_INT8) {\
INPLACE_LOOP((lhs), uint16_t, int8_t, (larray), (rarray), (rstrides), OPERATOR);\
} else if(rhs->dtype == NDARRAY_UINT16) {\
INPLACE_LOOP((lhs), uint16_t, uint16_t, (larray), (rarray), (rstrides), OPERATOR);\
} else {\
INPLACE_LOOP((lhs), uint16_t, int16_t, (larray), (rarray), (rstrides), OPERATOR);\
}\
} else if(lhs->dtype == NDARRAY_INT16) {\
if(rhs->dtype == NDARRAY_UINT8) {\
INPLACE_LOOP((lhs), int16_t, uint8_t, (larray), (rarray), (rstrides), OPERATOR);\
} else if(rhs->dtype == NDARRAY_INT8) {\
INPLACE_LOOP((lhs), int16_t, int8_t, (larray), (rarray), (rstrides), OPERATOR);\
} else if(rhs->dtype == NDARRAY_UINT16) {\
INPLACE_LOOP((lhs), int16_t, uint16_t, (larray), (rarray), (rstrides), OPERATOR);\
} else {\
INPLACE_LOOP((lhs), int16_t, int16_t, (larray), (rarray), (rstrides), OPERATOR);\
}\
} else if(lhs->dtype == NDARRAY_FLOAT) {\
if(rhs->dtype == NDARRAY_UINT8) {\
INPLACE_LOOP((lhs), mp_float_t, uint8_t, (larray), (rarray), (rstrides), OPERATOR);\
} else if(rhs->dtype == NDARRAY_INT8) {\
INPLACE_LOOP((lhs), mp_float_t, int8_t, (larray), (rarray), (rstrides), OPERATOR);\
} else if(rhs->dtype == NDARRAY_UINT16) {\
INPLACE_LOOP((lhs), mp_float_t, uint16_t, (larray), (rarray), (rstrides), OPERATOR);\
} else if(rhs->dtype == NDARRAY_INT16) {\
INPLACE_LOOP((lhs), mp_float_t, int16_t, (larray), (rarray), (rstrides), OPERATOR);\
} else {\
INPLACE_LOOP((lhs), mp_float_t, mp_float_t, (larray), (rarray), (rstrides), OPERATOR);\
}\
}\
})
#if ULAB_MAX_DIMS == 1
#define INPLACE_POWER(results, type_left, type_right, larray, rarray, rstrides)\
({ size_t l = 0;\
do {\
*((type_left *)(larray)) = MICROPY_FLOAT_C_FUN(pow)(*((type_left *)(larray)), *((type_right *)(rarray)));\
(larray) += (results)->strides[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
})
#define FUNC_POINTER_LOOP(results, array, get_lhs, get_rhs, larray, lstrides, rarray, rstrides, OPERATION)\
({ size_t l = 0;\
do {\
mp_float_t lvalue = (get_lhs)((larray));\
mp_float_t rvalue = (get_rhs)((rarray));\
(set_result)((array), OPERATION);\
(array) += (results)->itemsize;\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
})
#endif /* ULAB_MAX_DIMS == 1 */
#if ULAB_MAX_DIMS == 2
#define INPLACE_POWER(results, type_left, type_right, larray, rarray, rstrides)\
({ size_t k = 0;\
do {\
size_t l = 0;\
do {\
*((type_left *)(larray)) = MICROPY_FLOAT_C_FUN(pow)(*((type_left *)(larray)), *((type_right *)(rarray)));\
(larray) += (results)->strides[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
})
#define FUNC_POINTER_LOOP(results, array, get_lhs, get_rhs, larray, lstrides, rarray, rstrides, OPERATION)\
({ size_t k = 0;\
do {\
size_t l = 0;\
do {\
mp_float_t lvalue = (get_lhs)((larray));\
mp_float_t rvalue = (get_rhs)((rarray));\
(set_result)((array), OPERATION);\
(array) += (results)->itemsize;\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < results->shape[ULAB_MAX_DIMS - 2]);\
})
#endif /* ULAB_MAX_DIMS == 2 */
#if ULAB_MAX_DIMS == 3
#define INPLACE_POWER(results, type_left, type_right, larray, rarray, rstrides)\
({ size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*((type_left *)(larray)) = MICROPY_FLOAT_C_FUN(pow)(*((type_left *)(larray)), *((type_right *)(rarray)));\
(larray) += (results)->strides[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
})
#define FUNC_POINTER_LOOP(results, array, get_lhs, get_rhs, larray, lstrides, rarray, rstrides, OPERATION)\
({ size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
mp_float_t lvalue = (get_lhs)((larray));\
mp_float_t rvalue = (get_rhs)((rarray));\
(set_result)((array), OPERATION);\
(array) += (results)->itemsize;\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < results->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
})
#endif /* ULAB_MAX_DIMS == 3 */
#if ULAB_MAX_DIMS == 4
#define INPLACE_POWER(results, type_left, type_right, larray, rarray, rstrides)\
({ size_t i = 0;\
do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*((type_left *)(larray)) = MICROPY_FLOAT_C_FUN(pow)(*((type_left *)(larray)), *((type_right *)(rarray)));\
(larray) += (results)->strides[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS-3];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS-3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < (results)->shape[ULAB_MAX_DIMS - 4]);\
})
#define FUNC_POINTER_LOOP(results, array, get_lhs, get_rhs, larray, lstrides, rarray, rstrides, OPERATION)\
({ size_t i = 0;\
do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
mp_float_t lvalue = (get_lhs)((larray));\
mp_float_t rvalue = (get_rhs)((rarray));\
(set_result)((array), OPERATION);\
(array) += (results)->itemsize;\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < results->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS-3];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS-3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < (results)->shape[ULAB_MAX_DIMS - 4]);\
})
#endif /* ULAB_MAX_DIMS == 4 */
#define FLOOR_DIVIDE_UINT1(results, array, type_left, type_right, larray, lstrides, rarray, rstrides)\
({\
size_t l = 0;\
do {\
*(array)++ = *((type_left *)(larray)) / *((type_right *)(rarray));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
})
#define FLOOR_DIVIDE1(results, array, type_left, type_right, larray, lstrides, rarray, rstrides)\
({\
size_t l = 0;\
int16_t num;\
int16_t denom = (int16_t)*((type_right *)(rarray));\
do {\
num = (int16_t)*((type_left *)(larray));\
if(num >= 0) {\
if(denom < 0) {\
num += -denom - 1;\
}\
} else {\
if(denom >= 0) {\
num += -denom + 1;\
}\
}\
*(array)++ = num / denom;\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
})
#define FLOOR_DIVIDE_FLOAT1(results, array, type_left, type_right, larray, lstrides, rarray, rstrides)\
({\
size_t l = 0;\
do {\
*(array)++ = MICROPY_FLOAT_C_FUN(floor)(*((type_left *)(larray)) / *((type_right *)(rarray)));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
})
#if ULAB_MAX_DIMS == 1
#define FLOOR_DIVIDE_LOOP_UINT(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
FLOOR_DIVIDE_UINT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
} while(0)
#define FLOOR_DIVIDE_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
FLOOR_DIVIDE1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
} while(0)
#define FLOOR_DIVIDE_LOOP_FLOAT(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
FLOOR_DIVIDE_FLOAT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
} while(0)
#endif /* ULAB_MAX_DIMS == 1 */
#if ULAB_MAX_DIMS == 2
#define FLOOR_DIVIDE_LOOP_UINT(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
size_t l = 0;\
do {\
FLOOR_DIVIDE_UINT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define FLOOR_DIVIDE_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
size_t l = 0;\
do {\
FLOOR_DIVIDE1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define FLOOR_DIVIDE_LOOP_FLOAT(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
size_t l = 0;\
do {\
FLOOR_DIVIDE_FLOAT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 2 */
#if ULAB_MAX_DIMS == 3
#define FLOOR_DIVIDE_LOOP_UINT(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
FLOOR_DIVIDE_UINT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define FLOOR_DIVIDE_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
FLOOR_DIVIDE1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define FLOOR_DIVIDE_LOOP_FLOAT(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
FLOOR_DIVIDE_FLOAT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 3 */
#if ULAB_MAX_DIMS == 4
#define FLOOR_DIVIDE_LOOP_UINT(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
FLOOR_DIVIDE_UINT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 4]);\
} while(0)
#define FLOOR_DIVIDE_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
FLOOR_DIVIDE1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 4]);\
} while(0)
#define FLOOR_DIVIDE_LOOP_FLOAT(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
FLOOR_DIVIDE_FLOAT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 4]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 4 */

View file

@ -1,123 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Zoltán Vörös
*
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "ulab.h"
#include "ndarray.h"
#include "numpy/ndarray/ndarray_iter.h"
#if ULAB_SUPPORTS_COMPLEX
#include "numpy/carray/carray.h"
#endif
#ifndef CIRCUITPY
// a somewhat hackish implementation of property getters/setters;
// this functions is hooked into the attr member of ndarray
STATIC void call_local_method(mp_obj_t obj, qstr attr, mp_obj_t *dest) {
const mp_obj_type_t *type = mp_obj_get_type(obj);
while (MP_OBJ_TYPE_HAS_SLOT(type, locals_dict)) {
assert(MP_OBJ_TYPE_GET_SLOT(type, locals_dict)->base.type == &mp_type_dict); // MicroPython restriction, for now
mp_map_t *locals_map = &MP_OBJ_TYPE_GET_SLOT(type, locals_dict)->map;
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
if (elem != NULL) {
mp_convert_member_lookup(obj, type, elem->value, dest);
break;
}
if (!MP_OBJ_TYPE_HAS_SLOT(type, parent)) {
break;
}
type = MP_OBJ_TYPE_GET_SLOT(type, parent);
}
}
void ndarray_properties_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
if (dest[0] == MP_OBJ_NULL) {
switch(attr) {
#if NDARRAY_HAS_DTYPE
case MP_QSTR_dtype:
dest[0] = ndarray_dtype(self_in);
break;
#endif
#if NDARRAY_HAS_FLATITER
case MP_QSTR_flat:
dest[0] = ndarray_flatiter_make_new(self_in);
break;
#endif
#if NDARRAY_HAS_ITEMSIZE
case MP_QSTR_itemsize:
dest[0] = ndarray_itemsize(self_in);
break;
#endif
#if NDARRAY_HAS_SHAPE
case MP_QSTR_shape:
dest[0] = ndarray_shape(self_in);
break;
#endif
#if NDARRAY_HAS_SIZE
case MP_QSTR_size:
dest[0] = ndarray_size(self_in);
break;
#endif
#if NDARRAY_HAS_STRIDES
case MP_QSTR_strides:
dest[0] = ndarray_strides(self_in);
break;
#endif
#if NDARRAY_HAS_TRANSPOSE
case MP_QSTR_T:
dest[0] = ndarray_transpose(self_in);
break;
#endif
#if ULAB_SUPPORTS_COMPLEX
#if ULAB_NUMPY_HAS_IMAG
case MP_QSTR_imag:
dest[0] = carray_imag(self_in);
break;
#endif
#if ULAB_NUMPY_HAS_IMAG
case MP_QSTR_real:
dest[0] = carray_real(self_in);
break;
#endif
#endif /* ULAB_SUPPORTS_COMPLEX */
default:
call_local_method(self_in, attr, dest);
break;
}
} else {
if(dest[1]) {
switch(attr) {
#if ULAB_MAX_DIMS > 1
#if NDARRAY_HAS_RESHAPE
case MP_QSTR_shape:
ndarray_reshape_core(self_in, dest[1], 1);
break;
#endif
#endif
default:
return;
break;
}
dest[0] = MP_OBJ_NULL;
}
}
}
#endif /* CIRCUITPY */

View file

@ -7,7 +7,7 @@
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2020-2021 Zoltán Vörös
* 2020 Zoltán Vörös
*/
#ifndef _NDARRAY_PROPERTIES_
@ -18,104 +18,45 @@
#include "py/obj.h"
#include "py/objarray.h"
#include "ulab.h"
#include "ndarray.h"
#include "numpy/ndarray/ndarray_iter.h"
#if CIRCUITPY
typedef struct _mp_obj_property_t {
mp_obj_base_t base;
mp_obj_t proxy[3]; // getter, setter, deleter
} mp_obj_property_t;
#if NDARRAY_HAS_DTYPE
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_get_dtype_obj, ndarray_dtype);
STATIC const mp_obj_property_t ndarray_dtype_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&ndarray_get_dtype_obj,
mp_const_none,
mp_const_none },
};
#endif /* NDARRAY_HAS_DTYPE */
/* v923z: it is not at all clear to me, why this must be declared; it should already be in obj.h */
typedef struct _mp_obj_none_t {
mp_obj_base_t base;
} mp_obj_none_t;
#if NDARRAY_HAS_FLATITER
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_flatiter_make_new_obj, ndarray_flatiter_make_new);
STATIC const mp_obj_property_t ndarray_flat_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&ndarray_flatiter_make_new_obj,
mp_const_none,
mp_const_none },
};
#endif /* NDARRAY_HAS_FLATITER */
const mp_obj_type_t mp_type_NoneType;
const mp_obj_none_t mp_const_none_obj = {{&mp_type_NoneType}};
#if NDARRAY_HAS_ITEMSIZE
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_get_itemsize_obj, ndarray_itemsize);
STATIC const mp_obj_property_t ndarray_itemsize_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&ndarray_get_itemsize_obj,
mp_const_none,
mp_const_none },
};
#endif /* NDARRAY_HAS_ITEMSIZE */
#if NDARRAY_HAS_SHAPE
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_get_shape_obj, ndarray_shape);
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_get_size_obj, ndarray_size);
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_get_itemsize_obj, ndarray_itemsize);
MP_DEFINE_CONST_FUN_OBJ_KW(ndarray_flatten_obj, 1, ndarray_flatten);
STATIC const mp_obj_property_t ndarray_shape_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&ndarray_get_shape_obj,
mp_const_none,
mp_const_none },
(mp_obj_t)&mp_const_none_obj,
(mp_obj_t)&mp_const_none_obj},
};
#endif /* NDARRAY_HAS_SHAPE */
#if NDARRAY_HAS_SIZE
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_get_size_obj, ndarray_size);
STATIC const mp_obj_property_t ndarray_size_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&ndarray_get_size_obj,
mp_const_none,
mp_const_none },
(mp_obj_t)&mp_const_none_obj,
(mp_obj_t)&mp_const_none_obj},
};
#endif /* NDARRAY_HAS_SIZE */
#if NDARRAY_HAS_STRIDES
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_get_strides_obj, ndarray_strides);
STATIC const mp_obj_property_t ndarray_strides_obj = {
STATIC const mp_obj_property_t ndarray_itemsize_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&ndarray_get_strides_obj,
mp_const_none,
mp_const_none },
.proxy = {(mp_obj_t)&ndarray_get_itemsize_obj,
(mp_obj_t)&mp_const_none_obj,
(mp_obj_t)&mp_const_none_obj},
};
#endif /* NDARRAY_HAS_STRIDES */
#else
void ndarray_properties_attr(mp_obj_t , qstr , mp_obj_t *);
#if NDARRAY_HAS_DTYPE
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_dtype_obj, ndarray_dtype);
#endif
#if NDARRAY_HAS_FLATITER
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_flatiter_make_new_obj, ndarray_flatiter_make_new);
#endif
#if NDARRAY_HAS_ITEMSIZE
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_itemsize_obj, ndarray_itemsize);
#endif
#if NDARRAY_HAS_SHAPE
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_shape_obj, ndarray_shape);
#endif
#if NDARRAY_HAS_SIZE
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_size_obj, ndarray_size);
#endif
#if NDARRAY_HAS_STRIDES
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_strides_obj, ndarray_strides);
#endif
#endif /* CIRCUITPY */
#endif

758
code/numerical.c Normal file
View file

@ -0,0 +1,758 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/objint.h"
#include "py/runtime.h"
#include "py/builtin.h"
#include "py/misc.h"
#include "numerical.h"
#if ULAB_NUMERICAL_MODULE
enum NUMERICAL_FUNCTION_TYPE {
NUMERICAL_MIN,
NUMERICAL_MAX,
NUMERICAL_ARGMIN,
NUMERICAL_ARGMAX,
NUMERICAL_SUM,
NUMERICAL_MEAN,
NUMERICAL_STD,
};
mp_obj_t numerical_linspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_num, MP_ARG_INT, {.u_int = 50} },
{ MP_QSTR_endpoint, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_true} },
{ MP_QSTR_retstep, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_false} },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = NDARRAY_FLOAT} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(2, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint16_t len = args[2].u_int;
if(len < 2) {
mp_raise_ValueError(translate("number of points must be at least 2"));
}
mp_float_t value, step;
value = mp_obj_get_float(args[0].u_obj);
uint8_t typecode = args[5].u_int;
if(args[3].u_obj == mp_const_true) step = (mp_obj_get_float(args[1].u_obj)-value)/(len-1);
else step = (mp_obj_get_float(args[1].u_obj)-value)/len;
ndarray_obj_t *ndarray = create_new_ndarray(1, len, typecode);
if(typecode == NDARRAY_UINT8) {
uint8_t *array = (uint8_t *)ndarray->array->items;
for(size_t i=0; i < len; i++, value += step) array[i] = (uint8_t)value;
} else if(typecode == NDARRAY_INT8) {
int8_t *array = (int8_t *)ndarray->array->items;
for(size_t i=0; i < len; i++, value += step) array[i] = (int8_t)value;
} else if(typecode == NDARRAY_UINT16) {
uint16_t *array = (uint16_t *)ndarray->array->items;
for(size_t i=0; i < len; i++, value += step) array[i] = (uint16_t)value;
} else if(typecode == NDARRAY_INT16) {
int16_t *array = (int16_t *)ndarray->array->items;
for(size_t i=0; i < len; i++, value += step) array[i] = (int16_t)value;
} else {
mp_float_t *array = (mp_float_t *)ndarray->array->items;
for(size_t i=0; i < len; i++, value += step) array[i] = value;
}
if(args[4].u_obj == mp_const_false) {
return MP_OBJ_FROM_PTR(ndarray);
} else {
mp_obj_t tuple[2];
tuple[0] = ndarray;
tuple[1] = mp_obj_new_float(step);
return mp_obj_new_tuple(2, tuple);
}
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_linspace_obj, 2, numerical_linspace);
void axis_sorter(ndarray_obj_t *ndarray, mp_obj_t axis, size_t *m, size_t *n, size_t *N,
size_t *increment, size_t *len, size_t *start_inc) {
if(axis == mp_const_none) { // flatten the array
*m = 1;
*n = 1;
*len = ndarray->array->len;
*N = 1;
*increment = 1;
*start_inc = ndarray->array->len;
} else if((mp_obj_get_int(axis) == 1)) { // along the horizontal axis
*m = ndarray->m;
*n = 1;
*len = ndarray->n;
*N = ndarray->m;
*increment = 1;
*start_inc = ndarray->n;
} else { // along vertical axis
*m = 1;
*n = ndarray->n;
*len = ndarray->m;
*N = ndarray->n;
*increment = ndarray->n;
*start_inc = 1;
}
}
mp_obj_t numerical_sum_mean_std_iterable(mp_obj_t oin, uint8_t optype, size_t ddof) {
mp_float_t value, sum = 0.0, sq_sum = 0.0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(oin, &iter_buf);
mp_int_t len = mp_obj_get_int(mp_obj_len(oin));
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
value = mp_obj_get_float(item);
sum += value;
}
if(optype == NUMERICAL_SUM) {
return mp_obj_new_float(sum);
} else if(optype == NUMERICAL_MEAN) {
return mp_obj_new_float(sum/len);
} else { // this should be the case of the standard deviation
// TODO: note that we could get away with a single pass, if we used the Weldorf algorithm
// That should save a fair amount of time, because we would have to extract the values only once
iterable = mp_getiter(oin, &iter_buf);
sum /= len; // this is now the mean!
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
value = mp_obj_get_float(item) - sum;
sq_sum += value * value;
}
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(sq_sum/(len-ddof)));
}
}
STATIC mp_obj_t numerical_sum_mean_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype) {
size_t m, n, increment, start, start_inc, N, len;
axis_sorter(ndarray, axis, &m, &n, &N, &increment, &len, &start_inc);
ndarray_obj_t *results = create_new_ndarray(m, n, NDARRAY_FLOAT);
mp_float_t sum, sq_sum;
mp_float_t *farray = (mp_float_t *)results->array->items;
for(size_t j=0; j < N; j++) { // result index
start = j * start_inc;
sum = sq_sum = 0.0;
if(ndarray->array->typecode == NDARRAY_UINT8) {
RUN_SUM(ndarray, uint8_t, optype, len, start, increment);
} else if(ndarray->array->typecode == NDARRAY_INT8) {
RUN_SUM(ndarray, int8_t, optype, len, start, increment);
} else if(ndarray->array->typecode == NDARRAY_UINT16) {
RUN_SUM(ndarray, uint16_t, optype, len, start, increment);
} else if(ndarray->array->typecode == NDARRAY_INT16) {
RUN_SUM(ndarray, int16_t, optype, len, start, increment);
} else { // this will be mp_float_t, no need to check
RUN_SUM(ndarray, mp_float_t, optype, len, start, increment);
}
if(optype == NUMERICAL_SUM) {
farray[j] = sum;
} else { // this is the case of the mean
farray[j] = sum / len;
}
}
if(results->array->len == 1) {
return mp_obj_new_float(farray[0]);
}
return MP_OBJ_FROM_PTR(results);
}
mp_obj_t numerical_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, size_t ddof) {
size_t m, n, increment, start, start_inc, N, len;
mp_float_t sum, sum_sq;
axis_sorter(ndarray, axis, &m, &n, &N, &increment, &len, &start_inc);
if(ddof > len) {
mp_raise_ValueError(translate("ddof must be smaller than length of data set"));
}
ndarray_obj_t *results = create_new_ndarray(m, n, NDARRAY_FLOAT);
mp_float_t *farray = (mp_float_t *)results->array->items;
for(size_t j=0; j < N; j++) { // result index
start = j * start_inc;
sum = 0.0;
sum_sq = 0.0;
if(ndarray->array->typecode == NDARRAY_UINT8) {
RUN_STD(ndarray, uint8_t, len, start, increment);
} else if(ndarray->array->typecode == NDARRAY_INT8) {
RUN_STD(ndarray, int8_t, len, start, increment);
} else if(ndarray->array->typecode == NDARRAY_UINT16) {
RUN_STD(ndarray, uint16_t, len, start, increment);
} else if(ndarray->array->typecode == NDARRAY_INT16) {
RUN_STD(ndarray, int16_t, len, start, increment);
} else { // this will be mp_float_t, no need to check
RUN_STD(ndarray, mp_float_t, len, start, increment);
}
farray[j] = MICROPY_FLOAT_C_FUN(sqrt)(sum_sq/(len - ddof));
}
if(results->array->len == 1) {
return mp_obj_new_float(farray[0]);
}
return MP_OBJ_FROM_PTR(results);
}
mp_obj_t numerical_argmin_argmax_iterable(mp_obj_t oin, mp_obj_t axis, uint8_t optype) {
size_t idx = 0, best_idx = 0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t iterable = mp_getiter(oin, &iter_buf);
mp_obj_t best_obj = MP_OBJ_NULL;
mp_obj_t item;
mp_uint_t op = MP_BINARY_OP_LESS;
if((optype == NUMERICAL_ARGMAX) || (optype == NUMERICAL_MAX)) op = MP_BINARY_OP_MORE;
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
if ((best_obj == MP_OBJ_NULL) || (mp_binary_op(op, item, best_obj) == mp_const_true)) {
best_obj = item;
best_idx = idx;
}
idx++;
}
if((optype == NUMERICAL_ARGMIN) || (optype == NUMERICAL_ARGMAX)) {
return MP_OBJ_NEW_SMALL_INT(best_idx);
} else {
return best_obj;
}
}
mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype) {
size_t m, n, increment, start, start_inc, N, len;
axis_sorter(ndarray, axis, &m, &n, &N, &increment, &len, &start_inc);
ndarray_obj_t *results;
if((optype == NUMERICAL_ARGMIN) || (optype == NUMERICAL_ARGMAX)) {
// we could save some RAM by taking NDARRAY_UINT8, if the dimensions
// are smaller than 256, but the code would become more involving
// (we would also need extra flash space)
results = create_new_ndarray(m, n, NDARRAY_UINT16);
} else {
results = create_new_ndarray(m, n, ndarray->array->typecode);
}
for(size_t j=0; j < N; j++) { // result index
start = j * start_inc;
if((ndarray->array->typecode == NDARRAY_UINT8) || (ndarray->array->typecode == NDARRAY_INT8)) {
if((optype == NUMERICAL_MAX) || (optype == NUMERICAL_MIN)) {
RUN_ARGMIN(ndarray, results, uint8_t, uint8_t, len, start, increment, optype, j);
} else {
RUN_ARGMIN(ndarray, results, uint8_t, uint16_t, len, start, increment, optype, j);
}
} else if((ndarray->array->typecode == NDARRAY_UINT16) || (ndarray->array->typecode == NDARRAY_INT16)) {
RUN_ARGMIN(ndarray, results, uint16_t, uint16_t, len, start, increment, optype, j);
} else {
if((optype == NUMERICAL_MAX) || (optype == NUMERICAL_MIN)) {
RUN_ARGMIN(ndarray, results, mp_float_t, mp_float_t, len, start, increment, optype, j);
} else {
RUN_ARGMIN(ndarray, results, mp_float_t, uint16_t, len, start, increment, optype, j);
}
}
}
return MP_OBJ_FROM_PTR(results);
}
STATIC mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, uint8_t optype) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} } ,
{ MP_QSTR_axis, MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t oin = args[0].u_obj;
mp_obj_t axis = args[1].u_obj;
if((axis != mp_const_none) && (mp_obj_get_int(axis) != 0) && (mp_obj_get_int(axis) != 1)) {
// this seems to pass with False, and True...
mp_raise_ValueError(translate("axis must be None, 0, or 1"));
}
if(MP_OBJ_IS_TYPE(oin, &mp_type_tuple) || MP_OBJ_IS_TYPE(oin, &mp_type_list) ||
MP_OBJ_IS_TYPE(oin, &mp_type_range)) {
switch(optype) {
case NUMERICAL_MIN:
case NUMERICAL_ARGMIN:
case NUMERICAL_MAX:
case NUMERICAL_ARGMAX:
return numerical_argmin_argmax_iterable(oin, axis, optype);
case NUMERICAL_SUM:
case NUMERICAL_MEAN:
return numerical_sum_mean_std_iterable(oin, optype, 0);
default: // we should never reach this point, but whatever
return mp_const_none;
}
} else if(MP_OBJ_IS_TYPE(oin, &ulab_ndarray_type)) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
switch(optype) {
case NUMERICAL_MIN:
case NUMERICAL_MAX:
case NUMERICAL_ARGMIN:
case NUMERICAL_ARGMAX:
return numerical_argmin_argmax_ndarray(ndarray, axis, optype);
case NUMERICAL_SUM:
case NUMERICAL_MEAN:
return numerical_sum_mean_ndarray(ndarray, axis, optype);
default:
mp_raise_NotImplementedError(translate("operation is not implemented on ndarrays"));
}
} else {
mp_raise_TypeError(translate("input must be tuple, list, range, or ndarray"));
}
return mp_const_none;
}
mp_obj_t numerical_min(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_MIN);
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_min_obj, 1, numerical_min);
mp_obj_t numerical_max(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_MAX);
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_max_obj, 1, numerical_max);
mp_obj_t numerical_argmin(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_ARGMIN);
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argmin_obj, 1, numerical_argmin);
mp_obj_t numerical_argmax(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_ARGMAX);
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argmax_obj, 1, numerical_argmax);
mp_obj_t numerical_sum(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_SUM);
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sum_obj, 1, numerical_sum);
mp_obj_t numerical_mean(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_MEAN);
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_mean_obj, 1, numerical_mean);
mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } } ,
{ MP_QSTR_axis, MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_ddof, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t oin = args[0].u_obj;
mp_obj_t axis = args[1].u_obj;
size_t ddof = args[2].u_int;
if((axis != mp_const_none) && (mp_obj_get_int(axis) != 0) && (mp_obj_get_int(axis) != 1)) {
// this seems to pass with False, and True...
mp_raise_ValueError(translate("axis must be None, 0, or 1"));
}
if(MP_OBJ_IS_TYPE(oin, &mp_type_tuple) || MP_OBJ_IS_TYPE(oin, &mp_type_list) || MP_OBJ_IS_TYPE(oin, &mp_type_range)) {
return numerical_sum_mean_std_iterable(oin, NUMERICAL_STD, ddof);
} else if(MP_OBJ_IS_TYPE(oin, &ulab_ndarray_type)) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
return numerical_std_ndarray(ndarray, axis, ddof);
} else {
mp_raise_TypeError(translate("input must be tuple, list, range, or ndarray"));
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_std_obj, 1, numerical_std);
mp_obj_t numerical_roll(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(2, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t oin = args[0].u_obj;
int16_t shift = mp_obj_get_int(args[1].u_obj);
if((args[2].u_obj != mp_const_none) &&
(mp_obj_get_int(args[2].u_obj) != 0) &&
(mp_obj_get_int(args[2].u_obj) != 1)) {
mp_raise_ValueError(translate("axis must be None, 0, or 1"));
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(oin);
uint8_t _sizeof = mp_binary_get_size('@', in->array->typecode, NULL);
size_t len;
int16_t _shift;
uint8_t *array = (uint8_t *)in->array->items;
// TODO: transpose the matrix, if axis == 0. Though, that is hard on the RAM...
if(shift < 0) {
_shift = -shift;
} else {
_shift = shift;
}
if((args[2].u_obj == mp_const_none) || (mp_obj_get_int(args[2].u_obj) == 1)) { // shift horizontally
uint16_t M;
if(args[2].u_obj == mp_const_none) {
len = in->array->len;
M = 1;
} else {
len = in->n;
M = in->m;
}
_shift = _shift % len;
if(shift < 0) _shift = len - _shift;
// TODO: if(shift > len/2), we should move in the opposite direction. That would save RAM
_shift *= _sizeof;
uint8_t *tmp = m_new(uint8_t, _shift);
for(size_t m=0; m < M; m++) {
memmove(tmp, &array[m*len*_sizeof], _shift);
memmove(&array[m*len*_sizeof], &array[m*len*_sizeof+_shift], len*_sizeof-_shift);
memmove(&array[(m+1)*len*_sizeof-_shift], tmp, _shift);
}
m_del(uint8_t, tmp, _shift);
return mp_const_none;
} else {
len = in->m;
// temporary buffer
uint8_t *_data = m_new(uint8_t, _sizeof*len);
_shift = _shift % len;
if(shift < 0) _shift = len - _shift;
_shift *= _sizeof;
uint8_t *tmp = m_new(uint8_t, _shift);
for(size_t n=0; n < in->n; n++) {
for(size_t m=0; m < len; m++) {
// this loop should fill up the temporary buffer
memmove(&_data[m*_sizeof], &array[(m*in->n+n)*_sizeof], _sizeof);
}
// now, the actual shift
memmove(tmp, _data, _shift);
memmove(_data, &_data[_shift], len*_sizeof-_shift);
memmove(&_data[len*_sizeof-_shift], tmp, _shift);
for(size_t m=0; m < len; m++) {
// this loop should dump the content of the temporary buffer into data
memmove(&array[(m*in->n+n)*_sizeof], &_data[m*_sizeof], _sizeof);
}
}
m_del(uint8_t, tmp, _shift);
m_del(uint8_t, _data, _sizeof*len);
return mp_const_none;
}
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_roll_obj, 2, numerical_roll);
mp_obj_t numerical_flip(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!MP_OBJ_IS_TYPE(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("flip argument must be an ndarray"));
}
if((args[1].u_obj != mp_const_none) &&
(mp_obj_get_int(args[1].u_obj) != 0) &&
(mp_obj_get_int(args[1].u_obj) != 1)) {
mp_raise_ValueError(translate("axis must be None, 0, or 1"));
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(args[0].u_obj);
mp_obj_t oout = ndarray_copy(args[0].u_obj);
ndarray_obj_t *out = MP_OBJ_TO_PTR(oout);
uint8_t _sizeof = mp_binary_get_size('@', in->array->typecode, NULL);
uint8_t *array_in = (uint8_t *)in->array->items;
uint8_t *array_out = (uint8_t *)out->array->items;
size_t len;
if((args[1].u_obj == mp_const_none) || (mp_obj_get_int(args[1].u_obj) == 1)) { // flip horizontally
uint16_t M = in->m;
len = in->n;
if(args[1].u_obj == mp_const_none) { // flip flattened array
len = in->array->len;
M = 1;
}
for(size_t m=0; m < M; m++) {
for(size_t n=0; n < len; n++) {
memcpy(array_out+_sizeof*(m*len+n), array_in+_sizeof*((m+1)*len-n-1), _sizeof);
}
}
} else { // flip vertically
for(size_t m=0; m < in->m; m++) {
for(size_t n=0; n < in->n; n++) {
memcpy(array_out+_sizeof*(m*in->n+n), array_in+_sizeof*((in->m-m-1)*in->n+n), _sizeof);
}
}
}
return out;
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_flip_obj, 1, numerical_flip);
mp_obj_t numerical_diff(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_n, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1 } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!MP_OBJ_IS_TYPE(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("diff argument must be an ndarray"));
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(args[0].u_obj);
size_t increment, N, M;
if((args[2].u_int == -1) || (args[2].u_int == 1)) { // differentiate along the horizontal axis
increment = 1;
} else if(args[2].u_int == 0) { // differtiate along vertical axis
increment = in->n;
} else {
mp_raise_ValueError(translate("axis must be -1, 0, or 1"));
}
if((args[1].u_int < 0) || (args[1].u_int > 9)) {
mp_raise_ValueError(translate("n must be between 0, and 9"));
}
uint8_t n = args[1].u_int;
int8_t *stencil = m_new(int8_t, n+1);
stencil[0] = 1;
for(uint8_t i=1; i < n+1; i++) {
stencil[i] = -stencil[i-1]*(n-i+1)/i;
}
ndarray_obj_t *out;
if(increment == 1) { // differentiate along the horizontal axis
if(n >= in->n) {
out = create_new_ndarray(in->m, 0, in->array->typecode);
m_del(uint8_t, stencil, n);
return MP_OBJ_FROM_PTR(out);
}
N = in->n - n;
M = in->m;
} else { // differentiate along vertical axis
if(n >= in->m) {
out = create_new_ndarray(0, in->n, in->array->typecode);
m_del(uint8_t, stencil, n);
return MP_OBJ_FROM_PTR(out);
}
M = in->m - n;
N = in->n;
}
out = create_new_ndarray(M, N, in->array->typecode);
if(in->array->typecode == NDARRAY_UINT8) {
CALCULATE_DIFF(in, out, uint8_t, M, N, in->n, increment);
} else if(in->array->typecode == NDARRAY_INT8) {
CALCULATE_DIFF(in, out, int8_t, M, N, in->n, increment);
} else if(in->array->typecode == NDARRAY_UINT16) {
CALCULATE_DIFF(in, out, uint16_t, M, N, in->n, increment);
} else if(in->array->typecode == NDARRAY_INT16) {
CALCULATE_DIFF(in, out, int16_t, M, N, in->n, increment);
} else {
CALCULATE_DIFF(in, out, mp_float_t, M, N, in->n, increment);
}
m_del(int8_t, stencil, n);
return MP_OBJ_FROM_PTR(out);
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_diff_obj, 1, numerical_diff);
mp_obj_t numerical_sort_helper(mp_obj_t oin, mp_obj_t axis, uint8_t inplace) {
if(!MP_OBJ_IS_TYPE(oin, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("sort argument must be an ndarray"));
}
ndarray_obj_t *ndarray;
mp_obj_t out;
if(inplace == 1) {
ndarray = MP_OBJ_TO_PTR(oin);
} else {
out = ndarray_copy(oin);
ndarray = MP_OBJ_TO_PTR(out);
}
size_t increment, start_inc, end, N;
if(axis == mp_const_none) { // flatten the array
ndarray->m = 1;
ndarray->n = ndarray->array->len;
increment = 1;
start_inc = ndarray->n;
end = ndarray->n;
N = ndarray->n;
} else if((mp_obj_get_int(axis) == -1) ||
(mp_obj_get_int(axis) == 1)) { // sort along the horizontal axis
increment = 1;
start_inc = ndarray->n;
end = ndarray->array->len;
N = ndarray->n;
} else if(mp_obj_get_int(axis) == 0) { // sort along vertical axis
increment = ndarray->n;
start_inc = 1;
end = ndarray->m;
N = ndarray->m;
} else {
mp_raise_ValueError(translate("axis must be -1, 0, None, or 1"));
}
size_t q, k, p, c;
for(size_t start=0; start < end; start+=start_inc) {
q = N;
k = (q >> 1);
if((ndarray->array->typecode == NDARRAY_UINT8) || (ndarray->array->typecode == NDARRAY_INT8)) {
HEAPSORT(uint8_t, ndarray);
} else if((ndarray->array->typecode == NDARRAY_INT16) || (ndarray->array->typecode == NDARRAY_INT16)) {
HEAPSORT(uint16_t, ndarray);
} else {
HEAPSORT(mp_float_t, ndarray);
}
}
if(inplace == 1) {
return mp_const_none;
} else {
return out;
}
}
// numpy function
mp_obj_t numerical_sort(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_int = -1 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
return numerical_sort_helper(args[0].u_obj, args[1].u_obj, 0);
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sort_obj, 1, numerical_sort);
// method of an ndarray
mp_obj_t numerical_sort_inplace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_int = -1 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
return numerical_sort_helper(args[0].u_obj, args[1].u_obj, 1);
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sort_inplace_obj, 1, numerical_sort_inplace);
mp_obj_t numerical_argsort(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_int = -1 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!MP_OBJ_IS_TYPE(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("argsort argument must be an ndarray"));
}
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
size_t increment, start_inc, end, N, m, n;
if(args[1].u_obj == mp_const_none) { // flatten the array
m = 1;
n = ndarray->array->len;
ndarray->m = m;
ndarray->n = n;
increment = 1;
start_inc = ndarray->n;
end = ndarray->n;
N = n;
} else if((mp_obj_get_int(args[1].u_obj) == -1) ||
(mp_obj_get_int(args[1].u_obj) == 1)) { // sort along the horizontal axis
m = ndarray->m;
n = ndarray->n;
increment = 1;
start_inc = n;
end = ndarray->array->len;
N = n;
} else if(mp_obj_get_int(args[1].u_obj) == 0) { // sort along vertical axis
m = ndarray->m;
n = ndarray->n;
increment = n;
start_inc = 1;
end = m;
N = m;
} else {
mp_raise_ValueError(translate("axis must be -1, 0, None, or 1"));
}
// at the expense of flash, we could save RAM by creating
// an NDARRAY_UINT16 ndarray only, if needed, otherwise, NDARRAY_UINT8
ndarray_obj_t *indices = create_new_ndarray(m, n, NDARRAY_UINT16);
uint16_t *index_array = (uint16_t *)indices->array->items;
// initialise the index array
// if array is flat: 0 to indices->n
// if sorting vertically, identical indices are arranged row-wise
// if sorting horizontally, identical indices are arranged colunn-wise
for(uint16_t start=0; start < end; start+=start_inc) {
for(uint16_t s=0; s < N; s++) {
index_array[start+s*increment] = s;
}
}
size_t q, k, p, c;
for(size_t start=0; start < end; start+=start_inc) {
q = N;
k = (q >> 1);
if((ndarray->array->typecode == NDARRAY_UINT8) || (ndarray->array->typecode == NDARRAY_INT8)) {
HEAP_ARGSORT(uint8_t, ndarray, index_array);
} else if((ndarray->array->typecode == NDARRAY_INT16) || (ndarray->array->typecode == NDARRAY_INT16)) {
HEAP_ARGSORT(uint16_t, ndarray, index_array);
} else {
HEAP_ARGSORT(mp_float_t, ndarray, index_array);
}
}
return MP_OBJ_FROM_PTR(indices);
}
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argsort_obj, 1, numerical_argsort);
#if !CIRCUITPY
STATIC const mp_rom_map_elem_t ulab_numerical_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_linspace), (mp_obj_t)&numerical_linspace_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sum), (mp_obj_t)&numerical_sum_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_mean), (mp_obj_t)&numerical_mean_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_std), (mp_obj_t)&numerical_std_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_min), (mp_obj_t)&numerical_min_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_max), (mp_obj_t)&numerical_max_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_argmin), (mp_obj_t)&numerical_argmin_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_argmax), (mp_obj_t)&numerical_argmax_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_roll), (mp_obj_t)&numerical_roll_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_flip), (mp_obj_t)&numerical_flip_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_diff), (mp_obj_t)&numerical_diff_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sort), (mp_obj_t)&numerical_sort_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_argsort), (mp_obj_t)&numerical_argsort_obj },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_numerical_globals, ulab_numerical_globals_table);
mp_obj_module_t ulab_numerical_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_numerical_globals,
};
#endif
#endif

167
code/numerical.h Normal file
View file

@ -0,0 +1,167 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#ifndef _NUMERICAL_
#define _NUMERICAL_
#include "ulab.h"
#include "ndarray.h"
#if ULAB_NUMERICAL_MODULE
extern mp_obj_module_t ulab_numerical_module;
// TODO: implement minimum/maximum, and cumsum
//mp_obj_t numerical_minimum(mp_obj_t , mp_obj_t );
//mp_obj_t numerical_maximum(mp_obj_t , mp_obj_t );
//mp_obj_t numerical_cumsum(size_t , const mp_obj_t *, mp_map_t *);
#define RUN_ARGMIN(in, out, typein, typeout, len, start, increment, op, pos) do {\
typein *array = (typein *)(in)->array->items;\
typeout *outarray = (typeout *)(out)->array->items;\
size_t best_index = 0;\
if(((op) == NUMERICAL_MAX) || ((op) == NUMERICAL_ARGMAX)) {\
for(size_t i=1; i < (len); i++) {\
if(array[(start)+i*(increment)] > array[(start)+best_index*(increment)]) best_index = i;\
}\
if((op) == NUMERICAL_MAX) outarray[(pos)] = array[(start)+best_index*(increment)];\
else outarray[(pos)] = best_index;\
} else{\
for(size_t i=1; i < (len); i++) {\
if(array[(start)+i*(increment)] < array[(start)+best_index*(increment)]) best_index = i;\
}\
if((op) == NUMERICAL_MIN) outarray[(pos)] = array[(start)+best_index*(increment)];\
else outarray[(pos)] = best_index;\
}\
} while(0)
#define RUN_SUM(ndarray, type, optype, len, start, increment) do {\
type *array = (type *)(ndarray)->array->items;\
type value;\
for(size_t j=0; j < (len); j++) {\
value = array[(start)+j*(increment)];\
sum += value;\
}\
} while(0)
#define RUN_STD(ndarray, type, len, start, increment) do {\
type *array = (type *)(ndarray)->array->items;\
mp_float_t value;\
for(size_t j=0; j < (len); j++) {\
sum += array[(start)+j*(increment)];\
}\
sum /= (len);\
for(size_t j=0; j < (len); j++) {\
value = (array[(start)+j*(increment)] - sum);\
sum_sq += value * value;\
}\
} while(0)
#define CALCULATE_DIFF(in, out, type, M, N, inn, increment) do {\
type *source = (type *)(in)->array->items;\
type *target = (type *)(out)->array->items;\
for(size_t i=0; i < (M); i++) {\
for(size_t j=0; j < (N); j++) {\
for(uint8_t k=0; k < n+1; k++) {\
target[i*(N)+j] -= stencil[k]*source[i*(inn)+j+k*(increment)];\
}\
}\
}\
} while(0)
#define HEAPSORT(type, ndarray) do {\
type *array = (type *)(ndarray)->array->items;\
type tmp;\
for (;;) {\
if (k > 0) {\
tmp = array[start+(--k)*increment];\
} else {\
q--;\
if(q == 0) {\
break;\
}\
tmp = array[start+q*increment];\
array[start+q*increment] = array[start];\
}\
p = k;\
c = k + k + 1;\
while (c < q) {\
if((c + 1 < q) && (array[start+(c+1)*increment] > array[start+c*increment])) {\
c++;\
}\
if(array[start+c*increment] > tmp) {\
array[start+p*increment] = array[start+c*increment];\
p = c;\
c = p + p + 1;\
} else {\
break;\
}\
}\
array[start+p*increment] = tmp;\
}\
} while(0)
// This is pretty similar to HEAPSORT above; perhaps, the two could be combined somehow
// On the other hand, since this is a macro, it doesn't really matter
// Keep in mind that initially, index_array[start+s*increment] = s
#define HEAP_ARGSORT(type, ndarray, index_array) do {\
type *array = (type *)(ndarray)->array->items;\
type tmp;\
uint16_t itmp;\
for (;;) {\
if (k > 0) {\
k--;\
tmp = array[start+index_array[start+k*increment]*increment];\
itmp = index_array[start+k*increment];\
} else {\
q--;\
if(q == 0) {\
break;\
}\
tmp = array[start+index_array[start+q*increment]*increment];\
itmp = index_array[start+q*increment];\
index_array[start+q*increment] = index_array[start];\
}\
p = k;\
c = k + k + 1;\
while (c < q) {\
if((c + 1 < q) && (array[start+index_array[start+(c+1)*increment]*increment] > array[start+index_array[start+c*increment]*increment])) {\
c++;\
}\
if(array[start+index_array[start+c*increment]*increment] > tmp) {\
index_array[start+p*increment] = index_array[start+c*increment];\
p = c;\
c = p + p + 1;\
} else {\
break;\
}\
}\
index_array[start+p*increment] = itmp;\
}\
} while(0)
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_linspace_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_min_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_max_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_argmin_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_argmax_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_sum_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_mean_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_std_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_roll_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_flip_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_diff_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_sort_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_sort_inplace_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_argsort_obj);
#endif
#endif

View file

@ -1,227 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
* 2020 Diego Elio Pettenò
* 2020 Taku Fukada
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../ulab.h"
#include "../ulab_tools.h"
#include "carray/carray_tools.h"
#include "approx.h"
//| """Numerical approximation methods"""
//|
ULAB_DEFINE_FLOAT_CONST(approx_trapz_dx, MICROPY_FLOAT_CONST(1.0), 0x3f800000UL, 0x3ff0000000000000ULL);
#if ULAB_NUMPY_HAS_INTERP
//| def interp(
//| x: ulab.numpy.ndarray,
//| xp: ulab.numpy.ndarray,
//| fp: ulab.numpy.ndarray,
//| *,
//| left: Optional[_float] = None,
//| right: Optional[_float] = None
//| ) -> ulab.numpy.ndarray:
//| """
//| :param ulab.numpy.ndarray x: The x-coordinates at which to evaluate the interpolated values.
//| :param ulab.numpy.ndarray xp: The x-coordinates of the data points, must be increasing
//| :param ulab.numpy.ndarray fp: The y-coordinates of the data points, same length as xp
//| :param left: Value to return for ``x < xp[0]``, default is ``fp[0]``.
//| :param right: Value to return for ``x > xp[-1]``, default is ``fp[-1]``.
//|
//| Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp), evaluated at x."""
//| ...
//|
STATIC mp_obj_t approx_interp(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_left, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_right, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
ndarray_obj_t *x = ndarray_from_mp_obj(args[0].u_obj, 0);
ndarray_obj_t *xp = ndarray_from_mp_obj(args[1].u_obj, 0); // xp must hold an increasing sequence of independent values
ndarray_obj_t *fp = ndarray_from_mp_obj(args[2].u_obj, 0);
COMPLEX_DTYPE_NOT_IMPLEMENTED(x->dtype)
COMPLEX_DTYPE_NOT_IMPLEMENTED(xp->dtype)
COMPLEX_DTYPE_NOT_IMPLEMENTED(fp->dtype)
if((xp->ndim != 1) || (fp->ndim != 1) || (xp->len < 2) || (fp->len < 2) || (xp->len != fp->len)) {
mp_raise_ValueError(translate("interp is defined for 1D iterables of equal length"));
}
ndarray_obj_t *y = ndarray_new_linear_array(x->len, NDARRAY_FLOAT);
mp_float_t left_value, right_value;
uint8_t *xparray = (uint8_t *)xp->array;
mp_float_t xp_left = ndarray_get_float_value(xparray, xp->dtype);
xparray += (xp->len-1) * xp->strides[ULAB_MAX_DIMS - 1];
mp_float_t xp_right = ndarray_get_float_value(xparray, xp->dtype);
uint8_t *fparray = (uint8_t *)fp->array;
if(args[3].u_obj == mp_const_none) {
left_value = ndarray_get_float_value(fparray, fp->dtype);
} else {
left_value = mp_obj_get_float(args[3].u_obj);
}
if(args[4].u_obj == mp_const_none) {
fparray += (fp->len-1) * fp->strides[ULAB_MAX_DIMS - 1];
right_value = ndarray_get_float_value(fparray, fp->dtype);
} else {
right_value = mp_obj_get_float(args[4].u_obj);
}
xparray = xp->array;
fparray = fp->array;
uint8_t *xarray = (uint8_t *)x->array;
mp_float_t *yarray = (mp_float_t *)y->array;
uint8_t *temp;
for(size_t i=0; i < x->len; i++, yarray++) {
mp_float_t x_value = ndarray_get_float_value(xarray, x->dtype);
xarray += x->strides[ULAB_MAX_DIMS - 1];
if(x_value < xp_left) {
*yarray = left_value;
} else if(x_value > xp_right) {
*yarray = right_value;
} else { // do the binary search here
mp_float_t xp_left_, xp_right_;
mp_float_t fp_left, fp_right;
size_t left_index = 0, right_index = xp->len - 1, middle_index;
while(right_index - left_index > 1) {
middle_index = left_index + (right_index - left_index) / 2;
temp = xparray + middle_index * xp->strides[ULAB_MAX_DIMS - 1];
mp_float_t xp_middle = ndarray_get_float_value(temp, xp->dtype);
if(x_value <= xp_middle) {
right_index = middle_index;
} else {
left_index = middle_index;
}
}
temp = xparray + left_index * xp->strides[ULAB_MAX_DIMS - 1];
xp_left_ = ndarray_get_float_value(temp, xp->dtype);
temp = xparray + right_index * xp->strides[ULAB_MAX_DIMS - 1];
xp_right_ = ndarray_get_float_value(temp, xp->dtype);
temp = fparray + left_index * fp->strides[ULAB_MAX_DIMS - 1];
fp_left = ndarray_get_float_value(temp, fp->dtype);
temp = fparray + right_index * fp->strides[ULAB_MAX_DIMS - 1];
fp_right = ndarray_get_float_value(temp, fp->dtype);
*yarray = fp_left + (x_value - xp_left_) * (fp_right - fp_left) / (xp_right_ - xp_left_);
}
}
return MP_OBJ_FROM_PTR(y);
}
MP_DEFINE_CONST_FUN_OBJ_KW(approx_interp_obj, 2, approx_interp);
#endif
#if ULAB_NUMPY_HAS_TRAPZ
//| def trapz(y: ulab.numpy.ndarray, x: Optional[ulab.numpy.ndarray] = None, dx: _float = 1.0) -> _float:
//| """
//| :param 1D ulab.numpy.ndarray y: the values of the dependent variable
//| :param 1D ulab.numpy.ndarray x: optional, the coordinates of the independent variable. Defaults to uniformly spaced values.
//| :param float dx: the spacing between sample points, if x=None
//|
//| Returns the integral of y(x) using the trapezoidal rule.
//| """
//| ...
//|
STATIC mp_obj_t approx_trapz(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_x, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_dx, MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(approx_trapz_dx)} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
ndarray_obj_t *y = ndarray_from_mp_obj(args[0].u_obj, 0);
COMPLEX_DTYPE_NOT_IMPLEMENTED(y->dtype)
ndarray_obj_t *x;
mp_float_t mean = MICROPY_FLOAT_CONST(0.0);
if(y->len < 2) {
return mp_obj_new_float(mean);
}
if((y->ndim != 1)) {
mp_raise_ValueError(translate("trapz is defined for 1D iterables"));
}
mp_float_t (*funcy)(void *) = ndarray_get_float_function(y->dtype);
uint8_t *yarray = (uint8_t *)y->array;
size_t count = 1;
mp_float_t y1, y2, m;
if(args[1].u_obj != mp_const_none) {
x = ndarray_from_mp_obj(args[1].u_obj, 0); // x must hold an increasing sequence of independent values
COMPLEX_DTYPE_NOT_IMPLEMENTED(x->dtype)
if((x->ndim != 1) || (y->len != x->len)) {
mp_raise_ValueError(translate("trapz is defined for 1D arrays of equal length"));
}
mp_float_t (*funcx)(void *) = ndarray_get_float_function(x->dtype);
uint8_t *xarray = (uint8_t *)x->array;
mp_float_t x1, x2;
y1 = funcy(yarray);
yarray += y->strides[ULAB_MAX_DIMS - 1];
x1 = funcx(xarray);
xarray += x->strides[ULAB_MAX_DIMS - 1];
for(size_t i=1; i < y->len; i++) {
y2 = funcy(yarray);
yarray += y->strides[ULAB_MAX_DIMS - 1];
x2 = funcx(xarray);
xarray += x->strides[ULAB_MAX_DIMS - 1];
mp_float_t value = (x2 - x1) * (y2 + y1);
m = mean + (value - mean) / (mp_float_t)count;
mean = m;
x1 = x2;
y1 = y2;
count++;
}
} else {
mp_float_t dx = mp_obj_get_float(args[2].u_obj);
y1 = funcy(yarray);
yarray += y->strides[ULAB_MAX_DIMS - 1];
for(size_t i=1; i < y->len; i++) {
y2 = ndarray_get_float_index(y->array, y->dtype, i);
mp_float_t value = (y2 + y1);
m = mean + (value - mean) / (mp_float_t)count;
mean = m;
y1 = y2;
count++;
}
mean *= dx;
}
return mp_obj_new_float(MICROPY_FLOAT_CONST(0.5)*mean*(y->len-1));
}
MP_DEFINE_CONST_FUN_OBJ_KW(approx_trapz_obj, 1, approx_trapz);
#endif

View file

@ -1,29 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*/
#ifndef _APPROX_
#define _APPROX_
#include "../ulab.h"
#include "../ndarray.h"
#define APPROX_EPS MICROPY_FLOAT_CONST(1.0e-4)
#define APPROX_NONZDELTA MICROPY_FLOAT_CONST(0.05)
#define APPROX_ZDELTA MICROPY_FLOAT_CONST(0.00025)
#define APPROX_ALPHA MICROPY_FLOAT_CONST(1.0)
#define APPROX_BETA MICROPY_FLOAT_CONST(2.0)
#define APPROX_GAMMA MICROPY_FLOAT_CONST(0.5)
#define APPROX_DELTA MICROPY_FLOAT_CONST(0.5)
MP_DECLARE_CONST_FUN_OBJ_KW(approx_interp_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(approx_trapz_obj);
#endif /* _APPROX_ */

View file

@ -1,830 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2021-2022 Zoltán Vörös
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/objint.h"
#include "py/runtime.h"
#include "py/builtin.h"
#include "py/misc.h"
#include "../../ulab.h"
#include "../../ndarray.h"
#include "../../ulab_tools.h"
#include "carray.h"
#if ULAB_SUPPORTS_COMPLEX
//| import ulab.numpy
//| def real(val):
//| """
//| Return the real part of the complex argument, which can be
//| either an ndarray, or a scalar."""
//| ...
//|
mp_obj_t carray_real(mp_obj_t _source) {
if(mp_obj_is_type(_source, &ulab_ndarray_type)) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(_source);
if(source->dtype != NDARRAY_COMPLEX) {
ndarray_obj_t *target = ndarray_new_dense_ndarray(source->ndim, source->shape, source->dtype);
ndarray_copy_array(source, target, 0);
return MP_OBJ_FROM_PTR(target);
} else { // the input is most definitely a complex array
ndarray_obj_t *target = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_FLOAT);
ndarray_copy_array(source, target, 0);
return MP_OBJ_FROM_PTR(target);
}
} else {
mp_raise_NotImplementedError(translate("function is implemented for ndarrays only"));
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(carray_real_obj, carray_real);
//| def imag(val):
//| """
//| Return the imaginary part of the complex argument, which can be
//| either an ndarray, or a scalar."""
//| ...
//|
mp_obj_t carray_imag(mp_obj_t _source) {
if(mp_obj_is_type(_source, &ulab_ndarray_type)) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(_source);
if(source->dtype != NDARRAY_COMPLEX) { // if not complex, then the imaginary part is zero
ndarray_obj_t *target = ndarray_new_dense_ndarray(source->ndim, source->shape, source->dtype);
return MP_OBJ_FROM_PTR(target);
} else { // the input is most definitely a complex array
ndarray_obj_t *target = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_FLOAT);
ndarray_copy_array(source, target, source->itemsize / 2);
return MP_OBJ_FROM_PTR(target);
}
} else {
mp_raise_NotImplementedError(translate("function is implemented for ndarrays only"));
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(carray_imag_obj, carray_imag);
#if ULAB_NUMPY_HAS_CONJUGATE
//| def conjugate(val):
//| """
//| Return the conjugate of the complex argument, which can be
//| either an ndarray, or a scalar."""
//| ...
//|
mp_obj_t carray_conjugate(mp_obj_t _source) {
if(mp_obj_is_type(_source, &ulab_ndarray_type)) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(_source);
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, source->dtype);
ndarray_copy_array(source, ndarray, 0);
if(source->dtype == NDARRAY_COMPLEX) {
mp_float_t *array = (mp_float_t *)ndarray->array;
array++;
for(size_t i = 0; i < ndarray->len; i++) {
*array *= MICROPY_FLOAT_CONST(-1.0);
array += 2;
}
}
return MP_OBJ_FROM_PTR(ndarray);
} else {
if(mp_obj_is_type(_source, &mp_type_complex)) {
mp_float_t real, imag;
mp_obj_get_complex(_source, &real, &imag);
imag = imag * MICROPY_FLOAT_CONST(-1.0);
return mp_obj_new_complex(real, imag);
} else if(mp_obj_is_int(_source) || mp_obj_is_float(_source)) {
return _source;
} else {
mp_raise_TypeError(translate("input must be an ndarray, or a scalar"));
}
}
// this should never happen
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(carray_conjugate_obj, carray_conjugate);
#endif
#if ULAB_NUMPY_HAS_SORT_COMPLEX
//| def sort_complex(a: ulab.numpy.ndarray) -> ulab.numpy.ndarray:
//| """
//| .. param: a
//| a one-dimensional ndarray
//|
//| Sort a complex array using the real part first, then the imaginary part.
//| Always returns a sorted complex array, even if the input was real."""
//| ...
//|
static void carray_sort_complex_(mp_float_t *array, size_t len) {
// array is assumed to be a floating vector containing the real and imaginary parts
// of a complex array at alternating positions as
// array[0] = real[0]
// array[1] = imag[0]
// array[2] = real[1]
// array[3] = imag[1]
mp_float_t real, imag;
size_t c, q = len, p, r = len >> 1;
for (;;) {
if (r > 0) {
r--;
real = array[2 * r];
imag = array[2 * r + 1];
} else {
q--;
if(q == 0) {
break;
}
real = array[2 * q];
imag = array[2 * q + 1];
array[2 * q] = array[0];
array[2 * q + 1] = array[1];
}
p = r;
c = r + r + 1;
while (c < q) {
if(c + 1 < q) {
if((array[2 * (c+1)] > array[2 * c]) ||
((array[2 * (c+1)] == array[2 * c]) && (array[2 * (c+1) + 1] > array[2 * c + 1]))) {
c++;
}
}
if((array[2 * c] > real) ||
((array[2 * c] == real) && (array[2 * c + 1] > imag))) {
array[2 * p] = array[2 * c]; // real part
array[2 * p + 1] = array[2 * c + 1]; // imag part
p = c;
c = p + p + 1;
} else {
break;
}
}
array[2 * p] = real;
array[2 * p + 1] = imag;
}
}
mp_obj_t carray_sort_complex(mp_obj_t _source) {
if(!mp_obj_is_type(_source, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("input must be a 1D ndarray"));
}
ndarray_obj_t *source = MP_OBJ_TO_PTR(_source);
if(source->ndim != 1) {
mp_raise_TypeError(translate("input must be a 1D ndarray"));
}
ndarray_obj_t *ndarray = ndarray_copy_view_convert_type(source, NDARRAY_COMPLEX);
if(ndarray->len != 0) {
mp_float_t *array = (mp_float_t *)ndarray->array;
carray_sort_complex_(array, ndarray->len);
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_1(carray_sort_complex_obj, carray_sort_complex);
#endif
//| def abs(a: ulab.numpy.ndarray) -> ulab.numpy.ndarray:
//| """
//| .. param: a
//| a one-dimensional ndarray
//|
//| Return the absolute value of complex ndarray."""
//| ...
//|
mp_obj_t carray_abs(ndarray_obj_t *source, ndarray_obj_t *target) {
// calculates the absolute value of a complex array and returns a dense array
uint8_t *sarray = (uint8_t *)source->array;
mp_float_t *tarray = (mp_float_t *)target->array;
uint8_t itemsize = mp_binary_get_size('@', NDARRAY_FLOAT, NULL);
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t rvalue = *(mp_float_t *)sarray;
mp_float_t ivalue = *(mp_float_t *)(sarray + itemsize);
*tarray++ = MICROPY_FLOAT_C_FUN(sqrt)(rvalue * rvalue + ivalue * ivalue);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
return MP_OBJ_FROM_PTR(target);
}
static void carray_copy_part(uint8_t *tarray, uint8_t *sarray, size_t *shape, int32_t *strides) {
// copies the real or imaginary part of an array
// into the respective part of a dense complex array
uint8_t sz = sizeof(mp_float_t);
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(tarray, sarray, sz);
tarray += 2 * sz;
sarray += strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= strides[ULAB_MAX_DIMS - 1] * shape[ULAB_MAX_DIMS-1];
sarray += strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
sarray -= strides[ULAB_MAX_DIMS - 2] * shape[ULAB_MAX_DIMS-2];
sarray += strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
sarray -= strides[ULAB_MAX_DIMS - 3] * shape[ULAB_MAX_DIMS-3];
sarray += strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
}
mp_obj_t carray_binary_equal_not_equal(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides, mp_binary_op_t op) {
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT8);
results->boolean = 1;
uint8_t *array = (uint8_t *)results->array;
if(op == MP_BINARY_OP_NOT_EQUAL) {
memset(array, 1, results->len);
}
if((lhs->dtype == NDARRAY_COMPLEX) && (rhs->dtype == NDARRAY_COMPLEX)) {
mp_float_t *larray = (mp_float_t *)lhs->array;
mp_float_t *rarray = (mp_float_t *)rhs->array;
ulab_rescale_float_strides(lstrides);
ulab_rescale_float_strides(rstrides);
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
if((larray[0] == rarray[0]) && (larray[1] == rarray[1])) {
*array ^= 0x01;
}
array++;
larray += lstrides[ULAB_MAX_DIMS - 1];
rarray += rstrides[ULAB_MAX_DIMS - 1];
l++;
} while(l < results->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
larray -= lstrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];
larray += lstrides[ULAB_MAX_DIMS - 2];
rarray -= rstrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];
rarray += rstrides[ULAB_MAX_DIMS - 2];
k++;
} while(k < results->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
larray -= lstrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
larray += lstrides[ULAB_MAX_DIMS - 3];
rarray -= rstrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
rarray += rstrides[ULAB_MAX_DIMS - 3];
j++;
} while(j < results->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
larray -= lstrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];
larray += lstrides[ULAB_MAX_DIMS - 4];
rarray -= rstrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];
rarray += rstrides[ULAB_MAX_DIMS - 4];
i++;
} while(i < results->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
} else { // only one of the operands is complex
mp_float_t *larray = (mp_float_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
// align the complex array to the left
uint8_t rdtype = rhs->dtype;
int32_t *lstrides_ = lstrides;
int32_t *rstrides_ = rstrides;
if(rhs->dtype == NDARRAY_COMPLEX) {
larray = (mp_float_t *)rhs->array;
rarray = (uint8_t *)lhs->array;
lstrides_ = rstrides;
rstrides_ = lstrides;
rdtype = lhs->dtype;
}
ulab_rescale_float_strides(lstrides_);
if(rdtype == NDARRAY_UINT8) {
BINARY_LOOP_COMPLEX_EQUAL(results, array, uint8_t, larray, lstrides_, rarray, rstrides_);
} else if(rdtype == NDARRAY_INT8) {
BINARY_LOOP_COMPLEX_EQUAL(results, array, int8_t, larray, lstrides_, rarray, rstrides_);
} else if(rdtype == NDARRAY_UINT16) {
BINARY_LOOP_COMPLEX_EQUAL(results, array, uint16_t, larray, lstrides_, rarray, rstrides_);
} else if(rdtype == NDARRAY_INT16) {
BINARY_LOOP_COMPLEX_EQUAL(results, array, int16_t, larray, lstrides_, rarray, rstrides_);
} else if(rdtype == NDARRAY_FLOAT) {
BINARY_LOOP_COMPLEX_EQUAL(results, array, mp_float_t, larray, lstrides_, rarray, rstrides_);
}
}
return MP_OBJ_FROM_PTR(results);
}
mp_obj_t carray_binary_add(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_COMPLEX);
mp_float_t *resarray = (mp_float_t *)results->array;
if((lhs->dtype == NDARRAY_COMPLEX) && (rhs->dtype == NDARRAY_COMPLEX)) {
mp_float_t *larray = (mp_float_t *)lhs->array;
mp_float_t *rarray = (mp_float_t *)rhs->array;
ulab_rescale_float_strides(lstrides);
ulab_rescale_float_strides(rstrides);
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
// real part
*resarray++ = larray[0] + rarray[0];
// imaginary part
*resarray++ = larray[1] + rarray[1];
larray += lstrides[ULAB_MAX_DIMS - 1];
rarray += rstrides[ULAB_MAX_DIMS - 1];
l++;
} while(l < results->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
larray -= lstrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];
larray += lstrides[ULAB_MAX_DIMS - 2];
rarray -= rstrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];
rarray += rstrides[ULAB_MAX_DIMS - 2];
k++;
} while(k < results->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
larray -= lstrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
larray += lstrides[ULAB_MAX_DIMS - 3];
rarray -= rstrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
rarray += rstrides[ULAB_MAX_DIMS - 3];
j++;
} while(j < results->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
larray -= lstrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];
larray += lstrides[ULAB_MAX_DIMS - 4];
rarray -= rstrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];
rarray += rstrides[ULAB_MAX_DIMS - 4];
i++;
} while(i < results->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
} else { // only one of the operands is complex
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
// align the complex array to the left
uint8_t rdtype = rhs->dtype;
int32_t *lstrides_ = lstrides;
int32_t *rstrides_ = rstrides;
if(rhs->dtype == NDARRAY_COMPLEX) {
larray = (uint8_t *)rhs->array;
rarray = (uint8_t *)lhs->array;
lstrides_ = rstrides;
rstrides_ = lstrides;
rdtype = lhs->dtype;
}
if(rdtype == NDARRAY_UINT8) {
BINARY_LOOP_COMPLEX(results, resarray, uint8_t, larray, lstrides_, rarray, rstrides_, +);
} else if(rdtype == NDARRAY_INT8) {
BINARY_LOOP_COMPLEX(results, resarray, int8_t, larray, lstrides_, rarray, rstrides_, +);
} else if(rdtype == NDARRAY_UINT16) {
BINARY_LOOP_COMPLEX(results, resarray, uint16_t, larray, lstrides_, rarray, rstrides_, +);
} else if(rdtype == NDARRAY_INT16) {
BINARY_LOOP_COMPLEX(results, resarray, int16_t, larray, lstrides_, rarray, rstrides_, +);
} else if(rdtype == NDARRAY_FLOAT) {
BINARY_LOOP_COMPLEX(results, resarray, mp_float_t, larray, lstrides_, rarray, rstrides_, +);
}
// simply copy the imaginary part
uint8_t *tarray = (uint8_t *)results->array;
tarray += sizeof(mp_float_t);
if(lhs->dtype == NDARRAY_COMPLEX) {
rarray = (uint8_t *)lhs->array;
rstrides = lstrides;
} else {
rarray = (uint8_t *)rhs->array;
}
rarray += sizeof(mp_float_t);
carray_copy_part(tarray, rarray, results->shape, rstrides);
}
return MP_OBJ_FROM_PTR(results);
}
static void carray_binary_multiply_(ndarray_obj_t *results, mp_float_t *resarray, uint8_t *larray, uint8_t *rarray,
int32_t *lstrides, int32_t *rstrides, uint8_t rdtype) {
if(rdtype == NDARRAY_UINT8) {
BINARY_LOOP_COMPLEX(results, resarray, uint8_t, larray, lstrides, rarray, rstrides, *);
} else if(rdtype == NDARRAY_INT8) {
BINARY_LOOP_COMPLEX(results, resarray, int8_t, larray, lstrides, rarray, rstrides, *);
} else if(rdtype == NDARRAY_UINT16) {
BINARY_LOOP_COMPLEX(results, resarray, uint16_t, larray, lstrides, rarray, rstrides, *);
} else if(rdtype == NDARRAY_INT16) {
BINARY_LOOP_COMPLEX(results, resarray, int16_t, larray, lstrides, rarray, rstrides, *);
} else if(rdtype == NDARRAY_FLOAT) {
BINARY_LOOP_COMPLEX(results, resarray, mp_float_t, larray, lstrides, rarray, rstrides, *);
}
}
mp_obj_t carray_binary_multiply(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_COMPLEX);
mp_float_t *resarray = (mp_float_t *)results->array;
if((lhs->dtype == NDARRAY_COMPLEX) && (rhs->dtype == NDARRAY_COMPLEX)) {
mp_float_t *larray = (mp_float_t *)lhs->array;
mp_float_t *rarray = (mp_float_t *)rhs->array;
ulab_rescale_float_strides(lstrides);
ulab_rescale_float_strides(rstrides);
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
// real part
*resarray++ = larray[0] * rarray[0] - larray[1] * rarray[1];
// imaginary part
*resarray++ = larray[0] * rarray[1] + larray[1] * rarray[0];
larray += lstrides[ULAB_MAX_DIMS - 1];
rarray += rstrides[ULAB_MAX_DIMS - 1];
l++;
} while(l < results->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
larray -= lstrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];
larray += lstrides[ULAB_MAX_DIMS - 2];
rarray -= rstrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];
rarray += rstrides[ULAB_MAX_DIMS - 2];
k++;
} while(k < results->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
larray -= lstrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
larray += lstrides[ULAB_MAX_DIMS - 3];
rarray -= rstrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
rarray += rstrides[ULAB_MAX_DIMS - 3];
j++;
} while(j < results->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
larray -= lstrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];
larray += lstrides[ULAB_MAX_DIMS - 4];
rarray -= rstrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];
rarray += rstrides[ULAB_MAX_DIMS - 4];
i++;
} while(i < results->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
} else { // only one of the operands is complex
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
uint8_t *lo = larray, *ro = rarray;
int32_t *left_strides = lstrides;
int32_t *right_strides = rstrides;
uint8_t rdtype = rhs->dtype;
// align the complex array to the left
if(rhs->dtype == NDARRAY_COMPLEX) {
lo = (uint8_t *)rhs->array;
ro = (uint8_t *)lhs->array;
rdtype = lhs->dtype;
left_strides = rstrides;
right_strides = lstrides;
}
larray = lo;
rarray = ro;
// real part
carray_binary_multiply_(results, resarray, larray, rarray, left_strides, right_strides, rdtype);
larray = lo + sizeof(mp_float_t);
rarray = ro;
resarray = (mp_float_t *)results->array;
resarray++;
// imaginary part
carray_binary_multiply_(results, resarray, larray, rarray, left_strides, right_strides, rdtype);
}
return MP_OBJ_FROM_PTR(results);
}
mp_obj_t carray_binary_subtract(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_COMPLEX);
mp_float_t *resarray = (mp_float_t *)results->array;
if((lhs->dtype == NDARRAY_COMPLEX) && (rhs->dtype == NDARRAY_COMPLEX)) {
mp_float_t *larray = (mp_float_t *)lhs->array;
mp_float_t *rarray = (mp_float_t *)rhs->array;
ulab_rescale_float_strides(lstrides);
ulab_rescale_float_strides(rstrides);
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
// real part
*resarray++ = larray[0] - rarray[0];
// imaginary part
*resarray++ = larray[1] - rarray[1];
larray += lstrides[ULAB_MAX_DIMS - 1];
rarray += rstrides[ULAB_MAX_DIMS - 1];
l++;
} while(l < results->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
larray -= lstrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];
larray += lstrides[ULAB_MAX_DIMS - 2];
rarray -= rstrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];
rarray += rstrides[ULAB_MAX_DIMS - 2];
k++;
} while(k < results->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
larray -= lstrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
larray += lstrides[ULAB_MAX_DIMS - 3];
rarray -= rstrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
rarray += rstrides[ULAB_MAX_DIMS - 3];
j++;
} while(j < results->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
larray -= lstrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];
larray += lstrides[ULAB_MAX_DIMS - 4];
rarray -= rstrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];
rarray += rstrides[ULAB_MAX_DIMS - 4];
i++;
} while(i < results->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
} else {
uint8_t *larray = (uint8_t *)lhs->array;
if(lhs->dtype == NDARRAY_COMPLEX) {
uint8_t *rarray = (uint8_t *)rhs->array;
if(rhs->dtype == NDARRAY_UINT8) {
BINARY_LOOP_COMPLEX(results, resarray, uint8_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_INT8) {
BINARY_LOOP_COMPLEX(results, resarray, int8_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_UINT16) {
BINARY_LOOP_COMPLEX(results, resarray, uint16_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_INT16) {
BINARY_LOOP_COMPLEX(results, resarray, int16_t, larray, lstrides, rarray, rstrides, -);
} else if(rhs->dtype == NDARRAY_FLOAT) {
BINARY_LOOP_COMPLEX(results, resarray, mp_float_t, larray, lstrides, rarray, rstrides, -);
}
// copy the imaginary part
uint8_t *tarray = (uint8_t *)results->array;
tarray += sizeof(mp_float_t);
larray = (uint8_t *)lhs->array;
larray += sizeof(mp_float_t);
carray_copy_part(tarray, larray, results->shape, lstrides);
} else if(rhs->dtype == NDARRAY_COMPLEX) {
mp_float_t *rarray = (mp_float_t *)rhs->array;
ulab_rescale_float_strides(rstrides);
if(lhs->dtype == NDARRAY_UINT8) {
BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT(results, resarray, uint8_t, larray, lstrides, rarray, rstrides);
} else if(lhs->dtype == NDARRAY_INT8) {
BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT(results, resarray, int8_t, larray, lstrides, rarray, rstrides);
} else if(lhs->dtype == NDARRAY_UINT16) {
BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT(results, resarray, uint16_t, larray, lstrides, rarray, rstrides);
} else if(lhs->dtype == NDARRAY_INT16) {
BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT(results, resarray, int16_t, larray, lstrides, rarray, rstrides);
} else if(lhs->dtype == NDARRAY_FLOAT) {
BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT(results, resarray, mp_float_t, larray, lstrides, rarray, rstrides);
}
}
}
return MP_OBJ_FROM_PTR(results);
}
static void carray_binary_left_divide_(ndarray_obj_t *results, mp_float_t *resarray, uint8_t *larray, uint8_t *rarray,
int32_t *lstrides, int32_t *rstrides, uint8_t rdtype) {
if(rdtype == NDARRAY_UINT8) {
BINARY_LOOP_COMPLEX(results, resarray, uint8_t, larray, lstrides, rarray, rstrides, /);
} else if(rdtype == NDARRAY_INT8) {
BINARY_LOOP_COMPLEX(results, resarray, int8_t, larray, lstrides, rarray, rstrides, /);
} else if(rdtype == NDARRAY_UINT16) {
BINARY_LOOP_COMPLEX(results, resarray, uint16_t, larray, lstrides, rarray, rstrides, /);
} else if(rdtype == NDARRAY_INT16) {
BINARY_LOOP_COMPLEX(results, resarray, int16_t, larray, lstrides, rarray, rstrides, /);
} else if(rdtype == NDARRAY_FLOAT) {
BINARY_LOOP_COMPLEX(results, resarray, mp_float_t, larray, lstrides, rarray, rstrides, /);
}
}
mp_obj_t carray_binary_divide(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_COMPLEX);
mp_float_t *resarray = (mp_float_t *)results->array;
if((lhs->dtype == NDARRAY_COMPLEX) && (rhs->dtype == NDARRAY_COMPLEX)) {
mp_float_t *larray = (mp_float_t *)lhs->array;
mp_float_t *rarray = (mp_float_t *)rhs->array;
ulab_rescale_float_strides(lstrides);
ulab_rescale_float_strides(rstrides);
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
// (a + bi) / (c + di) =
// (ac + bd) / (c^2 + d^2) + i (bc - ad) / (c^2 + d^2)
// denominator
mp_float_t denom = rarray[0] * rarray[0] + rarray[1] * rarray[1];
// real part
*resarray++ = (larray[0] * rarray[0] + larray[1] * rarray[1]) / denom;
// imaginary part
*resarray++ = (larray[1] * rarray[0] - larray[0] * rarray[1]) / denom;
larray += lstrides[ULAB_MAX_DIMS - 1];
rarray += rstrides[ULAB_MAX_DIMS - 1];
l++;
} while(l < results->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
larray -= lstrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];
larray += lstrides[ULAB_MAX_DIMS - 2];
rarray -= rstrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];
rarray += rstrides[ULAB_MAX_DIMS - 2];
k++;
} while(k < results->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
larray -= lstrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
larray += lstrides[ULAB_MAX_DIMS - 3];
rarray -= rstrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
rarray += rstrides[ULAB_MAX_DIMS - 3];
j++;
} while(j < results->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
larray -= lstrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];
larray += lstrides[ULAB_MAX_DIMS - 4];
rarray -= rstrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];
rarray += rstrides[ULAB_MAX_DIMS - 4];
i++;
} while(i < results->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
} else {
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
if(lhs->dtype == NDARRAY_COMPLEX) {
// real part
carray_binary_left_divide_(results, resarray, larray, rarray, lstrides, rstrides, rhs->dtype);
// imaginary part
resarray = (mp_float_t *)results->array;
resarray++;
larray = (uint8_t *)lhs->array;
larray += sizeof(mp_float_t);
rarray = (uint8_t *)rhs->array;
carray_binary_left_divide_(results, resarray, larray, rarray, lstrides, rstrides, rhs->dtype);
} else {
if(lhs->dtype == NDARRAY_UINT8) {
BINARY_LOOP_COMPLEX_RIGHT_DIVIDE(results, resarray, uint8_t, larray, lstrides, rarray, rstrides);
} else if(lhs->dtype == NDARRAY_INT8) {
BINARY_LOOP_COMPLEX_RIGHT_DIVIDE(results, resarray, int8_t, larray, lstrides, rarray, rstrides);
} else if(lhs->dtype == NDARRAY_UINT16) {
BINARY_LOOP_COMPLEX_RIGHT_DIVIDE(results, resarray, uint16_t, larray, lstrides, rarray, rstrides);
} else if(lhs->dtype == NDARRAY_INT16) {
BINARY_LOOP_COMPLEX_RIGHT_DIVIDE(results, resarray, int16_t, larray, lstrides, rarray, rstrides);
} else if(lhs->dtype == NDARRAY_FLOAT) {
BINARY_LOOP_COMPLEX_RIGHT_DIVIDE(results, resarray, mp_float_t, larray, lstrides, rarray, rstrides);
}
}
}
return MP_OBJ_FROM_PTR(results);
}
#endif

View file

@ -1,237 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2021-2022 Zoltán Vörös
*/
#ifndef _CARRAY_
#define _CARRAY_
MP_DECLARE_CONST_FUN_OBJ_1(carray_real_obj);
MP_DECLARE_CONST_FUN_OBJ_1(carray_imag_obj);
MP_DECLARE_CONST_FUN_OBJ_1(carray_conjugate_obj);
MP_DECLARE_CONST_FUN_OBJ_1(carray_sort_complex_obj);
mp_obj_t carray_imag(mp_obj_t );
mp_obj_t carray_real(mp_obj_t );
mp_obj_t carray_abs(ndarray_obj_t *, ndarray_obj_t *);
mp_obj_t carray_binary_add(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t carray_binary_multiply(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t carray_binary_subtract(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t carray_binary_divide(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t carray_binary_equal_not_equal(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *, mp_binary_op_t );
#define BINARY_LOOP_COMPLEX1(results, resarray, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t l = 0;\
do {\
*(resarray) = *((mp_float_t *)(larray)) OPERATOR *((type_right *)(rarray));\
(resarray) += 2;\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
#define BINARY_LOOP_COMPLEX2(results, resarray, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t k = 0;\
do {\
BINARY_LOOP_COMPLEX1((results), (resarray), type_right, (larray), (lstrides), (rarray), (rstrides), OPERATOR);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
#define BINARY_LOOP_COMPLEX3(results, resarray, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t j = 0;\
do {\
BINARY_LOOP_COMPLEX2((results), (resarray), type_right, (larray), (lstrides), (rarray), (rstrides), OPERATOR);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
#define BINARY_LOOP_COMPLEX4(results, resarray, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t i = 0;\
do {\
BINARY_LOOP_COMPLEX3((results), (resarray), type_right, (larray), (lstrides), (rarray), (rstrides), OPERATOR);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < (results)->shape[ULAB_MAX_DIMS - 4]);\
#define BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT1(results, resarray, type_left, larray, lstrides, rarray, rstrides)\
size_t l = 0;\
do {\
*(resarray)++ = *((type_left *)(larray)) - (rarray)[0];\
*(resarray)++ = -(rarray)[1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
#define BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT2(results, resarray, type_left, larray, lstrides, rarray, rstrides)\
size_t k = 0;\
do {\
BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT1((results), (resarray), type_left, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
#define BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT3(results, resarray, type_left, larray, lstrides, rarray, rstrides)\
size_t j = 0;\
do {\
BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT2((results), (resarray), type_left, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
#define BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT4(results, resarray, type_left, larray, lstrides, rarray, rstrides)\
size_t i = 0;\
do {\
BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT3((results), (resarray), type_left, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < (results)->shape[ULAB_MAX_DIMS - 4]);\
#define BINARY_LOOP_COMPLEX_RIGHT_DIVIDE1(results, resarray, type_left, larray, lstrides, rarray, rstrides)\
size_t l = 0;\
do {\
mp_float_t *c = (mp_float_t *)(rarray);\
mp_float_t denom = c[0] * c[0] + c[1] * c[1];\
mp_float_t a = *((type_left *)(larray)) / denom;\
*(resarray)++ = a * c[0];\
*(resarray)++ = -a * c[1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
#define BINARY_LOOP_COMPLEX_RIGHT_DIVIDE2(results, resarray, type_left, larray, lstrides, rarray, rstrides)\
size_t k = 0;\
do {\
BINARY_LOOP_COMPLEX_RIGHT_DIVIDE1((results), (resarray), type_left, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
#define BINARY_LOOP_COMPLEX_RIGHT_DIVIDE3(results, resarray, type_left, larray, lstrides, rarray, rstrides)\
size_t j = 0;\
do {\
BINARY_LOOP_COMPLEX_RIGHT_DIVIDE2((results), (resarray), type_left, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
#define BINARY_LOOP_COMPLEX_RIGHT_DIVIDE4(results, resarray, type_left, larray, lstrides, rarray, rstrides)\
size_t i = 0;\
do {\
BINARY_LOOP_COMPLEX_RIGHT_DIVIDE3((results), (resarray), type_left, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < (results)->shape[ULAB_MAX_DIMS - 4]);\
#define BINARY_LOOP_COMPLEX_EQUAL1(results, array, type_right, larray, lstrides, rarray, rstrides)\
size_t l = 0;\
do {\
if((*(larray) == *((type_right *)(rarray))) && ((larray)[1] == MICROPY_FLOAT_CONST(0.0))) {\
*(array) ^= 0x01;\
}\
(array)++;\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
#define BINARY_LOOP_COMPLEX_EQUAL2(results, array, type_right, larray, lstrides, rarray, rstrides)\
size_t k = 0;\
do {\
BINARY_LOOP_COMPLEX_EQUAL1((results), (array), type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);\
#define BINARY_LOOP_COMPLEX_EQUAL3(results, array, type_right, larray, lstrides, rarray, rstrides)\
size_t j = 0;\
do {\
BINARY_LOOP_COMPLEX_EQUAL2((results), (array), type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);\
#define BINARY_LOOP_COMPLEX_EQUAL4(results, array, type_right, larray, lstrides, rarray, rstrides)\
size_t i = 0;\
do {\
BINARY_LOOP_COMPLEX_EQUAL3((results), (array), type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < (results)->shape[ULAB_MAX_DIMS - 4]);\
#if ULAB_MAX_DIMS == 1
#define BINARY_LOOP_COMPLEX BINARY_LOOP_COMPLEX1
#define BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT1
#define BINARY_LOOP_COMPLEX_RIGHT_DIVIDE BINARY_LOOP_COMPLEX_RIGHT_DIVIDE1
#define BINARY_LOOP_COMPLEX_EQUAL BINARY_LOOP_COMPLEX_EQUAL1
#endif /* ULAB_MAX_DIMS == 1 */
#if ULAB_MAX_DIMS == 2
#define BINARY_LOOP_COMPLEX BINARY_LOOP_COMPLEX2
#define BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT2
#define BINARY_LOOP_COMPLEX_RIGHT_DIVIDE BINARY_LOOP_COMPLEX_RIGHT_DIVIDE2
#define BINARY_LOOP_COMPLEX_EQUAL BINARY_LOOP_COMPLEX_EQUAL2
#endif /* ULAB_MAX_DIMS == 2 */
#if ULAB_MAX_DIMS == 3
#define BINARY_LOOP_COMPLEX BINARY_LOOP_COMPLEX3
#define BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT3
#define BINARY_LOOP_COMPLEX_RIGHT_DIVIDE BINARY_LOOP_COMPLEX_RIGHT_DIVIDE3
#define BINARY_LOOP_COMPLEX_EQUAL BINARY_LOOP_COMPLEX_EQUAL3
#endif /* ULAB_MAX_DIMS == 3 */
#if ULAB_MAX_DIMS == 4
#define BINARY_LOOP_COMPLEX BINARY_LOOP_COMPLEX4
#define BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT BINARY_LOOP_COMPLEX_REVERSED_SUBTRACT4
#define BINARY_LOOP_COMPLEX_RIGHT_DIVIDE BINARY_LOOP_COMPLEX_RIGHT_DIVIDE4
#define BINARY_LOOP_COMPLEX_EQUAL BINARY_LOOP_COMPLEX_EQUAL4
#endif /* ULAB_MAX_DIMS == 4 */
#endif

View file

@ -1,28 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2022 Zoltán Vörös
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../../ulab.h"
#include "../../ndarray.h"
#if ULAB_SUPPORTS_COMPLEX
void raise_complex_NotImplementedError(void) {
mp_raise_NotImplementedError(translate("not implemented for complex dtype"));
}
#endif

View file

@ -1,25 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2022 Zoltán Vörös
*/
#ifndef _CARRAY_TOOLS_
#define _CARRAY_TOOLS_
void raise_complex_NotImplementedError(void);
#if ULAB_SUPPORTS_COMPLEX
#define NOT_IMPLEMENTED_FOR_COMPLEX() raise_complex_NotImplementedError();
#define COMPLEX_DTYPE_NOT_IMPLEMENTED(dtype) if((dtype) == NDARRAY_COMPLEX) raise_complex_NotImplementedError();
#else
#define NOT_IMPLEMENTED_FOR_COMPLEX() // do nothing
#define COMPLEX_DTYPE_NOT_IMPLEMENTED(dtype) // do nothing
#endif
#endif

View file

@ -1,560 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
* 2020 Jeff Epler for Adafruit Industries
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../ulab.h"
#include "../ndarray_operators.h"
#include "../ulab_tools.h"
#include "carray/carray_tools.h"
#include "compare.h"
static mp_obj_t compare_function(mp_obj_t x1, mp_obj_t x2, uint8_t op) {
ndarray_obj_t *lhs = ndarray_from_mp_obj(x1, 0);
ndarray_obj_t *rhs = ndarray_from_mp_obj(x2, 0);
#if ULAB_SUPPORTS_COMPLEX
if((lhs->dtype == NDARRAY_COMPLEX) || (rhs->dtype == NDARRAY_COMPLEX)) {
NOT_IMPLEMENTED_FOR_COMPLEX()
}
#endif
uint8_t ndim = 0;
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
int32_t *lstrides = m_new(int32_t, ULAB_MAX_DIMS);
int32_t *rstrides = m_new(int32_t, ULAB_MAX_DIMS);
if(!ndarray_can_broadcast(lhs, rhs, &ndim, shape, lstrides, rstrides)) {
mp_raise_ValueError(translate("operands could not be broadcast together"));
m_del(size_t, shape, ULAB_MAX_DIMS);
m_del(int32_t, lstrides, ULAB_MAX_DIMS);
m_del(int32_t, rstrides, ULAB_MAX_DIMS);
}
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
if(op == COMPARE_EQUAL) {
return ndarray_binary_equality(lhs, rhs, ndim, shape, lstrides, rstrides, MP_BINARY_OP_EQUAL);
} else if(op == COMPARE_NOT_EQUAL) {
return ndarray_binary_equality(lhs, rhs, ndim, shape, lstrides, rstrides, MP_BINARY_OP_NOT_EQUAL);
}
// These are the upcasting rules
// float always becomes float
// operation on identical types preserves type
// uint8 + int8 => int16
// uint8 + int16 => int16
// uint8 + uint16 => uint16
// int8 + int16 => int16
// int8 + uint16 => uint16
// uint16 + int16 => float
// The parameters of RUN_COMPARE_LOOP are
// typecode of result, type_out, type_left, type_right, lhs operand, rhs operand, operator
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
RUN_COMPARE_LOOP(NDARRAY_UINT8, uint8_t, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT8) {
RUN_COMPARE_LOOP(NDARRAY_INT16, int16_t, uint8_t, int8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_UINT16) {
RUN_COMPARE_LOOP(NDARRAY_UINT16, uint16_t, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_COMPARE_LOOP(NDARRAY_INT16, int16_t, uint8_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_COMPARE_LOOP(NDARRAY_FLOAT, mp_float_t, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_UINT8) {
RUN_COMPARE_LOOP(NDARRAY_INT16, int16_t, int8_t, uint8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT8) {
RUN_COMPARE_LOOP(NDARRAY_INT8, int8_t, int8_t, int8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_UINT16) {
RUN_COMPARE_LOOP(NDARRAY_INT16, int16_t, int8_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_COMPARE_LOOP(NDARRAY_INT16, int16_t, int8_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_COMPARE_LOOP(NDARRAY_FLOAT, mp_float_t, int8_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT8) {
RUN_COMPARE_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, uint8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT8) {
RUN_COMPARE_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, int8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_UINT16) {
RUN_COMPARE_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_COMPARE_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_COMPARE_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_UINT8) {
RUN_COMPARE_LOOP(NDARRAY_INT16, int16_t, int16_t, uint8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT8) {
RUN_COMPARE_LOOP(NDARRAY_INT16, int16_t, int16_t, int8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_UINT16) {
RUN_COMPARE_LOOP(NDARRAY_FLOAT, mp_float_t, int16_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_COMPARE_LOOP(NDARRAY_INT16, int16_t, int16_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_COMPARE_LOOP(NDARRAY_FLOAT, mp_float_t, int16_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_UINT8) {
RUN_COMPARE_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, uint8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT8) {
RUN_COMPARE_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, int8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_UINT16) {
RUN_COMPARE_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_COMPARE_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_COMPARE_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
}
}
return mp_const_none; // we should never reach this point
}
#if ULAB_NUMPY_HAS_EQUAL | ULAB_NUMPY_HAS_NOTEQUAL
static mp_obj_t compare_equal_helper(mp_obj_t x1, mp_obj_t x2, uint8_t comptype) {
// scalar comparisons should return a single object of mp_obj_t type
mp_obj_t result = compare_function(x1, x2, comptype);
if((mp_obj_is_int(x1) || mp_obj_is_float(x1)) && (mp_obj_is_int(x2) || mp_obj_is_float(x2))) {
mp_obj_iter_buf_t iter_buf;
mp_obj_t iterable = mp_getiter(result, &iter_buf);
mp_obj_t item = mp_iternext(iterable);
return item;
}
return result;
}
#endif
#if ULAB_NUMPY_HAS_CLIP
mp_obj_t compare_clip(mp_obj_t x1, mp_obj_t x2, mp_obj_t x3) {
// Note: this function could be made faster by implementing a single-loop comparison in
// RUN_COMPARE_LOOP. However, that would add around 2 kB of compile size, while we
// would not gain a factor of two in speed, since the two comparisons should still be
// evaluated. In contrast, calling the function twice adds only 140 bytes to the firmware
if(mp_obj_is_int(x1) || mp_obj_is_float(x1)) {
mp_float_t v1 = mp_obj_get_float(x1);
mp_float_t v2 = mp_obj_get_float(x2);
mp_float_t v3 = mp_obj_get_float(x3);
if(v1 < v2) {
return x2;
} else if(v1 > v3) {
return x3;
} else {
return x1;
}
} else { // assume ndarrays
return compare_function(x2, compare_function(x1, x3, COMPARE_MINIMUM), COMPARE_MAXIMUM);
}
}
MP_DEFINE_CONST_FUN_OBJ_3(compare_clip_obj, compare_clip);
#endif
#if ULAB_NUMPY_HAS_EQUAL
mp_obj_t compare_equal(mp_obj_t x1, mp_obj_t x2) {
return compare_equal_helper(x1, x2, COMPARE_EQUAL);
}
MP_DEFINE_CONST_FUN_OBJ_2(compare_equal_obj, compare_equal);
#endif
#if ULAB_NUMPY_HAS_NOTEQUAL
mp_obj_t compare_not_equal(mp_obj_t x1, mp_obj_t x2) {
return compare_equal_helper(x1, x2, COMPARE_NOT_EQUAL);
}
MP_DEFINE_CONST_FUN_OBJ_2(compare_not_equal_obj, compare_not_equal);
#endif
#if ULAB_NUMPY_HAS_ISFINITE | ULAB_NUMPY_HAS_ISINF
static mp_obj_t compare_isinf_isfinite(mp_obj_t _x, uint8_t mask) {
// mask should signify, whether the function is called from isinf (mask = 1),
// or from isfinite (mask = 0)
if(mp_obj_is_int(_x)) {
if(mask) {
return mp_const_false;
} else {
return mp_const_true;
}
} else if(mp_obj_is_float(_x)) {
mp_float_t x = mp_obj_get_float(_x);
if(isnan(x)) {
return mp_const_false;
}
if(mask) { // called from isinf
return isinf(x) ? mp_const_true : mp_const_false;
} else { // called from isfinite
return isinf(x) ? mp_const_false : mp_const_true;
}
} else if(mp_obj_is_type(_x, &ulab_ndarray_type)) {
ndarray_obj_t *x = MP_OBJ_TO_PTR(_x);
COMPLEX_DTYPE_NOT_IMPLEMENTED(x->dtype)
ndarray_obj_t *results = ndarray_new_dense_ndarray(x->ndim, x->shape, NDARRAY_BOOL);
// At this point, results is all False
uint8_t *rarray = (uint8_t *)results->array;
if(x->dtype != NDARRAY_FLOAT) {
// int types can never be infinite...
if(!mask) {
// ...so flip all values in the array, if the function was called from isfinite
memset(rarray, 1, results->len);
}
return MP_OBJ_FROM_PTR(results);
}
uint8_t *xarray = (uint8_t *)x->array;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t value = *(mp_float_t *)xarray;
if(isnan(value)) {
*rarray++ = 0;
} else {
*rarray++ = isinf(value) ? mask : 1 - mask;
}
xarray += x->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < x->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
xarray -= x->strides[ULAB_MAX_DIMS - 1] * x->shape[ULAB_MAX_DIMS-1];
xarray += x->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < x->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
xarray -= x->strides[ULAB_MAX_DIMS - 2] * x->shape[ULAB_MAX_DIMS-2];
xarray += x->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < x->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
xarray -= x->strides[ULAB_MAX_DIMS - 3] * x->shape[ULAB_MAX_DIMS-3];
xarray += x->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < x->shape[ULAB_MAX_DIMS - 4]);
#endif
return MP_OBJ_FROM_PTR(results);
} else {
mp_raise_TypeError(translate("wrong input type"));
}
return mp_const_none;
}
#endif
#if ULAB_NUMPY_HAS_ISFINITE
mp_obj_t compare_isfinite(mp_obj_t _x) {
return compare_isinf_isfinite(_x, 0);
}
MP_DEFINE_CONST_FUN_OBJ_1(compare_isfinite_obj, compare_isfinite);
#endif
#if ULAB_NUMPY_HAS_ISINF
mp_obj_t compare_isinf(mp_obj_t _x) {
return compare_isinf_isfinite(_x, 1);
}
MP_DEFINE_CONST_FUN_OBJ_1(compare_isinf_obj, compare_isinf);
#endif
#if ULAB_NUMPY_HAS_MAXIMUM
mp_obj_t compare_maximum(mp_obj_t x1, mp_obj_t x2) {
// extra round, so that we can return maximum(3, 4) properly
mp_obj_t result = compare_function(x1, x2, COMPARE_MAXIMUM);
if((mp_obj_is_int(x1) || mp_obj_is_float(x1)) && (mp_obj_is_int(x2) || mp_obj_is_float(x2))) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(result);
return mp_binary_get_val_array(ndarray->dtype, ndarray->array, 0);
}
return result;
}
MP_DEFINE_CONST_FUN_OBJ_2(compare_maximum_obj, compare_maximum);
#endif
#if ULAB_NUMPY_HAS_MINIMUM
mp_obj_t compare_minimum(mp_obj_t x1, mp_obj_t x2) {
// extra round, so that we can return minimum(3, 4) properly
mp_obj_t result = compare_function(x1, x2, COMPARE_MINIMUM);
if((mp_obj_is_int(x1) || mp_obj_is_float(x1)) && (mp_obj_is_int(x2) || mp_obj_is_float(x2))) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(result);
return mp_binary_get_val_array(ndarray->dtype, ndarray->array, 0);
}
return result;
}
MP_DEFINE_CONST_FUN_OBJ_2(compare_minimum_obj, compare_minimum);
#endif
#if ULAB_NUMPY_HAS_NONZERO
mp_obj_t compare_nonzero(mp_obj_t x) {
ndarray_obj_t *ndarray_x = ndarray_from_mp_obj(x, 0);
// since ndarray_new_linear_array calls m_new0, the content of zero is a single zero
ndarray_obj_t *zero = ndarray_new_linear_array(1, NDARRAY_UINT8);
uint8_t ndim = 0;
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
int32_t *x_strides = m_new(int32_t, ULAB_MAX_DIMS);
int32_t *zero_strides = m_new(int32_t, ULAB_MAX_DIMS);
// we don't actually have to inspect the outcome of ndarray_can_broadcast,
// because the right hand side is a linear array with a single element
ndarray_can_broadcast(ndarray_x, zero, &ndim, shape, x_strides, zero_strides);
// equal_obj is a Boolean ndarray
mp_obj_t equal_obj = ndarray_binary_equality(ndarray_x, zero, ndim, shape, x_strides, zero_strides, MP_BINARY_OP_NOT_EQUAL);
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(equal_obj);
// these are no longer needed, get rid of them
m_del(size_t, shape, ULAB_MAX_DIMS);
m_del(int32_t, x_strides, ULAB_MAX_DIMS);
m_del(int32_t, zero_strides, ULAB_MAX_DIMS);
uint8_t *array = (uint8_t *)ndarray->array;
uint8_t *origin = (uint8_t *)ndarray->array;
// First, count the number of Trues:
uint16_t count = 0;
size_t indices[ULAB_MAX_DIMS];
#if ULAB_MAX_DIMS > 3
indices[3] = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
indices[2] = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
indices[1] = 0;
do {
#endif
indices[0] = 0;
do {
if(*array != 0) {
count++;
}
array += ndarray->strides[ULAB_MAX_DIMS - 1];
indices[0]++;
} while(indices[0] < ndarray->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1];
array += ndarray->strides[ULAB_MAX_DIMS - 2];
indices[1]++;
} while(indices[1] < ndarray->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2];
array += ndarray->strides[ULAB_MAX_DIMS - 3];
indices[2]++;
} while(indices[2] < ndarray->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3];
array += ndarray->strides[ULAB_MAX_DIMS - 4];
indices[3]++;
} while(indices[3] < ndarray->shape[ULAB_MAX_DIMS - 4]);
#endif
mp_obj_t *items = m_new(mp_obj_t, ndarray->ndim);
uint16_t *arrays[ULAB_MAX_DIMS];
for(uint8_t i = 0; i < ndarray->ndim; i++) {
ndarray_obj_t *item_array = ndarray_new_linear_array(count, NDARRAY_UINT16);
uint16_t *iarray = (uint16_t *)item_array->array;
arrays[ULAB_MAX_DIMS - 1 - i] = iarray;
items[ndarray->ndim - 1 - i] = MP_OBJ_FROM_PTR(item_array);
}
array = origin;
count = 0;
#if ULAB_MAX_DIMS > 3
indices[3] = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
indices[2] = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
indices[1] = 0;
do {
#endif
indices[0] = 0;
do {
if(*array != 0) {
for(uint8_t d = 0; d < ndarray->ndim; d++) {
arrays[ULAB_MAX_DIMS - 1 - d][count] = indices[d];
}
count++;
}
array += ndarray->strides[ULAB_MAX_DIMS - 1];
indices[0]++;
} while(indices[0] < ndarray->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1];
array += ndarray->strides[ULAB_MAX_DIMS - 2];
indices[1]++;
} while(indices[1] < ndarray->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2];
array += ndarray->strides[ULAB_MAX_DIMS - 3];
indices[2]++;
} while(indices[2] < ndarray->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3];
array += ndarray->strides[ULAB_MAX_DIMS - 4];
indices[3]++;
} while(indices[3] < ndarray->shape[ULAB_MAX_DIMS - 4]);
#endif
return mp_obj_new_tuple(ndarray->ndim, items);
}
MP_DEFINE_CONST_FUN_OBJ_1(compare_nonzero_obj, compare_nonzero);
#endif /* ULAB_NUMPY_HAS_NONZERO */
#if ULAB_NUMPY_HAS_WHERE
mp_obj_t compare_where(mp_obj_t _condition, mp_obj_t _x, mp_obj_t _y) {
// this implementation will work with ndarrays, and scalars only
ndarray_obj_t *c = ndarray_from_mp_obj(_condition, 0);
ndarray_obj_t *x = ndarray_from_mp_obj(_x, 0);
ndarray_obj_t *y = ndarray_from_mp_obj(_y, 0);
COMPLEX_DTYPE_NOT_IMPLEMENTED(c->dtype)
COMPLEX_DTYPE_NOT_IMPLEMENTED(x->dtype)
COMPLEX_DTYPE_NOT_IMPLEMENTED(y->dtype)
int32_t *cstrides = m_new(int32_t, ULAB_MAX_DIMS);
int32_t *xstrides = m_new(int32_t, ULAB_MAX_DIMS);
int32_t *ystrides = m_new(int32_t, ULAB_MAX_DIMS);
size_t *oshape = m_new(size_t, ULAB_MAX_DIMS);
uint8_t ndim;
// establish the broadcasting conditions first
// if any two of the arrays can be broadcast together, then
// the three arrays can also be broadcast together
if(!ndarray_can_broadcast(c, x, &ndim, oshape, cstrides, ystrides) ||
!ndarray_can_broadcast(c, y, &ndim, oshape, cstrides, ystrides) ||
!ndarray_can_broadcast(x, y, &ndim, oshape, xstrides, ystrides)) {
mp_raise_ValueError(translate("operands could not be broadcast together"));
}
ndim = MAX(MAX(c->ndim, x->ndim), y->ndim);
for(uint8_t i = 1; i <= ndim; i++) {
cstrides[ULAB_MAX_DIMS - i] = c->shape[ULAB_MAX_DIMS - i] < 2 ? 0 : c->strides[ULAB_MAX_DIMS - i];
xstrides[ULAB_MAX_DIMS - i] = x->shape[ULAB_MAX_DIMS - i] < 2 ? 0 : x->strides[ULAB_MAX_DIMS - i];
ystrides[ULAB_MAX_DIMS - i] = y->shape[ULAB_MAX_DIMS - i] < 2 ? 0 : y->strides[ULAB_MAX_DIMS - i];
oshape[ULAB_MAX_DIMS - i] = MAX(MAX(c->shape[ULAB_MAX_DIMS - i], x->shape[ULAB_MAX_DIMS - i]), y->shape[ULAB_MAX_DIMS - i]);
}
uint8_t out_dtype = ndarray_upcast_dtype(x->dtype, y->dtype);
ndarray_obj_t *out = ndarray_new_dense_ndarray(ndim, oshape, out_dtype);
mp_float_t (*cfunc)(void *) = ndarray_get_float_function(c->dtype);
mp_float_t (*xfunc)(void *) = ndarray_get_float_function(x->dtype);
mp_float_t (*yfunc)(void *) = ndarray_get_float_function(y->dtype);
mp_float_t (*ofunc)(void *, mp_float_t ) = ndarray_set_float_function(out->dtype);
uint8_t *oarray = (uint8_t *)out->array;
uint8_t *carray = (uint8_t *)c->array;
uint8_t *xarray = (uint8_t *)x->array;
uint8_t *yarray = (uint8_t *)y->array;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t value;
mp_float_t cvalue = cfunc(carray);
if(cvalue != MICROPY_FLOAT_CONST(0.0)) {
value = xfunc(xarray);
} else {
value = yfunc(yarray);
}
ofunc(oarray, value);
oarray += out->itemsize;
carray += cstrides[ULAB_MAX_DIMS - 1];
xarray += xstrides[ULAB_MAX_DIMS - 1];
yarray += ystrides[ULAB_MAX_DIMS - 1];
l++;
} while(l < out->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
carray -= cstrides[ULAB_MAX_DIMS - 1] * c->shape[ULAB_MAX_DIMS-1];
carray += cstrides[ULAB_MAX_DIMS - 2];
xarray -= xstrides[ULAB_MAX_DIMS - 1] * x->shape[ULAB_MAX_DIMS-1];
xarray += xstrides[ULAB_MAX_DIMS - 2];
yarray -= ystrides[ULAB_MAX_DIMS - 1] * y->shape[ULAB_MAX_DIMS-1];
yarray += ystrides[ULAB_MAX_DIMS - 2];
k++;
} while(k < out->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
carray -= cstrides[ULAB_MAX_DIMS - 2] * c->shape[ULAB_MAX_DIMS-2];
carray += cstrides[ULAB_MAX_DIMS - 3];
xarray -= xstrides[ULAB_MAX_DIMS - 2] * x->shape[ULAB_MAX_DIMS-2];
xarray += xstrides[ULAB_MAX_DIMS - 3];
yarray -= ystrides[ULAB_MAX_DIMS - 2] * y->shape[ULAB_MAX_DIMS-2];
yarray += ystrides[ULAB_MAX_DIMS - 3];
j++;
} while(j < out->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
carray -= cstrides[ULAB_MAX_DIMS - 3] * c->shape[ULAB_MAX_DIMS-3];
carray += cstrides[ULAB_MAX_DIMS - 4];
xarray -= xstrides[ULAB_MAX_DIMS - 3] * x->shape[ULAB_MAX_DIMS-3];
xarray += xstrides[ULAB_MAX_DIMS - 4];
yarray -= ystrides[ULAB_MAX_DIMS - 3] * y->shape[ULAB_MAX_DIMS-3];
yarray += ystrides[ULAB_MAX_DIMS - 4];
i++;
} while(i < out->shape[ULAB_MAX_DIMS - 4]);
#endif
return MP_OBJ_FROM_PTR(out);
}
MP_DEFINE_CONST_FUN_OBJ_3(compare_where_obj, compare_where);
#endif

View file

@ -1,151 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*/
#ifndef _COMPARE_
#define _COMPARE_
#include "../ulab.h"
#include "../ndarray.h"
enum COMPARE_FUNCTION_TYPE {
COMPARE_EQUAL,
COMPARE_NOT_EQUAL,
COMPARE_MINIMUM,
COMPARE_MAXIMUM,
COMPARE_CLIP,
};
MP_DECLARE_CONST_FUN_OBJ_3(compare_clip_obj);
MP_DECLARE_CONST_FUN_OBJ_2(compare_equal_obj);
MP_DECLARE_CONST_FUN_OBJ_2(compare_isfinite_obj);
MP_DECLARE_CONST_FUN_OBJ_2(compare_isinf_obj);
MP_DECLARE_CONST_FUN_OBJ_2(compare_minimum_obj);
MP_DECLARE_CONST_FUN_OBJ_2(compare_maximum_obj);
MP_DECLARE_CONST_FUN_OBJ_1(compare_nonzero_obj);
MP_DECLARE_CONST_FUN_OBJ_2(compare_not_equal_obj);
MP_DECLARE_CONST_FUN_OBJ_3(compare_where_obj);
#if ULAB_MAX_DIMS == 1
#define COMPARE_LOOP(results, array, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t l = 0;\
do {\
*((type_out *)(array)) = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray)) ? (type_out)(*((type_left *)(larray))) : (type_out)(*((type_right *)(rarray)));\
(array) += (results)->strides[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < results->shape[ULAB_MAX_DIMS - 1]);\
return MP_OBJ_FROM_PTR(results);\
#endif // ULAB_MAX_DIMS == 1
#if ULAB_MAX_DIMS == 2
#define COMPARE_LOOP(results, array, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*((type_out *)(array)) = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray)) ? (type_out)(*((type_left *)(larray))) : (type_out)(*((type_right *)(rarray)));\
(array) += (results)->strides[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < results->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < results->shape[ULAB_MAX_DIMS - 2]);\
return MP_OBJ_FROM_PTR(results);\
#endif // ULAB_MAX_DIMS == 2
#if ULAB_MAX_DIMS == 3
#define COMPARE_LOOP(results, array, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*((type_out *)(array)) = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray)) ? (type_out)(*((type_left *)(larray))) : (type_out)(*((type_right *)(rarray)));\
(array) += (results)->strides[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < results->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < results->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < results->shape[ULAB_MAX_DIMS - 3]);\
return MP_OBJ_FROM_PTR(results);\
#endif // ULAB_MAX_DIMS == 3
#if ULAB_MAX_DIMS == 4
#define COMPARE_LOOP(results, array, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)\
size_t i = 0;\
do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*((type_out *)(array)) = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray)) ? (type_out)(*((type_left *)(larray))) : (type_out)(*((type_right *)(rarray)));\
(array) += (results)->strides[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < results->shape[ULAB_MAX_DIMS - 1]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < results->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < results->shape[ULAB_MAX_DIMS - 3]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < results->shape[ULAB_MAX_DIMS - 4]);\
return MP_OBJ_FROM_PTR(results);\
#endif // ULAB_MAX_DIMS == 4
#define RUN_COMPARE_LOOP(dtype, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, ndim, shape, op) do {\
ndarray_obj_t *results = ndarray_new_dense_ndarray((ndim), (shape), (dtype));\
uint8_t *array = (uint8_t *)results->array;\
if((op) == COMPARE_MINIMUM) {\
COMPARE_LOOP(results, array, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, <);\
}\
if((op) == COMPARE_MAXIMUM) {\
COMPARE_LOOP(results, array, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, >);\
}\
} while(0)
#endif

View file

@ -1,859 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2019-2021 Zoltán Vörös
* 2020 Taku Fukada
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "create.h"
#include "../ulab.h"
#include "../ulab_tools.h"
#if ULAB_NUMPY_HAS_ONES | ULAB_NUMPY_HAS_ZEROS | ULAB_NUMPY_HAS_FULL | ULAB_NUMPY_HAS_EMPTY
static mp_obj_t create_zeros_ones_full(mp_obj_t oshape, uint8_t dtype, mp_obj_t value) {
if(!mp_obj_is_int(oshape) && !mp_obj_is_type(oshape, &mp_type_tuple) && !mp_obj_is_type(oshape, &mp_type_list)) {
mp_raise_TypeError(translate("input argument must be an integer, a tuple, or a list"));
}
ndarray_obj_t *ndarray = NULL;
if(mp_obj_is_int(oshape)) {
size_t n = mp_obj_get_int(oshape);
ndarray = ndarray_new_linear_array(n, dtype);
} else if(mp_obj_is_type(oshape, &mp_type_tuple) || mp_obj_is_type(oshape, &mp_type_list)) {
uint8_t len = (uint8_t)mp_obj_get_int(mp_obj_len_maybe(oshape));
if(len > ULAB_MAX_DIMS) {
mp_raise_TypeError(translate("too many dimensions"));
}
size_t *shape = m_new0(size_t, ULAB_MAX_DIMS);
size_t i = 0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(oshape, &iter_buf);
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION){
shape[ULAB_MAX_DIMS - len + i] = (size_t)mp_obj_get_int(item);
i++;
}
ndarray = ndarray_new_dense_ndarray(len, shape, dtype);
}
if(value != mp_const_none) {
if(dtype == NDARRAY_BOOL) {
dtype = NDARRAY_UINT8;
if(mp_obj_is_true(value)) {
value = mp_obj_new_int(1);
} else {
value = mp_obj_new_int(0);
}
}
for(size_t i=0; i < ndarray->len; i++) {
#if ULAB_SUPPORTS_COMPLEX
if(dtype == NDARRAY_COMPLEX) {
ndarray_set_complex_value(ndarray->array, i, value);
} else {
ndarray_set_value(dtype, ndarray->array, i, value);
}
#else
ndarray_set_value(dtype, ndarray->array, i, value);
#endif
}
}
// if zeros calls the function, we don't have to do anything
return MP_OBJ_FROM_PTR(ndarray);
}
#endif
#if ULAB_NUMPY_HAS_ARANGE | ULAB_NUMPY_HAS_LINSPACE
static ndarray_obj_t *create_linspace_arange(mp_float_t start, mp_float_t step, mp_float_t stop, size_t len, uint8_t dtype) {
mp_float_t value = start;
ndarray_obj_t *ndarray = ndarray_new_linear_array(len, dtype);
if(ndarray->boolean == NDARRAY_BOOLEAN) {
uint8_t *array = (uint8_t *)ndarray->array;
for(size_t i=0; i < len; i++, value += step) {
*array++ = value == MICROPY_FLOAT_CONST(0.0) ? 0 : 1;
}
} else if(dtype == NDARRAY_UINT8) {
ARANGE_LOOP(uint8_t, ndarray, len, step, stop);
} else if(dtype == NDARRAY_INT8) {
ARANGE_LOOP(int8_t, ndarray, len, step, stop);
} else if(dtype == NDARRAY_UINT16) {
ARANGE_LOOP(uint16_t, ndarray, len, step, stop);
} else if(dtype == NDARRAY_INT16) {
ARANGE_LOOP(int16_t, ndarray, len, step, stop);
} else {
ARANGE_LOOP(mp_float_t, ndarray, len, step, stop);
}
return ndarray;
}
#endif
#if ULAB_NUMPY_HAS_ARANGE
//| @overload
//| def arange(stop: _float, step: _float = 1, *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray: ...
//| @overload
//| def arange(start: _float, stop: _float, step: _float = 1, *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """
//| .. param: start
//| First value in the array, optional, defaults to 0
//| .. param: stop
//| Final value in the array
//| .. param: step
//| Difference between consecutive elements, optional, defaults to 1.0
//| .. param: dtype
//| Type of values in the array
//|
//| Return a new 1-D array with elements ranging from ``start`` to ``stop``, with step size ``step``."""
//| ...
//|
mp_obj_t create_arange(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = NDARRAY_FLOAT;
mp_float_t start, stop, step;
if(n_args == 1) {
start = MICROPY_FLOAT_CONST(0.0);
stop = mp_obj_get_float(args[0].u_obj);
step = MICROPY_FLOAT_CONST(1.0);
if(mp_obj_is_int(args[0].u_obj)) dtype = NDARRAY_INT16;
} else if(n_args == 2) {
start = mp_obj_get_float(args[0].u_obj);
stop = mp_obj_get_float(args[1].u_obj);
step = MICROPY_FLOAT_CONST(1.0);
if(mp_obj_is_int(args[0].u_obj) && mp_obj_is_int(args[1].u_obj)) dtype = NDARRAY_INT16;
} else if(n_args == 3) {
start = mp_obj_get_float(args[0].u_obj);
stop = mp_obj_get_float(args[1].u_obj);
step = mp_obj_get_float(args[2].u_obj);
if(mp_obj_is_int(args[0].u_obj) && mp_obj_is_int(args[1].u_obj) && mp_obj_is_int(args[2].u_obj)) dtype = NDARRAY_INT16;
} else {
mp_raise_TypeError(translate("wrong number of arguments"));
}
if((MICROPY_FLOAT_C_FUN(fabs)(stop) > 32768) || (MICROPY_FLOAT_C_FUN(fabs)(start) > 32768) || (MICROPY_FLOAT_C_FUN(fabs)(step) > 32768)) {
dtype = NDARRAY_FLOAT;
}
if(args[3].u_obj != mp_const_none) {
dtype = (uint8_t)mp_obj_get_int(args[3].u_obj);
}
// bail out, if the range cannot be constructed
if(step == MICROPY_FLOAT_CONST(0.0)) {
mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("divide by zero"));
}
if(isnan(start) || isnan(stop) || isnan(step)) {
mp_raise_ValueError(translate("arange: cannot compute length"));
}
ndarray_obj_t *ndarray;
if((stop - start)/step <= 0) {
ndarray = ndarray_new_linear_array(0, dtype);
} else {
size_t len = (size_t)(MICROPY_FLOAT_C_FUN(ceil)((stop - start) / step));
stop = start + (len - 1) * step;
ndarray = create_linspace_arange(start, step, stop, len, dtype);
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_arange_obj, 1, create_arange);
#endif
#if ULAB_NUMPY_HAS_ASARRAY
mp_obj_t create_asarray(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t _dtype;
#if ULAB_HAS_DTYPE_OBJECT
if(mp_obj_is_type(args[1].u_obj, &ulab_dtype_type)) {
dtype_obj_t *dtype = MP_OBJ_TO_PTR(args[1].u_obj);
_dtype = dtype->dtype;
} else { // this must be an integer defined as a class constant (ulab.numpy.uint8 etc.)
if(args[1].u_obj == mp_const_none) {
_dtype = 0;
} else {
_dtype = mp_obj_get_int(args[1].u_obj);
}
}
#else
if(args[1].u_obj == mp_const_none) {
_dtype = 0;
} else {
_dtype = mp_obj_get_int(args[1].u_obj);
}
#endif
if(ulab_tools_mp_obj_is_scalar(args[0].u_obj)) {
return args[0].u_obj;
} else if(mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
if((_dtype == ndarray->dtype) || (_dtype == 0)) {
return args[0].u_obj;
} else {
return MP_OBJ_FROM_PTR(ndarray_copy_view_convert_type(ndarray, _dtype));
}
} else if(ndarray_object_is_array_like(args[0].u_obj)) {
if(_dtype == 0) {
_dtype = NDARRAY_FLOAT;
}
return MP_OBJ_FROM_PTR(ndarray_from_iterable(args[0].u_obj, _dtype));
} else {
mp_raise_TypeError(translate("wrong input type"));
}
return mp_const_none; // this should never happen
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_asarray_obj, 1, create_asarray);
#endif
#if ULAB_NUMPY_HAS_CONCATENATE
//| def concatenate(arrays: Tuple[ulab.numpy.ndarray], *, axis: int = 0) -> ulab.numpy.ndarray:
//| """
//| .. param: arrays
//| tuple of ndarrays
//| .. param: axis
//| axis along which the arrays will be joined
//|
//| Join a sequence of arrays along an existing axis."""
//| ...
//|
mp_obj_t create_concatenate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &mp_type_tuple)) {
mp_raise_TypeError(translate("first argument must be a tuple of ndarrays"));
}
int8_t axis = (int8_t)args[1].u_int;
size_t *shape = m_new0(size_t, ULAB_MAX_DIMS);
mp_obj_tuple_t *ndarrays = MP_OBJ_TO_PTR(args[0].u_obj);
for(uint8_t i = 0; i < ndarrays->len; i++) {
if(!mp_obj_is_type(ndarrays->items[i], &ulab_ndarray_type)) {
mp_raise_ValueError(translate("only ndarrays can be concatenated"));
}
}
// first check, whether the arrays are compatible
ndarray_obj_t *_ndarray = MP_OBJ_TO_PTR(ndarrays->items[0]);
uint8_t dtype = _ndarray->dtype;
uint8_t ndim = _ndarray->ndim;
if(axis < 0) {
axis += ndim;
}
if((axis < 0) || (axis >= ndim)) {
mp_raise_ValueError(translate("wrong axis specified"));
}
// shift axis
axis = ULAB_MAX_DIMS - ndim + axis;
for(uint8_t j=0; j < ULAB_MAX_DIMS; j++) {
shape[j] = _ndarray->shape[j];
}
for(uint8_t i=1; i < ndarrays->len; i++) {
_ndarray = MP_OBJ_TO_PTR(ndarrays->items[i]);
// check, whether the arrays are compatible
if((dtype != _ndarray->dtype) || (ndim != _ndarray->ndim)) {
mp_raise_ValueError(translate("input arrays are not compatible"));
}
for(uint8_t j=0; j < ULAB_MAX_DIMS; j++) {
if(j == axis) {
shape[j] += _ndarray->shape[j];
} else {
if(shape[j] != _ndarray->shape[j]) {
mp_raise_ValueError(translate("input arrays are not compatible"));
}
}
}
}
ndarray_obj_t *target = ndarray_new_dense_ndarray(ndim, shape, dtype);
uint8_t *tpos = (uint8_t *)target->array;
uint8_t *tarray;
for(uint8_t p=0; p < ndarrays->len; p++) {
// reset the pointer along the axis
ndarray_obj_t *source = MP_OBJ_TO_PTR(ndarrays->items[p]);
uint8_t *sarray = (uint8_t *)source->array;
tarray = tpos;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(tarray, sarray, source->itemsize);
tarray += target->strides[ULAB_MAX_DIMS - 1];
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
tarray -= target->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
tarray += target->strides[ULAB_MAX_DIMS - 2];
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
tarray -= target->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
tarray += target->strides[ULAB_MAX_DIMS - 3];
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
tarray -= target->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
tarray += target->strides[ULAB_MAX_DIMS - 4];
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
if(p < ndarrays->len - 1) {
tpos += target->strides[axis] * source->shape[axis];
}
}
return MP_OBJ_FROM_PTR(target);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_concatenate_obj, 1, create_concatenate);
#endif
#if ULAB_MAX_DIMS > 1
#if ULAB_NUMPY_HAS_DIAG
//| def diag(a: ulab.numpy.ndarray, *, k: int = 0) -> ulab.numpy.ndarray:
//| """
//| .. param: a
//| an ndarray
//| .. param: k
//| Offset of the diagonal from the main diagonal. Can be positive or negative.
//|
//| Return specified diagonals."""
//| ...
//|
mp_obj_t create_diag(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_k, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
ndarray_obj_t *source = ndarray_from_iterable(args[0].u_obj, NDARRAY_FLOAT);
ndarray_obj_t *target = NULL;
int32_t k = args[1].u_int;
size_t k_abs = k >= 0 ? (size_t)k : (size_t)(-k);
if(source->ndim == 2) { // return the diagonal
size_t len;
if(k >= 0) {
len = (k_abs <= source->shape[ULAB_MAX_DIMS - 1]) ? source->shape[ULAB_MAX_DIMS - 1] - k_abs : 0;
} else {
len = (k_abs <= source->shape[ULAB_MAX_DIMS - 2]) ? source->shape[ULAB_MAX_DIMS - 2] - k_abs : 0;
}
target = ndarray_new_linear_array(len, source->dtype);
if(len == 0) {
return MP_OBJ_FROM_PTR(target);
}
uint8_t *sarray = (uint8_t *)source->array;
uint8_t *tarray = (uint8_t *)target->array;
if(k >= 0) {
sarray += source->strides[ULAB_MAX_DIMS - 1] * k;
} else {
sarray += source->strides[ULAB_MAX_DIMS - 2] * k_abs;
}
for(size_t i=0; i < len; i++) {
memcpy(tarray, sarray, source->itemsize);
sarray += (source->strides[ULAB_MAX_DIMS - 1] + source->strides[ULAB_MAX_DIMS - 2]);
tarray += target->itemsize;
}
} else if(source->ndim == 1) { // return a rank-2 tensor with the prescribed diagonal
size_t len = source->len + k_abs;
target = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, len, len), source->dtype);
uint8_t *sarray = (uint8_t *)source->array;
uint8_t *tarray = (uint8_t *)target->array;
if(k < 0) {
tarray += len * k_abs * target->itemsize;
} else {
tarray += k_abs * target->itemsize;
}
for(size_t i = 0; i < source->len; i++) {
memcpy(tarray, sarray, source->itemsize);
sarray += source->strides[ULAB_MAX_DIMS - 1];
tarray += (len + 1) * target->itemsize;
}
}
#if ULAB_MAX_DIMS > 2
else {
mp_raise_ValueError(translate("input must be 1- or 2-d"));
}
#endif
return MP_OBJ_FROM_PTR(target);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_diag_obj, 1, create_diag);
#endif /* ULAB_NUMPY_HAS_DIAG */
#if ULAB_NUMPY_HAS_EMPTY
// This function is bound in numpy.c to numpy.zeros(), and is simply an alias for that
//| def empty(shape: Union[int, Tuple[int, ...]], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """
//| .. param: shape
//| Shape of the array, either an integer (for a 1-D array) or a tuple of 2 integers (for a 2-D array)
//| .. param: dtype
//| Type of values in the array
//|
//| Return a new array of the given shape with all elements set to 0. An alias for numpy.zeros."""
//| ...
//|
#endif
#if ULAB_NUMPY_HAS_EYE
//| def eye(size: int, *, M: Optional[int] = None, k: int = 0, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """Return a new square array of size, with the diagonal elements set to 1
//| and the other elements set to 0. If k is given, the diagonal is shifted by the specified amount."""
//| ...
//|
mp_obj_t create_eye(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_INT, { .u_int = 0 } },
{ MP_QSTR_M, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_k, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
size_t n = args[0].u_int, m;
size_t k = args[2].u_int > 0 ? (size_t)args[2].u_int : (size_t)(-args[2].u_int);
uint8_t dtype = args[3].u_int;
if(args[1].u_obj == mp_const_none) {
m = n;
} else {
m = mp_obj_get_int(args[1].u_obj);
}
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, n, m), dtype);
if(dtype == NDARRAY_BOOL) {
dtype = NDARRAY_UINT8;
}
mp_obj_t one = mp_obj_new_int(1);
size_t i = 0;
if((args[2].u_int >= 0)) {
while(k < m) {
ndarray_set_value(dtype, ndarray->array, i*m+k, one);
k++;
i++;
}
} else {
while(k < n) {
ndarray_set_value(dtype, ndarray->array, k*m+i, one);
k++;
i++;
}
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_eye_obj, 1, create_eye);
#endif /* ULAB_NUMPY_HAS_EYE */
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_NUMPY_HAS_FULL
//| def full(shape: Union[int, Tuple[int, ...]], fill_value: Union[_float, _bool], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """
//| .. param: shape
//| Shape of the array, either an integer (for a 1-D array) or a tuple of integers (for tensors of higher rank)
//| .. param: fill_value
//| scalar, the value with which the array is filled
//| .. param: dtype
//| Type of values in the array
//|
//| Return a new array of the given shape with all elements set to 0."""
//| ...
//|
mp_obj_t create_full(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = args[2].u_int;
return create_zeros_ones_full(args[0].u_obj, dtype, args[1].u_obj);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_full_obj, 0, create_full);
#endif
#if ULAB_NUMPY_HAS_LINSPACE
//| def linspace(
//| start: _float,
//| stop: _float,
//| *,
//| dtype: _DType = ulab.numpy.float,
//| num: int = 50,
//| endpoint: _bool = True,
//| retstep: _bool = False
//| ) -> ulab.numpy.ndarray:
//| """
//| .. param: start
//| First value in the array
//| .. param: stop
//| Final value in the array
//| .. param int: num
//| Count of values in the array.
//| .. param: dtype
//| Type of values in the array
//| .. param bool: endpoint
//| Whether the ``stop`` value is included. Note that even when
//| endpoint=True, the exact ``stop`` value may not be included due to the
//| inaccuracy of floating point arithmetic.
//| .. param bool: retstep,
//| If True, return (`samples`, `step`), where `step` is the spacing between samples.
//|
//| Return a new 1-D array with ``num`` elements ranging from ``start`` to ``stop`` linearly."""
//| ...
//|
mp_obj_t create_linspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_num, MP_ARG_INT, { .u_int = 50 } },
{ MP_QSTR_endpoint, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_TRUE } },
{ MP_QSTR_retstep, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_FALSE } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(args[2].u_int < 2) {
mp_raise_ValueError(translate("number of points must be at least 2"));
}
size_t len = (size_t)args[2].u_int;
mp_float_t start, step, stop;
ndarray_obj_t *ndarray = NULL;
#if ULAB_SUPPORTS_COMPLEX
mp_float_t step_real, step_imag;
bool complex_out = false;
if(mp_obj_is_type(args[0].u_obj, &mp_type_complex) || mp_obj_is_type(args[1].u_obj, &mp_type_complex)) {
complex_out = true;
ndarray = ndarray_new_linear_array(len, NDARRAY_COMPLEX);
mp_float_t *array = (mp_float_t *)ndarray->array;
mp_float_t start_real, start_imag;
mp_float_t stop_real, stop_imag;
mp_obj_get_complex(args[0].u_obj, &start_real, &start_imag);
mp_obj_get_complex(args[1].u_obj, &stop_real, &stop_imag);
if(args[3].u_obj == mp_const_true) {
step_real = (stop_real - start_real) / (len - 1);
step_imag = (stop_imag - start_imag) / (len - 1);
} else {
step_real = (stop_real - start_real) / len;
step_imag = (stop_imag - start_imag) / len;
}
for(size_t i = 0; i < len; i++) {
*array++ = start_real;
*array++ = start_imag;
start_real += step_real;
start_imag += step_imag;
}
} else {
#endif
start = mp_obj_get_float(args[0].u_obj);
stop = mp_obj_get_float(args[1].u_obj);
uint8_t typecode = args[5].u_int;
if(args[3].u_obj == mp_const_true) {
step = (stop - start) / (len - 1);
} else {
step = (stop - start) / len;
stop = start + step * (len - 1);
}
ndarray = create_linspace_arange(start, step, stop, len, typecode);
#if ULAB_SUPPORTS_COMPLEX
}
#endif
if(args[4].u_obj == mp_const_false) {
return MP_OBJ_FROM_PTR(ndarray);
} else {
mp_obj_t tuple[2];
tuple[0] = MP_OBJ_FROM_PTR(ndarray);
#if ULAB_SUPPORTS_COMPLEX
if(complex_out) {
tuple[1] = mp_obj_new_complex(step_real, step_imag);
} else {
tuple[1] = mp_obj_new_float(step);
}
#else /* ULAB_SUPPORTS_COMPLEX */
tuple[1] = mp_obj_new_float(step);
#endif
return mp_obj_new_tuple(2, tuple);
}
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_linspace_obj, 2, create_linspace);
#endif
#if ULAB_NUMPY_HAS_LOGSPACE
//| def logspace(
//| start: _float,
//| stop: _float,
//| *,
//| dtype: _DType = ulab.numpy.float,
//| num: int = 50,
//| endpoint: _bool = True,
//| base: _float = 10.0
//| ) -> ulab.numpy.ndarray:
//| """
//| .. param: start
//| First value in the array
//| .. param: stop
//| Final value in the array
//| .. param int: num
//| Count of values in the array. Defaults to 50.
//| .. param: base
//| The base of the log space. The step size between the elements in
//| ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. Defaults to 10.0.
//| .. param: dtype
//| Type of values in the array
//| .. param bool: endpoint
//| Whether the ``stop`` value is included. Note that even when
//| endpoint=True, the exact ``stop`` value may not be included due to the
//| inaccuracy of floating point arithmetic. Defaults to True.
//|
//| Return a new 1-D array with ``num`` evenly spaced elements on a log scale.
//| The sequence starts at ``base ** start``, and ends with ``base ** stop``."""
//| ...
//|
ULAB_DEFINE_FLOAT_CONST(const_ten, MICROPY_FLOAT_CONST(10.0), 0x41200000UL, 0x4024000000000000ULL);
mp_obj_t create_logspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_num, MP_ARG_INT, { .u_int = 50 } },
{ MP_QSTR_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(const_ten) } },
{ MP_QSTR_endpoint, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_TRUE } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(args[2].u_int < 2) {
mp_raise_ValueError(translate("number of points must be at least 2"));
}
size_t len = (size_t)args[2].u_int;
mp_float_t start, step, quotient;
start = mp_obj_get_float(args[0].u_obj);
uint8_t dtype = args[5].u_int;
mp_float_t base = mp_obj_get_float(args[3].u_obj);
if(args[4].u_obj == mp_const_true) step = (mp_obj_get_float(args[1].u_obj) - start)/(len - 1);
else step = (mp_obj_get_float(args[1].u_obj) - start) / len;
quotient = MICROPY_FLOAT_C_FUN(pow)(base, step);
ndarray_obj_t *ndarray = ndarray_new_linear_array(len, dtype);
mp_float_t value = MICROPY_FLOAT_C_FUN(pow)(base, start);
if(ndarray->dtype == NDARRAY_UINT8) {
uint8_t *array = (uint8_t *)ndarray->array;
if(ndarray->boolean) {
memset(array, 1, len);
} else {
for(size_t i=0; i < len; i++, value *= quotient) *array++ = (uint8_t)value;
}
} else if(ndarray->dtype == NDARRAY_INT8) {
int8_t *array = (int8_t *)ndarray->array;
for(size_t i=0; i < len; i++, value *= quotient) *array++ = (int8_t)value;
} else if(ndarray->dtype == NDARRAY_UINT16) {
uint16_t *array = (uint16_t *)ndarray->array;
for(size_t i=0; i < len; i++, value *= quotient) *array++ = (uint16_t)value;
} else if(ndarray->dtype == NDARRAY_INT16) {
int16_t *array = (int16_t *)ndarray->array;
for(size_t i=0; i < len; i++, value *= quotient) *array++ = (int16_t)value;
} else {
mp_float_t *array = (mp_float_t *)ndarray->array;
for(size_t i=0; i < len; i++, value *= quotient) *array++ = value;
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_logspace_obj, 2, create_logspace);
#endif
#if ULAB_NUMPY_HAS_ONES
//| def ones(shape: Union[int, Tuple[int, ...]], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """
//| .. param: shape
//| Shape of the array, either an integer (for a 1-D array) or a tuple of 2 integers (for a 2-D array)
//| .. param: dtype
//| Type of values in the array
//|
//| Return a new array of the given shape with all elements set to 1."""
//| ...
//|
mp_obj_t create_ones(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = args[1].u_int;
mp_obj_t one = mp_obj_new_int(1);
return create_zeros_ones_full(args[0].u_obj, dtype, one);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_ones_obj, 0, create_ones);
#endif
#if ULAB_NUMPY_HAS_ZEROS
//| def zeros(shape: Union[int, Tuple[int, ...]], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """
//| .. param: shape
//| Shape of the array, either an integer (for a 1-D array) or a tuple of 2 integers (for a 2-D array)
//| .. param: dtype
//| Type of values in the array
//|
//| Return a new array of the given shape with all elements set to 0."""
//| ...
//|
mp_obj_t create_zeros(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = args[1].u_int;
return create_zeros_ones_full(args[0].u_obj, dtype, mp_const_none);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_zeros_obj, 0, create_zeros);
#endif
#if ULAB_NUMPY_HAS_FROMBUFFER
mp_obj_t create_frombuffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(NDARRAY_FLOAT) } },
{ MP_QSTR_count, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(-1) } },
{ MP_QSTR_offset, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(0) } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = mp_obj_get_int(args[1].u_obj);
size_t offset = mp_obj_get_int(args[3].u_obj);
mp_buffer_info_t bufinfo;
if(mp_get_buffer(args[0].u_obj, &bufinfo, MP_BUFFER_READ)) {
size_t sz = ulab_binary_get_size(dtype);
if(bufinfo.len < offset) {
mp_raise_ValueError(translate("offset must be non-negative and no greater than buffer length"));
}
size_t len = (bufinfo.len - offset) / sz;
if((len * sz) != (bufinfo.len - offset)) {
mp_raise_ValueError(translate("buffer size must be a multiple of element size"));
}
if(mp_obj_get_int(args[2].u_obj) > 0) {
size_t count = mp_obj_get_int(args[2].u_obj);
if(len < count) {
mp_raise_ValueError(translate("buffer is smaller than requested size"));
} else {
len = count;
}
}
ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
ndarray->base.type = &ulab_ndarray_type;
ndarray->dtype = dtype == NDARRAY_BOOL ? NDARRAY_UINT8 : dtype;
ndarray->boolean = dtype == NDARRAY_BOOL ? NDARRAY_BOOLEAN : NDARRAY_NUMERIC;
ndarray->ndim = 1;
ndarray->len = len;
ndarray->itemsize = sz;
ndarray->shape[ULAB_MAX_DIMS - 1] = len;
ndarray->strides[ULAB_MAX_DIMS - 1] = sz;
uint8_t *buffer = bufinfo.buf;
ndarray->array = buffer + offset;
return MP_OBJ_FROM_PTR(ndarray);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_frombuffer_obj, 1, create_frombuffer);
#endif

View file

@ -1,84 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2019-2021 Zoltán Vörös
*/
#ifndef _CREATE_
#define _CREATE_
#include "../ulab.h"
#include "../ndarray.h"
#if ULAB_NUMPY_HAS_ARANGE
mp_obj_t create_arange(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_arange_obj);
#endif
#if ULAB_NUMPY_HAS_ASARRAY
mp_obj_t create_arange(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_asarray_obj);
#endif
#if ULAB_NUMPY_HAS_CONCATENATE
mp_obj_t create_concatenate(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_concatenate_obj);
#endif
#if ULAB_NUMPY_HAS_DIAG
mp_obj_t create_diag(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_diag_obj);
#endif
#if ULAB_MAX_DIMS > 1
#if ULAB_NUMPY_HAS_EYE
mp_obj_t create_eye(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_eye_obj);
#endif
#endif
#if ULAB_NUMPY_HAS_FULL
mp_obj_t create_full(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_full_obj);
#endif
#if ULAB_NUMPY_HAS_LINSPACE
mp_obj_t create_linspace(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_linspace_obj);
#endif
#if ULAB_NUMPY_HAS_LOGSPACE
mp_obj_t create_logspace(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_logspace_obj);
#endif
#if ULAB_NUMPY_HAS_ONES
mp_obj_t create_ones(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_ones_obj);
#endif
#if ULAB_NUMPY_HAS_ZEROS
mp_obj_t create_zeros(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_zeros_obj);
#endif
#if ULAB_NUMPY_HAS_FROMBUFFER
mp_obj_t create_frombuffer(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_frombuffer_obj);
#endif
#define ARANGE_LOOP(type_, ndarray, len, step, stop) \
({\
type_ *array = (type_ *)(ndarray)->array;\
for (size_t i = 0; i < (len) - 1; i++, (value) += (step)) {\
*array++ = (type_)(value);\
}\
*array = (type_)(stop);\
})
#endif

View file

@ -1,109 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
* 2020 Scott Shawcroft for Adafruit Industries
* 2020 Taku Fukada
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/runtime.h"
#include "py/builtin.h"
#include "py/binary.h"
#include "py/obj.h"
#include "py/objarray.h"
#include "../carray/carray_tools.h"
#include "fft.h"
//| """Frequency-domain functions"""
//|
//| import ulab.numpy
//| import ulab.utils
//| def fft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]:
//| """
//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
//| :param ulab.numpy.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
//| :return tuple (r, c): The real and complex parts of the FFT
//|
//| Perform a Fast Fourier Transform from the time domain into the frequency domain
//|
//| See also `ulab.utils.spectrogram`, which computes the magnitude of the fft,
//| rather than separately returning its real and imaginary parts."""
//| ...
//|
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
static mp_obj_t fft_fft(mp_obj_t arg) {
return fft_fft_ifft_spectrogram(arg, FFT_FFT);
}
MP_DEFINE_CONST_FUN_OBJ_1(fft_fft_obj, fft_fft);
#else
static mp_obj_t fft_fft(size_t n_args, const mp_obj_t *args) {
if(n_args == 2) {
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_FFT);
} else {
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_FFT);
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj, 1, 2, fft_fft);
#endif
//| def ifft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]:
//| """
//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
//| :param ulab.numpy.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
//| :return tuple (r, c): The real and complex parts of the inverse FFT
//|
//| Perform an Inverse Fast Fourier Transform from the frequeny domain into the time domain"""
//| ...
//|
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
static mp_obj_t fft_ifft(mp_obj_t arg) {
return fft_fft_ifft_spectrogram(arg, FFT_IFFT);
}
MP_DEFINE_CONST_FUN_OBJ_1(fft_ifft_obj, fft_ifft);
#else
static mp_obj_t fft_ifft(size_t n_args, const mp_obj_t *args) {
NOT_IMPLEMENTED_FOR_COMPLEX()
if(n_args == 2) {
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_IFFT);
} else {
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_IFFT);
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj, 1, 2, fft_ifft);
#endif
STATIC const mp_rom_map_elem_t ulab_fft_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_fft) },
{ MP_ROM_QSTR(MP_QSTR_fft), MP_ROM_PTR(&fft_fft_obj) },
{ MP_ROM_QSTR(MP_QSTR_ifft), MP_ROM_PTR(&fft_ifft_obj) },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_fft_globals, ulab_fft_globals_table);
const mp_obj_module_t ulab_fft_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_fft_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy_dot_fft, ulab_fft_module, MODULE_ULAB_ENABLED);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy_dot_fft, ulab_fft_module);
#endif
#endif

View file

@ -1,30 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*/
#ifndef _FFT_
#define _FFT_
#include "../../ulab.h"
#include "../../ulab_tools.h"
#include "../../ndarray.h"
#include "fft_tools.h"
extern const mp_obj_module_t ulab_fft_module;
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
MP_DECLARE_CONST_FUN_OBJ_3(fft_fft_obj);
MP_DECLARE_CONST_FUN_OBJ_3(fft_ifft_obj);
#else
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj);
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj);
#endif
#endif

View file

@ -1,287 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*/
#include <math.h>
#include <string.h>
#include "py/runtime.h"
#include "../../ndarray.h"
#include "../../ulab_tools.h"
#include "../carray/carray_tools.h"
#include "fft_tools.h"
#ifndef MP_PI
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
#endif
#ifndef MP_E
#define MP_E MICROPY_FLOAT_CONST(2.71828182845904523536)
#endif
/* Kernel implementation for the case, when ulab has no complex support
* The following function takes two arrays, namely, the real and imaginary
* parts of a complex array, and calculates the Fourier transform in place.
*
* The function is basically a modification of four1 from Numerical Recipes,
* has no dependencies beyond micropython itself (for the definition of mp_float_t),
* and can be used independent of ulab.
*/
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
/* Kernel implementation for the complex case. Data are contained in data as
data[0], data[1], data[2], data[3], .... , data[2n - 2], data[2n-1]
real[0], imag[0], real[1], imag[1], .... , real[n-1], imag[n-1]
In general
real[i] = data[2i]
imag[i] = data[2i+1]
*/
void fft_kernel_complex(mp_float_t *data, size_t n, int isign) {
size_t j, m, mmax, istep;
mp_float_t tempr, tempi;
mp_float_t wtemp, wr, wpr, wpi, wi, theta;
j = 0;
for(size_t i = 0; i < n; i++) {
if (j > i) {
SWAP(mp_float_t, data[2*i], data[2*j]);
SWAP(mp_float_t, data[2*i+1], data[2*j+1]);
}
m = n >> 1;
while (j >= m && m > 0) {
j -= m;
m >>= 1;
}
j += m;
}
mmax = 1;
while (n > mmax) {
istep = mmax << 1;
theta = MICROPY_FLOAT_CONST(-2.0)*isign*MP_PI/istep;
wtemp = MICROPY_FLOAT_C_FUN(sin)(MICROPY_FLOAT_CONST(0.5) * theta);
wpr = MICROPY_FLOAT_CONST(-2.0) * wtemp * wtemp;
wpi = MICROPY_FLOAT_C_FUN(sin)(theta);
wr = MICROPY_FLOAT_CONST(1.0);
wi = MICROPY_FLOAT_CONST(0.0);
for(m = 0; m < mmax; m++) {
for(size_t i = m; i < n; i += istep) {
j = i + mmax;
tempr = wr * data[2*j] - wi * data[2*j+1];
tempi = wr * data[2*j+1] + wi * data[2*j];
data[2*j] = data[2*i] - tempr;
data[2*j+1] = data[2*i+1] - tempi;
data[2*i] += tempr;
data[2*i+1] += tempi;
}
wtemp = wr;
wr = wr*wpr - wi*wpi + wr;
wi = wi*wpr + wtemp*wpi + wi;
}
mmax = istep;
}
}
/*
* The following function is a helper interface to the python side.
* It has been factored out from fft.c, so that the same argument parsing
* routine can be called from scipy.signal.spectrogram.
*/
mp_obj_t fft_fft_ifft_spectrogram(mp_obj_t data_in, uint8_t type) {
if(!mp_obj_is_type(data_in, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only"));
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(data_in);
#if ULAB_MAX_DIMS > 1
if(in->ndim != 1) {
mp_raise_TypeError(translate("FFT is implemented for linear arrays only"));
}
#endif
size_t len = in->len;
// Check if input is of length of power of 2
if((len & (len-1)) != 0) {
mp_raise_ValueError(translate("input array length must be power of 2"));
}
ndarray_obj_t *out = ndarray_new_linear_array(len, NDARRAY_COMPLEX);
mp_float_t *data = (mp_float_t *)out->array;
uint8_t *array = (uint8_t *)in->array;
if(in->dtype == NDARRAY_COMPLEX) {
uint8_t sz = 2 * sizeof(mp_float_t);
for(size_t i = 0; i < len; i++) {
memcpy(data, array, sz);
data += 2;
array += in->strides[ULAB_MAX_DIMS - 1];
}
} else {
mp_float_t (*func)(void *) = ndarray_get_float_function(in->dtype);
for(size_t i = 0; i < len; i++) {
// real part; the imaginary part is 0, no need to assign
*data = func(array);
data += 2;
array += in->strides[ULAB_MAX_DIMS - 1];
}
}
data -= 2 * len;
if((type == FFT_FFT) || (type == FFT_SPECTROGRAM)) {
fft_kernel_complex(data, len, 1);
if(type == FFT_SPECTROGRAM) {
ndarray_obj_t *spectrum = ndarray_new_linear_array(len, NDARRAY_FLOAT);
mp_float_t *sarray = (mp_float_t *)spectrum->array;
for(size_t i = 0; i < len; i++) {
*sarray++ = MICROPY_FLOAT_C_FUN(sqrt)(data[0] * data[0] + data[1] * data[1]);
data += 2;
}
m_del(mp_float_t, data, 2 * len);
return MP_OBJ_FROM_PTR(spectrum);
}
} else { // inverse transform
fft_kernel_complex(data, len, -1);
// TODO: numpy accepts the norm keyword argument
for(size_t i = 0; i < 2 * len; i++) {
*data++ /= len;
}
}
return MP_OBJ_FROM_PTR(out);
}
#else /* ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE */
void fft_kernel(mp_float_t *real, mp_float_t *imag, size_t n, int isign) {
size_t j, m, mmax, istep;
mp_float_t tempr, tempi;
mp_float_t wtemp, wr, wpr, wpi, wi, theta;
j = 0;
for(size_t i = 0; i < n; i++) {
if (j > i) {
SWAP(mp_float_t, real[i], real[j]);
SWAP(mp_float_t, imag[i], imag[j]);
}
m = n >> 1;
while (j >= m && m > 0) {
j -= m;
m >>= 1;
}
j += m;
}
mmax = 1;
while (n > mmax) {
istep = mmax << 1;
theta = MICROPY_FLOAT_CONST(-2.0)*isign*MP_PI/istep;
wtemp = MICROPY_FLOAT_C_FUN(sin)(MICROPY_FLOAT_CONST(0.5) * theta);
wpr = MICROPY_FLOAT_CONST(-2.0) * wtemp * wtemp;
wpi = MICROPY_FLOAT_C_FUN(sin)(theta);
wr = MICROPY_FLOAT_CONST(1.0);
wi = MICROPY_FLOAT_CONST(0.0);
for(m = 0; m < mmax; m++) {
for(size_t i = m; i < n; i += istep) {
j = i + mmax;
tempr = wr * real[j] - wi * imag[j];
tempi = wr * imag[j] + wi * real[j];
real[j] = real[i] - tempr;
imag[j] = imag[i] - tempi;
real[i] += tempr;
imag[i] += tempi;
}
wtemp = wr;
wr = wr*wpr - wi*wpi + wr;
wi = wi*wpr + wtemp*wpi + wi;
}
mmax = istep;
}
}
mp_obj_t fft_fft_ifft_spectrogram(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im, uint8_t type) {
if(!mp_obj_is_type(arg_re, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only"));
}
if(n_args == 2) {
if(!mp_obj_is_type(arg_im, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only"));
}
}
ndarray_obj_t *re = MP_OBJ_TO_PTR(arg_re);
#if ULAB_MAX_DIMS > 1
if(re->ndim != 1) {
COMPLEX_DTYPE_NOT_IMPLEMENTED(re->dtype)
mp_raise_TypeError(translate("FFT is implemented for linear arrays only"));
}
#endif
size_t len = re->len;
// Check if input is of length of power of 2
if((len & (len-1)) != 0) {
mp_raise_ValueError(translate("input array length must be power of 2"));
}
ndarray_obj_t *out_re = ndarray_new_linear_array(len, NDARRAY_FLOAT);
mp_float_t *data_re = (mp_float_t *)out_re->array;
uint8_t *array = (uint8_t *)re->array;
mp_float_t (*func)(void *) = ndarray_get_float_function(re->dtype);
for(size_t i=0; i < len; i++) {
*data_re++ = func(array);
array += re->strides[ULAB_MAX_DIMS - 1];
}
data_re -= len;
ndarray_obj_t *out_im = ndarray_new_linear_array(len, NDARRAY_FLOAT);
mp_float_t *data_im = (mp_float_t *)out_im->array;
if(n_args == 2) {
ndarray_obj_t *im = MP_OBJ_TO_PTR(arg_im);
#if ULAB_MAX_DIMS > 1
if(im->ndim != 1) {
COMPLEX_DTYPE_NOT_IMPLEMENTED(im->dtype)
mp_raise_TypeError(translate("FFT is implemented for linear arrays only"));
}
#endif
if (re->len != im->len) {
mp_raise_ValueError(translate("real and imaginary parts must be of equal length"));
}
array = (uint8_t *)im->array;
func = ndarray_get_float_function(im->dtype);
for(size_t i=0; i < len; i++) {
*data_im++ = func(array);
array += im->strides[ULAB_MAX_DIMS - 1];
}
data_im -= len;
}
if((type == FFT_FFT) || (type == FFT_SPECTROGRAM)) {
fft_kernel(data_re, data_im, len, 1);
if(type == FFT_SPECTROGRAM) {
for(size_t i=0; i < len; i++) {
*data_re = MICROPY_FLOAT_C_FUN(sqrt)(*data_re * *data_re + *data_im * *data_im);
data_re++;
data_im++;
}
}
} else { // inverse transform
fft_kernel(data_re, data_im, len, -1);
// TODO: numpy accepts the norm keyword argument
for(size_t i=0; i < len; i++) {
*data_re++ /= len;
*data_im++ /= len;
}
}
if(type == FFT_SPECTROGRAM) {
return MP_OBJ_FROM_PTR(out_re);
} else {
mp_obj_t tuple[2];
tuple[0] = MP_OBJ_FROM_PTR(out_re);
tuple[1] = MP_OBJ_FROM_PTR(out_im);
return mp_obj_new_tuple(2, tuple);
}
}
#endif /* ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE */

View file

@ -1,28 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*/
#ifndef _FFT_TOOLS_
#define _FFT_TOOLS_
enum FFT_TYPE {
FFT_FFT,
FFT_IFFT,
FFT_SPECTROGRAM,
};
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
void fft_kernel(mp_float_t *, size_t , int );
mp_obj_t fft_fft_ifft_spectrogram(mp_obj_t , uint8_t );
#else
void fft_kernel(mp_float_t *, mp_float_t *, size_t , int );
mp_obj_t fft_fft_ifft_spectrogram(size_t , mp_obj_t , mp_obj_t , uint8_t );
#endif /* ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE */
#endif /* _FFT_TOOLS_ */

View file

@ -1,132 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2020 Scott Shawcroft for Adafruit Industries
* 2020-2021 Zoltán Vörös
* 2020 Taku Fukada
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../ulab.h"
#include "../scipy/signal/signal.h"
#include "carray/carray_tools.h"
#include "filter.h"
#if ULAB_NUMPY_HAS_CONVOLVE
mp_obj_t filter_convolve(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_a, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_v, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type) || !mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("convolve arguments must be ndarrays"));
}
ndarray_obj_t *a = MP_OBJ_TO_PTR(args[0].u_obj);
ndarray_obj_t *c = MP_OBJ_TO_PTR(args[1].u_obj);
// deal with linear arrays only
#if ULAB_MAX_DIMS > 1
if((a->ndim != 1) || (c->ndim != 1)) {
mp_raise_TypeError(translate("convolve arguments must be linear arrays"));
}
#endif
size_t len_a = a->len;
size_t len_c = c->len;
if(len_a == 0 || len_c == 0) {
mp_raise_TypeError(translate("convolve arguments must not be empty"));
}
int len = len_a + len_c - 1; // convolve mode "full"
int32_t off = len_c - 1;
uint8_t dtype = NDARRAY_FLOAT;
#if ULAB_SUPPORTS_COMPLEX
if((a->dtype == NDARRAY_COMPLEX) || (c->dtype == NDARRAY_COMPLEX)) {
dtype = NDARRAY_COMPLEX;
}
#endif
ndarray_obj_t *ndarray = ndarray_new_linear_array(len, dtype);
mp_float_t *array = (mp_float_t *)ndarray->array;
uint8_t *aarray = (uint8_t *)a->array;
uint8_t *carray = (uint8_t *)c->array;
int32_t as = a->strides[ULAB_MAX_DIMS - 1] / a->itemsize;
int32_t cs = c->strides[ULAB_MAX_DIMS - 1] / c->itemsize;
#if ULAB_SUPPORTS_COMPLEX
if(dtype == NDARRAY_COMPLEX) {
mp_float_t a_real, a_imag;
mp_float_t c_real, c_imag = MICROPY_FLOAT_CONST(0.0);
for(int32_t k = -off; k < len-off; k++) {
mp_float_t accum_real = MICROPY_FLOAT_CONST(0.0);
mp_float_t accum_imag = MICROPY_FLOAT_CONST(0.0);
int32_t top_n = MIN(len_c, len_a - k);
int32_t bot_n = MAX(-k, 0);
for(int32_t n = bot_n; n < top_n; n++) {
int32_t idx_c = (len_c - n - 1) * cs;
int32_t idx_a = (n + k) * as;
if(a->dtype != NDARRAY_COMPLEX) {
a_real = ndarray_get_float_index(aarray, a->dtype, idx_a);
a_imag = MICROPY_FLOAT_CONST(0.0);
} else {
a_real = ndarray_get_float_index(aarray, NDARRAY_FLOAT, 2 * idx_a);
a_imag = ndarray_get_float_index(aarray, NDARRAY_FLOAT, 2 * idx_a + 1);
}
if(c->dtype != NDARRAY_COMPLEX) {
c_real = ndarray_get_float_index(carray, c->dtype, idx_c);
c_imag = MICROPY_FLOAT_CONST(0.0);
} else {
c_real = ndarray_get_float_index(carray, NDARRAY_FLOAT, 2 * idx_c);
c_imag = ndarray_get_float_index(carray, NDARRAY_FLOAT, 2 * idx_c + 1);
}
accum_real += a_real * c_real - a_imag * c_imag;
accum_imag += a_real * c_imag + a_imag * c_real;
}
*array++ = accum_real;
*array++ = accum_imag;
}
return MP_OBJ_FROM_PTR(ndarray);
}
#endif
for(int32_t k = -off; k < len-off; k++) {
mp_float_t accum = MICROPY_FLOAT_CONST(0.0);
int32_t top_n = MIN(len_c, len_a - k);
int32_t bot_n = MAX(-k, 0);
for(int32_t n = bot_n; n < top_n; n++) {
int32_t idx_c = (len_c - n - 1) * cs;
int32_t idx_a = (n + k) * as;
mp_float_t ai = ndarray_get_float_index(aarray, a->dtype, idx_a);
mp_float_t ci = ndarray_get_float_index(carray, c->dtype, idx_c);
accum += ai * ci;
}
*array++ = accum;
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(filter_convolve_obj, 2, filter_convolve);
#endif

View file

@ -1,817 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2022 Zoltán Vörös
*/
#include <math.h>
#include <string.h>
#include "py/builtin.h"
#include "py/formatfloat.h"
#include "py/obj.h"
#include "py/parsenum.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "extmod/vfs.h"
#include "../../ndarray.h"
#include "../../ulab_tools.h"
#include "io.h"
#define ULAB_IO_BUFFER_SIZE 128
#define ULAB_IO_CLIPBOARD_SIZE 32
#define ULAB_IO_MAX_ROWS 65535
#define ULAB_IO_NULL_ENDIAN 0
#define ULAB_IO_LITTLE_ENDIAN 1
#define ULAB_IO_BIG_ENDIAN 2
#if ULAB_NUMPY_HAS_LOAD
static void io_read_(mp_obj_t stream, const mp_stream_p_t *stream_p, char *buffer, const char *string, uint16_t len, int *error) {
size_t read = stream_p->read(stream, buffer, len, error);
bool fail = false;
if(read == len) {
if(string != NULL) {
if(memcmp(buffer, string, len) != 0) {
fail = true;
}
}
} else {
fail = true;
}
if(fail) {
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, error);
mp_raise_msg(&mp_type_RuntimeError, translate("corrupted file"));
}
}
static mp_obj_t io_load(mp_obj_t file) {
if(!mp_obj_is_str(file)) {
mp_raise_TypeError(translate("wrong input type"));
}
int error;
char *buffer = m_new(char, ULAB_IO_BUFFER_SIZE);
// test for endianness
uint16_t x = 1;
int8_t native_endianness = (x >> 8) == 1 ? ULAB_IO_BIG_ENDIAN : ULAB_IO_LITTLE_ENDIAN;
mp_obj_t open_args[2] = {
file,
MP_OBJ_NEW_QSTR(MP_QSTR_rb)
};
mp_obj_t stream = mp_builtin_open_obj.fun.kw(2, open_args, (mp_map_t *)&mp_const_empty_map);
const mp_stream_p_t *stream_p = mp_get_stream(stream);
// read header
// magic string
io_read_(stream, stream_p, buffer, "\x93NUMPY", 6, &error);
// simply discard the version number
io_read_(stream, stream_p, buffer, NULL, 2, &error);
// header length, represented as a little endian uint16 (0x76, 0x00)
io_read_(stream, stream_p, buffer, NULL, 2, &error);
uint16_t header_length = buffer[1];
header_length <<= 8;
header_length += buffer[0];
// beginning of the dictionary describing the array
io_read_(stream, stream_p, buffer, "{'descr': '", 11, &error);
uint8_t dtype;
io_read_(stream, stream_p, buffer, NULL, 1, &error);
uint8_t endianness = ULAB_IO_NULL_ENDIAN;
if(*buffer == '<') {
endianness = ULAB_IO_LITTLE_ENDIAN;
} else if(*buffer == '>') {
endianness = ULAB_IO_BIG_ENDIAN;
}
io_read_(stream, stream_p, buffer, NULL, 2, &error);
if(memcmp(buffer, "u1", 2) == 0) {
dtype = NDARRAY_UINT8;
} else if(memcmp(buffer, "i1", 2) == 0) {
dtype = NDARRAY_INT8;
} else if(memcmp(buffer, "u2", 2) == 0) {
dtype = NDARRAY_UINT16;
} else if(memcmp(buffer, "i2", 2) == 0) {
dtype = NDARRAY_INT16;
}
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
else if(memcmp(buffer, "f4", 2) == 0) {
dtype = NDARRAY_FLOAT;
}
#else
else if(memcmp(buffer, "f8", 2) == 0) {
dtype = NDARRAY_FLOAT;
}
#endif
#if ULAB_SUPPORTS_COMPLEX
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
else if(memcmp(buffer, "c8", 2) == 0) {
dtype = NDARRAY_COMPLEX;
}
#else
else if(memcmp(buffer, "c16", 3) == 0) {
dtype = NDARRAY_COMPLEX;
}
#endif
#endif /* ULAB_SUPPORT_COPMLEX */
else {
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
mp_raise_TypeError(translate("wrong dtype"));
}
io_read_(stream, stream_p, buffer, "', 'fortran_order': False, 'shape': (", 37, &error);
size_t *shape = m_new0(size_t, ULAB_MAX_DIMS);
uint16_t bytes_to_read = MIN(ULAB_IO_BUFFER_SIZE, header_length - 51);
// bytes_to_read is 128 at most. This should be enough to contain a
// maximum of 4 size_t numbers plus the delimiters
io_read_(stream, stream_p, buffer, NULL, bytes_to_read, &error);
char *needle = buffer;
uint8_t ndim = 0;
// find out the number of dimensions by counting the commas in the string
while(1) {
if(*needle == ',') {
ndim++;
if(needle[1] == ')') {
break;
}
} else if((*needle == ')') && (ndim > 0)) {
ndim++;
break;
}
needle++;
}
needle = buffer;
for(uint8_t i = 0; i < ndim; i++) {
size_t number = 0;
// trivial number parsing here
while(1) {
if((*needle == ' ') || (*needle == '\t')) {
needle++;
}
if((*needle > 47) && (*needle < 58)) {
number = number * 10 + (*needle - 48);
} else if((*needle == ',') || (*needle == ')')) {
break;
}
else {
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
mp_raise_msg(&mp_type_RuntimeError, translate("corrupted file"));
}
needle++;
}
needle++;
shape[ULAB_MAX_DIMS - ndim + i] = number;
}
// strip the rest of the header
if((bytes_to_read + 51) < header_length) {
io_read_(stream, stream_p, buffer, NULL, header_length - (bytes_to_read + 51), &error);
}
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(ndim, shape, dtype);
char *array = (char *)ndarray->array;
size_t read = stream_p->read(stream, array, ndarray->len * ndarray->itemsize, &error);
if(read != ndarray->len * ndarray->itemsize) {
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
mp_raise_msg(&mp_type_RuntimeError, translate("corrupted file"));
}
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
m_del(char, buffer, ULAB_IO_BUFFER_SIZE);
// swap the bytes, if necessary
if((native_endianness != endianness) && (dtype != NDARRAY_UINT8) && (dtype != NDARRAY_INT8)) {
uint8_t sz = ndarray->itemsize;
char *tmpbuff = NULL;
#if ULAB_SUPPORTS_COMPLEX
if(dtype == NDARRAY_COMPLEX) {
// work with the floating point real and imaginary parts
sz /= 2;
tmpbuff = m_new(char, sz);
for(size_t i = 0; i < ndarray->len; i++) {
for(uint8_t k = 0; k < 2; k++) {
tmpbuff += sz;
for(uint8_t j = 0; j < sz; j++) {
memcpy(--tmpbuff, array++, 1);
}
memcpy(array-sz, tmpbuff, sz);
}
}
} else {
#endif
tmpbuff = m_new(char, sz);
for(size_t i = 0; i < ndarray->len; i++) {
tmpbuff += sz;
for(uint8_t j = 0; j < sz; j++) {
memcpy(--tmpbuff, array++, 1);
}
memcpy(array-sz, tmpbuff, sz);
}
#if ULAB_SUPPORTS_COMPLEX
}
#endif
m_del(char, tmpbuff, sz);
}
m_del(size_t, shape, ULAB_MAX_DIMS);
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_1(io_load_obj, io_load);
#endif /* ULAB_NUMPY_HAS_LOAD */
#if ULAB_NUMPY_HAS_LOADTXT
static void io_assign_value(const char *clipboard, uint8_t len, ndarray_obj_t *ndarray, size_t *idx, uint8_t dtype) {
mp_obj_t value = mp_parse_num_decimal(clipboard, len, false, false, NULL);
if(dtype != NDARRAY_FLOAT) {
mp_float_t _value = mp_obj_get_float(value);
value = mp_obj_new_int((int32_t)MICROPY_FLOAT_C_FUN(round)(_value));
}
ndarray_set_value(dtype, ndarray->array, (*idx)++, value);
}
static mp_obj_t io_loadtxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_delimiter, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_comments, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_max_rows, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = -1 } },
{ MP_QSTR_usecols, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
{ MP_QSTR_skiprows, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t open_args[2] = {
args[0].u_obj,
MP_OBJ_NEW_QSTR(MP_QSTR_r)
};
mp_obj_t stream = mp_builtin_open_obj.fun.kw(2, open_args, (mp_map_t *)&mp_const_empty_map);
const mp_stream_p_t *stream_p = mp_get_stream(stream);
char *buffer = m_new(char, ULAB_IO_BUFFER_SIZE);
int error;
char delimiter = ' ';
if(args[1].u_obj != mp_const_none) {
size_t _len;
char *_delimiter = m_new(char, 8);
_delimiter = (char *)mp_obj_str_get_data(args[1].u_obj, &_len);
delimiter = _delimiter[0];
}
char comment_char = '#';
if(args[2].u_obj != mp_const_none) {
size_t _len;
char *_comment_char = m_new(char, 8);
_comment_char = (char *)mp_obj_str_get_data(args[2].u_obj, &_len);
comment_char = _comment_char[0];
}
uint16_t skiprows = args[6].u_int;
uint16_t max_rows = ULAB_IO_MAX_ROWS;
if((args[3].u_int > 0) && (args[3].u_int < ULAB_IO_MAX_ROWS)) {
max_rows = args[3].u_int + skiprows;
}
uint16_t *cols = NULL;
uint8_t used_columns = 0;
if(args[4].u_obj != mp_const_none) {
if(mp_obj_is_int(args[4].u_obj)) {
used_columns = 1;
cols = m_new(uint16_t, used_columns);
cols[0] = (uint16_t)mp_obj_get_int(args[4].u_obj);
} else {
#if ULAB_MAX_DIMS == 1
mp_raise_ValueError(translate("usecols keyword must be specified"));
#else
// assume that the argument is an iterable
used_columns = (uint16_t)mp_obj_get_int(mp_obj_len(args[4].u_obj));
cols = m_new(uint16_t, used_columns);
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(args[4].u_obj, &iter_buf);
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
*cols++ = (uint16_t)mp_obj_get_int(item);
}
cols -= used_columns;
#endif
}
}
uint8_t dtype = args[5].u_int;
// count the columns and rows
// we actually count only the rows and the items, and assume that
// the number of columns can be gotten by means of a simple division,
// i.e., that each row has the same number of columns
char *offset;
uint16_t rows = 0, items = 0, all_rows = 0;
uint8_t read;
uint8_t len = 0;
do {
read = (uint8_t)stream_p->read(stream, buffer, ULAB_IO_BUFFER_SIZE - 1, &error);
buffer[read] = '\0';
offset = buffer;
while(*offset != '\0') {
if(*offset == comment_char) {
// clear the line till the end, or the buffer's end
while((*offset != '\0')) {
offset++;
if(*offset == '\n') {
offset++;
all_rows++;
break;
}
}
}
// catch whitespaces here: if these are not on a comment line, then they delimit a number
if(*offset == '\n') {
all_rows++;
if(all_rows > skiprows) {
rows++;
items++;
len = 0;
}
if(all_rows == max_rows) {
break;
}
}
if((*offset == ' ') || (*offset == '\t') || (*offset == '\v') ||
(*offset == '\f') || (*offset == '\r') || (*offset == delimiter)) {
offset++;
while((*offset == ' ') || (*offset == '\t') || (*offset == '\v') || (*offset == '\f') || (*offset == '\r')) {
offset++;
}
if(len > 0) {
if(all_rows >= skiprows) {
items++;
}
len = 0;
}
} else {
offset++;
len++;
}
}
} while((read > 0) && (all_rows < max_rows));
if(rows == 0) {
mp_raise_ValueError(translate("empty file"));
}
uint16_t columns = items / rows;
if(columns < used_columns) {
mp_raise_ValueError(translate("usecols is too high"));
}
size_t *shape = m_new0(size_t, ULAB_MAX_DIMS);
#if ULAB_MAX_DIMS == 1
shape[0] = rows;
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(1, shape, dtype);
#else
if(args[4].u_obj == mp_const_none) {
shape[ULAB_MAX_DIMS - 1] = columns;
} else {
shape[ULAB_MAX_DIMS - 1] = used_columns;
}
shape[ULAB_MAX_DIMS - 2] = rows;
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(2, shape, dtype);
#endif
struct mp_stream_seek_t seek_s;
seek_s.offset = 0;
seek_s.whence = MP_SEEK_SET;
stream_p->ioctl(stream, MP_STREAM_SEEK, (mp_uint_t)(uintptr_t)&seek_s, &error);
char *clipboard = m_new(char, ULAB_IO_CLIPBOARD_SIZE);
char *clipboard_origin = clipboard;
rows = 0;
columns = 0;
len = 0;
size_t idx = 0;
do {
read = stream_p->read(stream, buffer, ULAB_IO_BUFFER_SIZE - 1, &error);
buffer[read] = '\0';
offset = buffer;
while(*offset != '\0') {
if(*offset == comment_char) {
// clear the line till the end, or the buffer's end
while((*offset != '\0')) {
offset++;
if(*offset == '\n') {
rows++;
offset++;
break;
}
}
}
if(rows == max_rows) {
break;
}
if((*offset == ' ') || (*offset == '\t') || (*offset == '\v') ||
(*offset == '\f') || (*offset == '\r') || (*offset == '\n') || (*offset == delimiter)) {
offset++;
while((*offset == ' ') || (*offset == '\t') || (*offset == '\v') ||
(*offset == '\f') || (*offset == '\r') || (*offset == '\n')) {
offset++;
}
if(len > 0) {
clipboard = clipboard_origin;
if(rows >= skiprows) {
#if ULAB_MAX_DIMS == 1
if(columns == cols[0]) {
io_assign_value(clipboard, len, ndarray, &idx, dtype);
}
#else
if(args[4].u_obj == mp_const_none) {
io_assign_value(clipboard, len, ndarray, &idx, dtype);
} else {
for(uint8_t c = 0; c < used_columns; c++) {
if(columns == cols[c]) {
io_assign_value(clipboard, len, ndarray, &idx, dtype);
break;
}
}
}
#endif
}
columns++;
len = 0;
if(offset[-1] == '\n') {
columns = 0;
rows++;
}
}
} else {
*clipboard++ = *offset++;
len++;
}
}
} while((read > 0) && (rows < max_rows));
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
m_del(size_t, shape, ULAB_MAX_DIMS);
m_del(char, buffer, ULAB_IO_BUFFER_SIZE);
m_del(char, clipboard, ULAB_IO_CLIPBOARD_SIZE);
m_del(uint16_t, cols, used_columns);
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(io_loadtxt_obj, 1, io_loadtxt);
#endif /* ULAB_NUMPY_HAS_LOADTXT */
#if ULAB_NUMPY_HAS_SAVE
static uint8_t io_sprintf(char *buffer, const char *comma, size_t x) {
uint8_t offset = 1;
char *buf = buffer;
// our own minimal implementation of sprintf for size_t types
// this is required on systems, where sprintf is not available
// find out, how many characters are required
// we could call log10 here...
for(size_t i = 10; i < 100000000; i *= 10) {
if(x < i) {
break;
}
buf++;
}
while(x > 0) {
uint8_t rem = x % 10;
*buf-- = '0' + rem;
x /= 10;
offset++;
}
buf += offset;
while(*comma != '\0') {
*buf++ = *comma++;
offset++;
}
return offset - 1;
}
static mp_obj_t io_save(mp_obj_t file, mp_obj_t ndarray_) {
if(!mp_obj_is_str(file) || !mp_obj_is_type(ndarray_, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("wrong input type"));
}
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(ndarray_);
int error;
char *buffer = m_new(char, ULAB_IO_BUFFER_SIZE);
uint8_t offset = 0;
// test for endianness
uint16_t x = 1;
int8_t native_endianness = (x >> 8) == 1 ? '>' : '<';
mp_obj_t open_args[2] = {
file,
MP_OBJ_NEW_QSTR(MP_QSTR_wb)
};
mp_obj_t stream = mp_builtin_open_obj.fun.kw(2, open_args, (mp_map_t *)&mp_const_empty_map);
const mp_stream_p_t *stream_p = mp_get_stream(stream);
// write header;
// magic string + header length, which is always 128 - 10 = 118, represented as a little endian uint16 (0x76, 0x00)
// + beginning of the dictionary describing the array
memcpy(buffer, "\x93NUMPY\x01\x00\x76\x00{'descr': '", 21);
offset += 21;
buffer[offset] = native_endianness;
if((ndarray->dtype == NDARRAY_UINT8) || (ndarray->dtype == NDARRAY_INT8)) {
// for single-byte data, the endianness doesn't matter
buffer[offset] = '|';
}
offset++;
switch(ndarray->dtype) {
case NDARRAY_UINT8:
memcpy(buffer+offset, "u1", 2);
break;
case NDARRAY_INT8:
memcpy(buffer+offset, "i1", 2);
break;
case NDARRAY_UINT16:
memcpy(buffer+offset, "u2", 2);
break;
case NDARRAY_INT16:
memcpy(buffer+offset, "i2", 2);
break;
case NDARRAY_FLOAT:
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
memcpy(buffer+offset, "f4", 2);
#else
memcpy(buffer+offset, "f8", 2);
#endif
break;
#if ULAB_SUPPORTS_COMPLEX
case NDARRAY_COMPLEX:
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
memcpy(buffer+offset, "c8", 2);
#else
memcpy(buffer+offset, "c16", 3);
offset++;
#endif
break;
#endif
}
offset += 2;
memcpy(buffer+offset, "', 'fortran_order': False, 'shape': (", 37);
offset += 37;
if(ndarray->ndim == 1) {
offset += io_sprintf(buffer+offset, ",\0", ndarray->shape[ULAB_MAX_DIMS - 1]);
} else {
for(uint8_t i = ndarray->ndim; i > 1; i--) {
offset += io_sprintf(buffer+offset, ", \0", ndarray->shape[ULAB_MAX_DIMS - i]);
}
offset += io_sprintf(buffer+offset, "\0", ndarray->shape[ULAB_MAX_DIMS - 1]);
}
memcpy(buffer+offset, "), }", 4);
offset += 4;
// pad with space till the very end
memset(buffer+offset, 32, ULAB_IO_BUFFER_SIZE - offset - 1);
buffer[ULAB_IO_BUFFER_SIZE - 1] = '\n';
stream_p->write(stream, buffer, ULAB_IO_BUFFER_SIZE, &error);
// write the array data
uint8_t sz = ndarray->itemsize;
offset = 0;
uint8_t *array = (uint8_t *)ndarray->array;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(buffer+offset, array, sz);
offset += sz;
if(offset == ULAB_IO_BUFFER_SIZE) {
stream_p->write(stream, buffer, offset, &error);
offset = 0;
}
array += ndarray->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < ndarray->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1];
array += ndarray->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < ndarray->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2];
array += ndarray->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < ndarray->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3];
array += ndarray->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < ndarray->shape[ULAB_MAX_DIMS - 4]);
#endif
stream_p->write(stream, buffer, offset, &error);
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
m_del(char, buffer, ULAB_IO_BUFFER_SIZE);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(io_save_obj, io_save);
#endif /* ULAB_NUMPY_HAS_SAVE */
#if ULAB_NUMPY_HAS_SAVETXT
static int8_t io_format_float(ndarray_obj_t *ndarray, mp_float_t (*func)(void *), uint8_t *array, char *buffer, const char *delimiter) {
// own implementation of float formatting for platforms that don't have sprintf
int8_t offset = 0;
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
const int precision = 6;
#else
const int precision = 7;
#endif
#else
const int precision = 16;
#endif
#if ULAB_SUPPORTS_COMPLEX
if(ndarray->dtype == NDARRAY_COMPLEX) {
mp_float_t real = func(array);
mp_float_t imag = func(array + ndarray->itemsize / 2);
offset = mp_format_float(real, buffer, ULAB_IO_BUFFER_SIZE, 'f', precision, 'j');
if(imag >= MICROPY_FLOAT_CONST(0.0)) {
buffer[offset++] = '+';
} else {
buffer[offset++] = '-';
}
offset += mp_format_float(-imag, &buffer[offset], ULAB_IO_BUFFER_SIZE, 'f', precision, 'j');
}
#endif
offset = (uint8_t)mp_format_float(func(array), buffer, ULAB_IO_BUFFER_SIZE, 'f', precision, '\0');
#if ULAB_SUPPORTS_COMPLEX
if(ndarray->dtype != NDARRAY_COMPLEX) {
// complexes end with a 'j', floats with a '\0', so we have to wind back by one character
offset--;
}
#endif
while(*delimiter != '\0') {
buffer[offset++] = *delimiter++;
}
return offset;
}
static mp_obj_t io_savetxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_delimiter, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_header, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_footer, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_comments, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_str(args[0].u_obj) || !mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("wrong input type"));
}
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[1].u_obj);
#if ULAB_MAX_DIMS > 2
if(ndarray->ndim > 2) {
mp_raise_ValueError(translate("array has too many dimensions"));
}
#endif
mp_obj_t open_args[2] = {
args[0].u_obj,
MP_OBJ_NEW_QSTR(MP_QSTR_w)
};
mp_obj_t stream = mp_builtin_open_obj.fun.kw(2, open_args, (mp_map_t *)&mp_const_empty_map);
const mp_stream_p_t *stream_p = mp_get_stream(stream);
char *buffer = m_new(char, ULAB_IO_BUFFER_SIZE);
int error;
if(mp_obj_is_str(args[3].u_obj)) {
size_t _len;
if(mp_obj_is_str(args[5].u_obj)) {
const char *comments = mp_obj_str_get_data(args[5].u_obj, &_len);
stream_p->write(stream, comments, _len, &error);
} else {
stream_p->write(stream, "# ", 2, &error);
}
const char *header = mp_obj_str_get_data(args[3].u_obj, &_len);
stream_p->write(stream, header, _len, &error);
stream_p->write(stream, "\n", 1, &error);
}
uint8_t *array = (uint8_t *)ndarray->array;
mp_float_t (*func)(void *) = ndarray_get_float_function(ndarray->dtype);
char *delimiter = m_new(char, 8);
if(ndarray->ndim == 1) {
delimiter[0] = '\n';
delimiter[1] = '\0';
} else if(args[2].u_obj == mp_const_none) {
delimiter[0] = ' ';
delimiter[1] = '\0';
} else {
size_t delimiter_len;
delimiter = (char *)mp_obj_str_get_data(args[2].u_obj, &delimiter_len);
}
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
int8_t chars = io_format_float(ndarray, func, array, buffer, l == ndarray->shape[ULAB_MAX_DIMS - 1] - 1 ? "\n" : delimiter);
if(chars > 0) {
stream_p->write(stream, buffer, chars, &error);
}
array += ndarray->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < ndarray->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1];
array += ndarray->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < ndarray->shape[ULAB_MAX_DIMS - 2]);
#endif
if(mp_obj_is_str(args[4].u_obj)) {
size_t _len;
if(mp_obj_is_str(args[5].u_obj)) {
const char *comments = mp_obj_str_get_data(args[5].u_obj, &_len);
stream_p->write(stream, comments, _len, &error);
} else {
stream_p->write(stream, "# ", 2, &error);
}
const char *footer = mp_obj_str_get_data(args[4].u_obj, &_len);
stream_p->write(stream, footer, _len, &error);
stream_p->write(stream, "\n", 1, &error);
}
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(io_savetxt_obj, 2, io_savetxt);
#endif /* ULAB_NUMPY_HAS_SAVETXT */

View file

@ -1,19 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2022 Zoltán Vörös
*/
#ifndef _ULAB_IO_
#define _ULAB_IO_
MP_DECLARE_CONST_FUN_OBJ_1(io_load_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(io_loadtxt_obj);
MP_DECLARE_CONST_FUN_OBJ_2(io_save_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(io_savetxt_obj);
#endif

View file

@ -1,546 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
* 2020 Scott Shawcroft for Adafruit Industries
* 2020 Roberto Colistete Jr.
* 2020 Taku Fukada
*
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../../ulab.h"
#include "../../ulab_tools.h"
#include "../carray/carray_tools.h"
#include "linalg.h"
#if ULAB_NUMPY_HAS_LINALG_MODULE
//|
//| import ulab.numpy
//|
//| """Linear algebra functions"""
//|
#if ULAB_MAX_DIMS > 1
//| def cholesky(A: ulab.numpy.ndarray) -> ulab.numpy.ndarray:
//| """
//| :param ~ulab.numpy.ndarray A: a positive definite, symmetric square matrix
//| :return ~ulab.numpy.ndarray L: a square root matrix in the lower triangular form
//| :raises ValueError: If the input does not fulfill the necessary conditions
//|
//| The returned matrix satisfies the equation m=LL*"""
//| ...
//|
static mp_obj_t linalg_cholesky(mp_obj_t oin) {
ndarray_obj_t *ndarray = tools_object_is_square(oin);
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
ndarray_obj_t *L = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, ndarray->shape[ULAB_MAX_DIMS - 1], ndarray->shape[ULAB_MAX_DIMS - 1]), NDARRAY_FLOAT);
mp_float_t *Larray = (mp_float_t *)L->array;
size_t N = ndarray->shape[ULAB_MAX_DIMS - 1];
uint8_t *array = (uint8_t *)ndarray->array;
mp_float_t (*func)(void *) = ndarray_get_float_function(ndarray->dtype);
for(size_t m=0; m < N; m++) { // rows
for(size_t n=0; n < N; n++) { // columns
*Larray++ = func(array);
array += ndarray->strides[ULAB_MAX_DIMS - 1];
}
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * N;
array += ndarray->strides[ULAB_MAX_DIMS - 2];
}
Larray -= N*N;
// make sure the matrix is symmetric
for(size_t m=0; m < N; m++) { // rows
for(size_t n=m+1; n < N; n++) { // columns
// compare entry (m, n) to (n, m)
if(LINALG_EPSILON < MICROPY_FLOAT_C_FUN(fabs)(Larray[m * N + n] - Larray[n * N + m])) {
mp_raise_ValueError(translate("input matrix is asymmetric"));
}
}
}
// this is actually not needed, but Cholesky in numpy returns the lower triangular matrix
for(size_t i=0; i < N; i++) { // rows
for(size_t j=i+1; j < N; j++) { // columns
Larray[i*N + j] = MICROPY_FLOAT_CONST(0.0);
}
}
mp_float_t sum = 0.0;
for(size_t i=0; i < N; i++) { // rows
for(size_t j=0; j <= i; j++) { // columns
sum = Larray[i * N + j];
for(size_t k=0; k < j; k++) {
sum -= Larray[i * N + k] * Larray[j * N + k];
}
if(i == j) {
if(sum <= MICROPY_FLOAT_CONST(0.0)) {
mp_raise_ValueError(translate("matrix is not positive definite"));
} else {
Larray[i * N + i] = MICROPY_FLOAT_C_FUN(sqrt)(sum);
}
} else {
Larray[i * N + j] = sum / Larray[j * N + j];
}
}
}
return MP_OBJ_FROM_PTR(L);
}
MP_DEFINE_CONST_FUN_OBJ_1(linalg_cholesky_obj, linalg_cholesky);
//| def det(m: ulab.numpy.ndarray) -> float:
//| """
//| :param: m, a square matrix
//| :return float: The determinant of the matrix
//|
//| Computes the eigenvalues and eigenvectors of a square matrix"""
//| ...
//|
static mp_obj_t linalg_det(mp_obj_t oin) {
ndarray_obj_t *ndarray = tools_object_is_square(oin);
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
uint8_t *array = (uint8_t *)ndarray->array;
size_t N = ndarray->shape[ULAB_MAX_DIMS - 1];
mp_float_t *tmp = m_new(mp_float_t, N * N);
for(size_t m=0; m < N; m++) { // rows
for(size_t n=0; n < N; n++) { // columns
*tmp++ = ndarray_get_float_value(array, ndarray->dtype);
array += ndarray->strides[ULAB_MAX_DIMS - 1];
}
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * N;
array += ndarray->strides[ULAB_MAX_DIMS - 2];
}
// re-wind the pointer
tmp -= N*N;
mp_float_t c;
mp_float_t det_sign = 1.0;
for(size_t m=0; m < N-1; m++){
if(MICROPY_FLOAT_C_FUN(fabs)(tmp[m * (N+1)]) < LINALG_EPSILON) {
size_t m1 = m + 1;
for(; m1 < N; m1++) {
if(!(MICROPY_FLOAT_C_FUN(fabs)(tmp[m1*N+m]) < LINALG_EPSILON)) {
//look for a line to swap
for(size_t m2=0; m2 < N; m2++) {
mp_float_t swapVal = tmp[m*N+m2];
tmp[m*N+m2] = tmp[m1*N+m2];
tmp[m1*N+m2] = swapVal;
}
det_sign = -det_sign;
break;
}
}
if (m1 >= N) {
m_del(mp_float_t, tmp, N * N);
return mp_obj_new_float(0.0);
}
}
for(size_t n=0; n < N; n++) {
if(m != n) {
c = tmp[N * n + m] / tmp[m * (N+1)];
for(size_t k=0; k < N; k++){
tmp[N * n + k] -= c * tmp[N * m + k];
}
}
}
}
mp_float_t det = det_sign;
for(size_t m=0; m < N; m++){
det *= tmp[m * (N+1)];
}
m_del(mp_float_t, tmp, N * N);
return mp_obj_new_float(det);
}
MP_DEFINE_CONST_FUN_OBJ_1(linalg_det_obj, linalg_det);
#endif
#if ULAB_MAX_DIMS > 1
//| def eig(m: ulab.numpy.ndarray) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]:
//| """
//| :param m: a square matrix
//| :return tuple (eigenvectors, eigenvalues):
//|
//| Computes the eigenvalues and eigenvectors of a square matrix"""
//| ...
//|
static mp_obj_t linalg_eig(mp_obj_t oin) {
ndarray_obj_t *in = tools_object_is_square(oin);
COMPLEX_DTYPE_NOT_IMPLEMENTED(in->dtype)
uint8_t *iarray = (uint8_t *)in->array;
size_t S = in->shape[ULAB_MAX_DIMS - 1];
mp_float_t *array = m_new(mp_float_t, S*S);
for(size_t i=0; i < S; i++) { // rows
for(size_t j=0; j < S; j++) { // columns
*array++ = ndarray_get_float_value(iarray, in->dtype);
iarray += in->strides[ULAB_MAX_DIMS - 1];
}
iarray -= in->strides[ULAB_MAX_DIMS - 1] * S;
iarray += in->strides[ULAB_MAX_DIMS - 2];
}
array -= S * S;
// make sure the matrix is symmetric
for(size_t m=0; m < S; m++) {
for(size_t n=m+1; n < S; n++) {
// compare entry (m, n) to (n, m)
// TODO: this must probably be scaled!
if(LINALG_EPSILON < MICROPY_FLOAT_C_FUN(fabs)(array[m * S + n] - array[n * S + m])) {
mp_raise_ValueError(translate("input matrix is asymmetric"));
}
}
}
// if we got this far, then the matrix will be symmetric
ndarray_obj_t *eigenvectors = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, S, S), NDARRAY_FLOAT);
mp_float_t *eigvectors = (mp_float_t *)eigenvectors->array;
size_t iterations = linalg_jacobi_rotations(array, eigvectors, S);
if(iterations == 0) {
// the computation did not converge; numpy raises LinAlgError
m_del(mp_float_t, array, in->len);
mp_raise_ValueError(translate("iterations did not converge"));
}
ndarray_obj_t *eigenvalues = ndarray_new_linear_array(S, NDARRAY_FLOAT);
mp_float_t *eigvalues = (mp_float_t *)eigenvalues->array;
for(size_t i=0; i < S; i++) {
eigvalues[i] = array[i * (S + 1)];
}
m_del(mp_float_t, array, in->len);
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
tuple->items[0] = MP_OBJ_FROM_PTR(eigenvalues);
tuple->items[1] = MP_OBJ_FROM_PTR(eigenvectors);
return MP_OBJ_FROM_PTR(tuple);
}
MP_DEFINE_CONST_FUN_OBJ_1(linalg_eig_obj, linalg_eig);
//| def inv(m: ulab.numpy.ndarray) -> ulab.numpy.ndarray:
//| """
//| :param ~ulab.numpy.ndarray m: a square matrix
//| :return: The inverse of the matrix, if it exists
//| :raises ValueError: if the matrix is not invertible
//|
//| Computes the inverse of a square matrix"""
//| ...
//|
static mp_obj_t linalg_inv(mp_obj_t o_in) {
ndarray_obj_t *ndarray = tools_object_is_square(o_in);
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
uint8_t *array = (uint8_t *)ndarray->array;
size_t N = ndarray->shape[ULAB_MAX_DIMS - 1];
ndarray_obj_t *inverted = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, N, N), NDARRAY_FLOAT);
mp_float_t *iarray = (mp_float_t *)inverted->array;
mp_float_t (*func)(void *) = ndarray_get_float_function(ndarray->dtype);
for(size_t i=0; i < N; i++) { // rows
for(size_t j=0; j < N; j++) { // columns
*iarray++ = func(array);
array += ndarray->strides[ULAB_MAX_DIMS - 1];
}
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * N;
array += ndarray->strides[ULAB_MAX_DIMS - 2];
}
// re-wind the pointer
iarray -= N*N;
if(!linalg_invert_matrix(iarray, N)) {
mp_raise_ValueError(translate("input matrix is singular"));
}
return MP_OBJ_FROM_PTR(inverted);
}
MP_DEFINE_CONST_FUN_OBJ_1(linalg_inv_obj, linalg_inv);
#endif
//| def norm(x: ulab.numpy.ndarray) -> float:
//| """
//| :param ~ulab.numpy.ndarray x: a vector or a matrix
//|
//| Computes the 2-norm of a vector or a matrix, i.e., ``sqrt(sum(x*x))``, however, without the RAM overhead."""
//| ...
//|
static mp_obj_t linalg_norm(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE} } ,
{ MP_QSTR_axis, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t x = args[0].u_obj;
mp_obj_t axis = args[1].u_obj;
mp_float_t dot = 0.0, value;
size_t count = 1;
if(mp_obj_is_type(x, &mp_type_tuple) || mp_obj_is_type(x, &mp_type_list) || mp_obj_is_type(x, &mp_type_range)) {
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(x, &iter_buf);
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
value = mp_obj_get_float(item);
// we could simply take the sum of value ** 2,
// but this method is numerically stable
dot = dot + (value * value - dot) / count++;
}
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(dot * (count - 1)));
} else if(mp_obj_is_type(x, &ulab_ndarray_type)) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(x);
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
uint8_t *array = (uint8_t *)ndarray->array;
// always get a float, so that we don't have to resolve the dtype later
mp_float_t (*func)(void *) = ndarray_get_float_function(ndarray->dtype);
shape_strides _shape_strides = tools_reduce_axes(ndarray, axis);
ndarray_obj_t *results = ndarray_new_dense_ndarray(_shape_strides.ndim, _shape_strides.shape, NDARRAY_FLOAT);
mp_float_t *rarray = (mp_float_t *)results->array;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
if(axis != mp_const_none) {
count = 1;
dot = 0.0;
}
do {
value = func(array);
dot = dot + (value * value - dot) / count++;
array += _shape_strides.strides[0];
l++;
} while(l < _shape_strides.shape[0]);
*rarray = MICROPY_FLOAT_C_FUN(sqrt)(dot * (count - 1));
#if ULAB_MAX_DIMS > 1
rarray += _shape_strides.increment;
array -= _shape_strides.strides[0] * _shape_strides.shape[0];
array += _shape_strides.strides[ULAB_MAX_DIMS - 1];
k++;
} while(k < _shape_strides.shape[ULAB_MAX_DIMS - 1]);
#endif
#if ULAB_MAX_DIMS > 2
array -= _shape_strides.strides[ULAB_MAX_DIMS - 1] * _shape_strides.shape[ULAB_MAX_DIMS - 1];
array += _shape_strides.strides[ULAB_MAX_DIMS - 2];
j++;
} while(j < _shape_strides.shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 3
array -= _shape_strides.strides[ULAB_MAX_DIMS - 2] * _shape_strides.shape[ULAB_MAX_DIMS - 2];
array += _shape_strides.strides[ULAB_MAX_DIMS - 3];
i++;
} while(i < _shape_strides.shape[ULAB_MAX_DIMS - 3]);
#endif
if(results->ndim == 0) {
return mp_obj_new_float(*rarray);
}
return MP_OBJ_FROM_PTR(results);
}
return mp_const_none; // we should never reach this point
}
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_norm_obj, 1, linalg_norm);
#if ULAB_MAX_DIMS > 1
//| def qr(m: ulab.numpy.ndarray) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]:
//| """
//| :param m: a matrix
//| :return tuple (Q, R):
//|
//| Factor the matrix a as QR, where Q is orthonormal and R is upper-triangular.
//| """
//| ...
//|
static mp_obj_t linalg_qr(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_mode, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_QSTR(MP_QSTR_reduced) } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("operation is defined for ndarrays only"));
}
ndarray_obj_t *source = MP_OBJ_TO_PTR(args[0].u_obj);
if(source->ndim != 2) {
mp_raise_ValueError(translate("operation is defined for 2D arrays only"));
}
size_t m = source->shape[ULAB_MAX_DIMS - 2]; // rows
size_t n = source->shape[ULAB_MAX_DIMS - 1]; // columns
ndarray_obj_t *Q = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, m, m), NDARRAY_FLOAT);
ndarray_obj_t *R = ndarray_new_dense_ndarray(2, source->shape, NDARRAY_FLOAT);
mp_float_t *qarray = (mp_float_t *)Q->array;
mp_float_t *rarray = (mp_float_t *)R->array;
// simply copy the entries of source to a float array
mp_float_t (*func)(void *) = ndarray_get_float_function(source->dtype);
uint8_t *sarray = (uint8_t *)source->array;
for(size_t i = 0; i < m; i++) {
for(size_t j = 0; j < n; j++) {
*rarray++ = func(sarray);
sarray += source->strides[ULAB_MAX_DIMS - 1];
}
sarray -= n * source->strides[ULAB_MAX_DIMS - 1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
}
rarray -= m * n;
// start with the unit matrix
for(size_t i = 0; i < m; i++) {
qarray[i * (m + 1)] = 1.0;
}
for(size_t j = 0; j < n; j++) { // columns
for(size_t i = m - 1; i > j; i--) { // rows
mp_float_t c, s;
// Givens matrix: note that numpy uses a strange form of the rotation
// [[c s],
// [s -c]]
if(MICROPY_FLOAT_C_FUN(fabs)(rarray[i * n + j]) < LINALG_EPSILON) { // r[i, j]
c = (rarray[(i - 1) * n + j] >= MICROPY_FLOAT_CONST(0.0)) ? MICROPY_FLOAT_CONST(1.0) : MICROPY_FLOAT_CONST(-1.0); // r[i-1, j]
s = 0.0;
} else if(MICROPY_FLOAT_C_FUN(fabs)(rarray[(i - 1) * n + j]) < LINALG_EPSILON) { // r[i-1, j]
c = 0.0;
s = (rarray[i * n + j] >= MICROPY_FLOAT_CONST(0.0)) ? MICROPY_FLOAT_CONST(-1.0) : MICROPY_FLOAT_CONST(1.0); // r[i, j]
} else {
mp_float_t t, u;
if(MICROPY_FLOAT_C_FUN(fabs)(rarray[(i - 1) * n + j]) > MICROPY_FLOAT_C_FUN(fabs)(rarray[i * n + j])) { // r[i-1, j], r[i, j]
t = rarray[i * n + j] / rarray[(i - 1) * n + j]; // r[i, j]/r[i-1, j]
u = MICROPY_FLOAT_C_FUN(sqrt)(1 + t * t);
c = MICROPY_FLOAT_CONST(-1.0) / u;
s = c * t;
} else {
t = rarray[(i - 1) * n + j] / rarray[i * n + j]; // r[i-1, j]/r[i, j]
u = MICROPY_FLOAT_C_FUN(sqrt)(1 + t * t);
s = MICROPY_FLOAT_CONST(-1.0) / u;
c = s * t;
}
}
mp_float_t r1, r2;
// update R: multiply with the rotation matrix from the left
for(size_t k = 0; k < n; k++) {
r1 = rarray[(i - 1) * n + k]; // r[i-1, k]
r2 = rarray[i * n + k]; // r[i, k]
rarray[(i - 1) * n + k] = c * r1 + s * r2; // r[i-1, k]
rarray[i * n + k] = s * r1 - c * r2; // r[i, k]
}
// update Q: multiply with the transpose of the rotation matrix from the right
for(size_t k = 0; k < m; k++) {
r1 = qarray[k * m + (i - 1)];
r2 = qarray[k * m + i];
qarray[k * m + (i - 1)] = c * r1 + s * r2;
qarray[k * m + i] = s * r1 - c * r2;
}
}
}
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
GET_STR_DATA_LEN(args[1].u_obj, mode, len);
if(memcmp(mode, "complete", 8) == 0) {
tuple->items[0] = MP_OBJ_FROM_PTR(Q);
tuple->items[1] = MP_OBJ_FROM_PTR(R);
} else if(memcmp(mode, "reduced", 7) == 0) {
size_t k = MAX(m, n) - MIN(m, n);
ndarray_obj_t *q = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, m, m - k), NDARRAY_FLOAT);
ndarray_obj_t *r = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, m - k, n), NDARRAY_FLOAT);
mp_float_t *qa = (mp_float_t *)q->array;
mp_float_t *ra = (mp_float_t *)r->array;
for(size_t i = 0; i < m; i++) {
memcpy(qa, qarray, (m - k) * q->itemsize);
qa += (m - k);
qarray += m;
}
for(size_t i = 0; i < m - k; i++) {
memcpy(ra, rarray, n * r->itemsize);
ra += n;
rarray += n;
}
tuple->items[0] = MP_OBJ_FROM_PTR(q);
tuple->items[1] = MP_OBJ_FROM_PTR(r);
} else {
mp_raise_ValueError(translate("mode must be complete, or reduced"));
}
return MP_OBJ_FROM_PTR(tuple);
}
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_qr_obj, 1, linalg_qr);
#endif
STATIC const mp_rom_map_elem_t ulab_linalg_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_linalg) },
#if ULAB_MAX_DIMS > 1
#if ULAB_LINALG_HAS_CHOLESKY
{ MP_ROM_QSTR(MP_QSTR_cholesky), MP_ROM_PTR(&linalg_cholesky_obj) },
#endif
#if ULAB_LINALG_HAS_DET
{ MP_ROM_QSTR(MP_QSTR_det), MP_ROM_PTR(&linalg_det_obj) },
#endif
#if ULAB_LINALG_HAS_EIG
{ MP_ROM_QSTR(MP_QSTR_eig), MP_ROM_PTR(&linalg_eig_obj) },
#endif
#if ULAB_LINALG_HAS_INV
{ MP_ROM_QSTR(MP_QSTR_inv), MP_ROM_PTR(&linalg_inv_obj) },
#endif
#if ULAB_LINALG_HAS_QR
{ MP_ROM_QSTR(MP_QSTR_qr), MP_ROM_PTR(&linalg_qr_obj) },
#endif
#endif
#if ULAB_LINALG_HAS_NORM
{ MP_ROM_QSTR(MP_QSTR_norm), MP_ROM_PTR(&linalg_norm_obj) },
#endif
};
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_linalg_globals, ulab_linalg_globals_table);
const mp_obj_module_t ulab_linalg_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_linalg_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy_dot_linalg, ulab_linalg_module, MODULE_ULAB_ENABLED);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy_dot_linalg, ulab_linalg_module);
#endif
#endif
#endif

View file

@ -1,27 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*/
#ifndef _LINALG_
#define _LINALG_
#include "../../ulab.h"
#include "../../ndarray.h"
#include "linalg_tools.h"
extern const mp_obj_module_t ulab_linalg_module;
MP_DECLARE_CONST_FUN_OBJ_1(linalg_cholesky_obj);
MP_DECLARE_CONST_FUN_OBJ_1(linalg_det_obj);
MP_DECLARE_CONST_FUN_OBJ_1(linalg_eig_obj);
MP_DECLARE_CONST_FUN_OBJ_1(linalg_inv_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(linalg_norm_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(linalg_qr_obj);
#endif

View file

@ -1,170 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2010 Zoltán Vörös
*/
#include <math.h>
#include <string.h>
#include "py/runtime.h"
#include "linalg_tools.h"
/*
* The following function inverts a matrix, whose entries are given in the input array
* The function has no dependencies beyond micropython itself (for the definition of mp_float_t),
* and can be used independent of ulab.
*/
bool linalg_invert_matrix(mp_float_t *data, size_t N) {
// returns true, of the inversion was successful,
// false, if the matrix is singular
// initially, this is the unit matrix: the contents of this matrix is what
// will be returned after all the transformations
mp_float_t *unit = m_new0(mp_float_t, N*N);
mp_float_t elem = 1.0;
for(size_t m=0; m < N; m++) {
memcpy(&unit[m * (N+1)], &elem, sizeof(mp_float_t));
}
for(size_t m=0; m < N; m++){
// this could be faster with ((c < epsilon) && (c > -epsilon))
if(MICROPY_FLOAT_C_FUN(fabs)(data[m * (N+1)]) < LINALG_EPSILON) {
//look for a line to swap
size_t m1 = m + 1;
for(; m1 < N; m1++) {
if(!(MICROPY_FLOAT_C_FUN(fabs)(data[m1*N + m]) < LINALG_EPSILON)) {
for(size_t m2=0; m2 < N; m2++) {
mp_float_t swapVal = data[m*N+m2];
data[m*N+m2] = data[m1*N+m2];
data[m1*N+m2] = swapVal;
swapVal = unit[m*N+m2];
unit[m*N+m2] = unit[m1*N+m2];
unit[m1*N+m2] = swapVal;
}
break;
}
}
if (m1 >= N) {
m_del(mp_float_t, unit, N*N);
return false;
}
}
for(size_t n=0; n < N; n++) {
if(m != n){
elem = data[N * n + m] / data[m * (N+1)];
for(size_t k=0; k < N; k++) {
data[N * n + k] -= elem * data[N * m + k];
unit[N * n + k] -= elem * unit[N * m + k];
}
}
}
}
for(size_t m=0; m < N; m++) {
elem = data[m * (N+1)];
for(size_t n=0; n < N; n++) {
data[N * m + n] /= elem;
unit[N * m + n] /= elem;
}
}
memcpy(data, unit, sizeof(mp_float_t)*N*N);
m_del(mp_float_t, unit, N * N);
return true;
}
/*
* The following function calculates the eigenvalues and eigenvectors of a symmetric
* real matrix, whose entries are given in the input array.
* The function has no dependencies beyond micropython itself (for the definition of mp_float_t),
* and can be used independent of ulab.
*/
size_t linalg_jacobi_rotations(mp_float_t *array, mp_float_t *eigvectors, size_t S) {
// eigvectors should be a 0-array; start out with the unit matrix
for(size_t m=0; m < S; m++) {
eigvectors[m * (S+1)] = 1.0;
}
mp_float_t largest, w, t, c, s, tau, aMk, aNk, vm, vn;
size_t M, N;
size_t iterations = JACOBI_MAX * S * S;
do {
iterations--;
// find the pivot here
M = 0;
N = 0;
largest = 0.0;
for(size_t m=0; m < S-1; m++) { // -1: no need to inspect last row
for(size_t n=m+1; n < S; n++) {
w = MICROPY_FLOAT_C_FUN(fabs)(array[m * S + n]);
if((largest < w) && (LINALG_EPSILON < w)) {
M = m;
N = n;
largest = w;
}
}
}
if(M + N == 0) { // all entries are smaller than epsilon, there is not much we can do...
break;
}
// at this point, we have the pivot, and it is the entry (M, N)
// now we have to find the rotation angle
w = (array[N * S + N] - array[M * S + M]) / (MICROPY_FLOAT_CONST(2.0)*array[M * S + N]);
// The following if/else chooses the smaller absolute value for the tangent
// of the rotation angle. Going with the smaller should be numerically stabler.
if(w > 0) {
t = MICROPY_FLOAT_C_FUN(sqrt)(w*w + MICROPY_FLOAT_CONST(1.0)) - w;
} else {
t = MICROPY_FLOAT_CONST(-1.0)*(MICROPY_FLOAT_C_FUN(sqrt)(w*w + MICROPY_FLOAT_CONST(1.0)) + w);
}
s = t / MICROPY_FLOAT_C_FUN(sqrt)(t*t + MICROPY_FLOAT_CONST(1.0)); // the sine of the rotation angle
c = MICROPY_FLOAT_CONST(1.0) / MICROPY_FLOAT_C_FUN(sqrt)(t*t + MICROPY_FLOAT_CONST(1.0)); // the cosine of the rotation angle
tau = (MICROPY_FLOAT_CONST(1.0)-c)/s; // this is equal to the tangent of the half of the rotation angle
// at this point, we have the rotation angles, so we can transform the matrix
// first the two diagonal elements
// a(M, M) = a(M, M) - t*a(M, N)
array[M * S + M] = array[M * S + M] - t * array[M * S + N];
// a(N, N) = a(N, N) + t*a(M, N)
array[N * S + N] = array[N * S + N] + t * array[M * S + N];
// after the rotation, the a(M, N), and a(N, M) entries should become zero
array[M * S + N] = array[N * S + M] = MICROPY_FLOAT_CONST(0.0);
// then all other elements in the column
for(size_t k=0; k < S; k++) {
if((k == M) || (k == N)) {
continue;
}
aMk = array[M * S + k];
aNk = array[N * S + k];
// a(M, k) = a(M, k) - s*(a(N, k) + tau*a(M, k))
array[M * S + k] -= s * (aNk + tau * aMk);
// a(N, k) = a(N, k) + s*(a(M, k) - tau*a(N, k))
array[N * S + k] += s * (aMk - tau * aNk);
// a(k, M) = a(M, k)
array[k * S + M] = array[M * S + k];
// a(k, N) = a(N, k)
array[k * S + N] = array[N * S + k];
}
// now we have to update the eigenvectors
// the rotation matrix, R, multiplies from the right
// R is the unit matrix, except for the
// R(M,M) = R(N, N) = c
// R(N, M) = s
// (M, N) = -s
// entries. This means that only the Mth, and Nth columns will change
for(size_t m=0; m < S; m++) {
vm = eigvectors[m * S + M];
vn = eigvectors[m * S + N];
// the new value of eigvectors(m, M)
eigvectors[m * S + M] = c * vm - s * vn;
// the new value of eigvectors(m, N)
eigvectors[m * S + N] = s * vm + c * vn;
}
} while(iterations > 0);
return iterations;
}

View file

@ -1,28 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*/
#ifndef _TOOLS_TOOLS_
#define _TOOLS_TOOLS_
#ifndef LINALG_EPSILON
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#define LINALG_EPSILON MICROPY_FLOAT_CONST(1.2e-7)
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
#define LINALG_EPSILON MICROPY_FLOAT_CONST(2.3e-16)
#endif
#endif /* LINALG_EPSILON */
#define JACOBI_MAX 20
bool linalg_invert_matrix(mp_float_t *, size_t );
size_t linalg_jacobi_rotations(mp_float_t *, mp_float_t *, size_t );
#endif /* _TOOLS_TOOLS_ */

View file

@ -1,66 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Zoltán Vörös
*
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "ndarray_iter.h"
#ifdef NDARRAY_HAS_FLATITER
mp_obj_t ndarray_flatiter_make_new(mp_obj_t self_in) {
ndarray_flatiter_t *flatiter = m_new_obj(ndarray_flatiter_t);
flatiter->base.type = &ndarray_flatiter_type;
flatiter->iternext = ndarray_flatiter_next;
flatiter->ndarray = self_in;
flatiter->cur = 0;
return MP_OBJ_FROM_PTR(flatiter);
}
mp_obj_t ndarray_flatiter_next(mp_obj_t self_in) {
ndarray_flatiter_t *self = MP_OBJ_TO_PTR(self_in);
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(self->ndarray);
uint8_t *array = (uint8_t *)ndarray->array;
if(self->cur < ndarray->len) {
uint32_t remainder = self->cur;
uint8_t i = ULAB_MAX_DIMS - 1;
do {
size_t div = (remainder / ndarray->shape[i]);
array += remainder * ndarray->strides[i];
remainder -= div * ndarray->shape[i];
i--;
} while(i > ULAB_MAX_DIMS - ndarray->ndim);
self->cur++;
return ndarray_get_item(ndarray, array);
}
return MP_OBJ_STOP_ITERATION;
}
mp_obj_t ndarray_new_flatiterator(mp_obj_t flatiter_in, mp_obj_iter_buf_t *iter_buf) {
assert(sizeof(ndarray_flatiter_t) <= sizeof(mp_obj_iter_buf_t));
ndarray_flatiter_t *iter = (ndarray_flatiter_t *)iter_buf;
ndarray_flatiter_t *flatiter = MP_OBJ_TO_PTR(flatiter_in);
iter->base.type = &mp_type_polymorph_iter;
iter->iternext = ndarray_flatiter_next;
iter->ndarray = flatiter->ndarray;
iter->cur = 0;
return MP_OBJ_FROM_PTR(iter);
}
mp_obj_t ndarray_get_flatiterator(mp_obj_t o_in, mp_obj_iter_buf_t *iter_buf) {
return ndarray_new_flatiterator(o_in, iter_buf);
}
#endif /* NDARRAY_HAS_FLATITER */

View file

@ -1,36 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2020-2021 Zoltán Vörös
*/
#ifndef _NDARRAY_ITER_
#define _NDARRAY_ITER_
#include "py/runtime.h"
#include "py/binary.h"
#include "py/obj.h"
#include "py/objarray.h"
#include "../../ulab.h"
#include "../../ndarray.h"
// TODO: take simply mp_obj_ndarray_it_t from ndarray.c
typedef struct _mp_obj_ndarray_flatiter_t {
mp_obj_base_t base;
mp_fun_1_t iternext;
mp_obj_t ndarray;
size_t cur;
} ndarray_flatiter_t;
mp_obj_t ndarray_get_flatiterator(mp_obj_t , mp_obj_iter_buf_t *);
mp_obj_t ndarray_flatiter_make_new(mp_obj_t );
mp_obj_t ndarray_flatiter_next(mp_obj_t );
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,653 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*/
#ifndef _NUMERICAL_
#define _NUMERICAL_
#include "../ulab.h"
#include "../ndarray.h"
// TODO: implement cumsum
#define RUN_ARGMIN1(ndarray, type, array, results, rarray, index, op)\
({\
uint16_t best_index = 0;\
type best_value = *((type *)(array));\
if(((op) == NUMERICAL_MAX) || ((op) == NUMERICAL_ARGMAX)) {\
for(uint16_t i=0; i < (ndarray)->shape[(index)]; i++) {\
if(*((type *)(array)) > best_value) {\
best_index = i;\
best_value = *((type *)(array));\
}\
(array) += (ndarray)->strides[(index)];\
}\
} else {\
for(uint16_t i=0; i < (ndarray)->shape[(index)]; i++) {\
if(*((type *)(array)) < best_value) {\
best_index = i;\
best_value = *((type *)(array));\
}\
(array) += (ndarray)->strides[(index)];\
}\
}\
if(((op) == NUMERICAL_ARGMAX) || ((op) == NUMERICAL_ARGMIN)) {\
memcpy((rarray), &best_index, (results)->itemsize);\
} else {\
memcpy((rarray), &best_value, (results)->itemsize);\
}\
(rarray) += (results)->itemsize;\
})
#define RUN_SUM1(type, array, results, rarray, ss)\
({\
type sum = 0;\
for(size_t i=0; i < (ss).shape[0]; i++) {\
sum += *((type *)(array));\
(array) += (ss).strides[0];\
}\
memcpy((rarray), &sum, (results)->itemsize);\
(rarray) += (results)->itemsize;\
})
// The mean could be calculated by simply dividing the sum by
// the number of elements, but that method is numerically unstable
#define RUN_MEAN1(type, array, rarray, ss)\
({\
mp_float_t M = 0.0;\
for(size_t i=0; i < (ss).shape[0]; i++) {\
mp_float_t value = (mp_float_t)(*(type *)(array));\
M = M + (value - M) / (mp_float_t)(i+1);\
(array) += (ss).strides[0];\
}\
*(rarray)++ = M;\
})
// Instead of the straightforward implementation of the definition,
// we take the numerically stable Welford algorithm here
// https://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
#define RUN_STD1(type, array, rarray, ss, div)\
({\
mp_float_t M = 0.0, m = 0.0, S = 0.0;\
for(size_t i=0; i < (ss).shape[0]; i++) {\
mp_float_t value = (mp_float_t)(*(type *)(array));\
m = M + (value - M) / (mp_float_t)(i+1);\
S = S + (value - M) * (value - m);\
M = m;\
(array) += (ss).strides[0];\
}\
*(rarray)++ = MICROPY_FLOAT_C_FUN(sqrt)(S / (div));\
})
#define RUN_MEAN_STD1(type, array, rarray, ss, div, isStd)\
({\
mp_float_t M = 0.0, m = 0.0, S = 0.0;\
for(size_t i=0; i < (ss).shape[0]; i++) {\
mp_float_t value = (mp_float_t)(*(type *)(array));\
m = M + (value - M) / (mp_float_t)(i+1);\
if(isStd) {\
S += (value - M) * (value - m);\
}\
M = m;\
(array) += (ss).strides[0];\
}\
*(rarray)++ = isStd ? MICROPY_FLOAT_C_FUN(sqrt)(S / (div)) : M;\
})
#define RUN_DIFF1(ndarray, type, array, results, rarray, index, stencil, N)\
({\
for(size_t i=0; i < (results)->shape[ULAB_MAX_DIMS - 1]; i++) {\
type sum = 0;\
uint8_t *source = (array);\
for(uint8_t d=0; d < (N)+1; d++) {\
sum -= (stencil)[d] * *((type *)source);\
source += (ndarray)->strides[(index)];\
}\
(array) += (ndarray)->strides[ULAB_MAX_DIMS - 1];\
*(type *)(rarray) = sum;\
(rarray) += (results)->itemsize;\
}\
})
#define HEAPSORT1(type, array, increment, N)\
({\
type *_array = (type *)array;\
type tmp;\
size_t c, q = (N), p, r = (N) >> 1;\
for (;;) {\
if (r > 0) {\
tmp = _array[(--r)*(increment)];\
} else {\
q--;\
if(q == 0) {\
break;\
}\
tmp = _array[q*(increment)];\
_array[q*(increment)] = _array[0];\
}\
p = r;\
c = r + r + 1;\
while (c < q) {\
if((c + 1 < q) && (_array[(c+1)*(increment)] > _array[c*(increment)])) {\
c++;\
}\
if(_array[c*(increment)] > tmp) {\
_array[p*(increment)] = _array[c*(increment)];\
p = c;\
c = p + p + 1;\
} else {\
break;\
}\
}\
_array[p*(increment)] = tmp;\
}\
})
#define HEAP_ARGSORT1(type, array, increment, N, iarray, iincrement)\
({\
type *_array = (type *)array;\
type tmp;\
uint16_t itmp, c, q = (N), p, r = (N) >> 1;\
assert(N);\
for (;;) {\
if (r > 0) {\
r--;\
itmp = (iarray)[r*(iincrement)];\
tmp = _array[itmp*(increment)];\
} else {\
q--;\
if(q == 0) {\
break;\
}\
itmp = (iarray)[q*(iincrement)];\
tmp = _array[itmp*(increment)];\
(iarray)[q*(iincrement)] = (iarray)[0];\
}\
p = r;\
c = r + r + 1;\
while (c < q) {\
if((c + 1 < q) && (_array[(iarray)[(c+1)*(iincrement)]*(increment)] > _array[(iarray)[c*(iincrement)]*(increment)])) {\
c++;\
}\
if(_array[(iarray)[c*(iincrement)]*(increment)] > tmp) {\
(iarray)[p*(iincrement)] = (iarray)[c*(iincrement)];\
p = c;\
c = p + p + 1;\
} else {\
break;\
}\
}\
(iarray)[p*(iincrement)] = itmp;\
}\
})
#if ULAB_MAX_DIMS == 1
#define RUN_SUM(type, array, results, rarray, ss) do {\
RUN_SUM1(type, (array), (results), (rarray), (ss));\
} while(0)
#define RUN_MEAN(type, array, rarray, ss) do {\
RUN_MEAN1(type, (array), (rarray), (ss));\
} while(0)
#define RUN_STD(type, array, rarray, ss, div) do {\
RUN_STD1(type, (array), (results), (rarray), (ss), (div));\
} while(0)
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
RUN_MEAN_STD1(type, (array), (rarray), (ss), (div), (isStd));\
} while(0)
#define RUN_ARGMIN(ndarray, type, array, results, rarray, shape, strides, index, op) do {\
RUN_ARGMIN1((ndarray), type, (array), (results), (rarray), (index), (op));\
} while(0)
#define RUN_DIFF(ndarray, type, array, results, rarray, shape, strides, index, stencil, N) do {\
RUN_DIFF1((ndarray), type, (array), (results), (rarray), (index), (stencil), (N));\
} while(0)
#define HEAPSORT(ndarray, type, array, shape, strides, index, increment, N) do {\
HEAPSORT1(type, (array), (increment), (N));\
} while(0)
#define HEAP_ARGSORT(ndarray, type, array, shape, strides, index, increment, N, iarray, istrides, iincrement) do {\
HEAP_ARGSORT1(type, (array), (increment), (N), (iarray), (iincrement));\
} while(0)
#endif
#if ULAB_MAX_DIMS == 2
#define RUN_SUM(type, array, results, rarray, ss) do {\
size_t l = 0;\
do {\
RUN_SUM1(type, (array), (results), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_MEAN(type, array, rarray, ss) do {\
size_t l = 0;\
do {\
RUN_MEAN1(type, (array), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_STD(type, array, rarray, ss, div) do {\
size_t l = 0;\
do {\
RUN_STD1(type, (array), (rarray), (ss), (div));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
size_t l = 0;\
do {\
RUN_MEAN_STD1(type, (array), (rarray), (ss), (div), (isStd));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_ARGMIN(ndarray, type, array, results, rarray, shape, strides, index, op) do {\
size_t l = 0;\
do {\
RUN_ARGMIN1((ndarray), type, (array), (results), (rarray), (index), (op));\
(array) -= (ndarray)->strides[(index)] * (ndarray)->shape[(index)];\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_DIFF(ndarray, type, array, results, rarray, shape, strides, index, stencil, N) do {\
size_t l = 0;\
do {\
RUN_DIFF1((ndarray), type, (array), (results), (rarray), (index), (stencil), (N));\
(array) -= (ndarray)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(array) += (ndarray)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (results)->strides[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define HEAPSORT(ndarray, type, array, shape, strides, index, increment, N) do {\
size_t l = 0;\
do {\
HEAPSORT1(type, (array), (increment), (N));\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
} while(0)
#define HEAP_ARGSORT(ndarray, type, array, shape, strides, index, increment, N, iarray, istrides, iincrement) do {\
size_t l = 0;\
do {\
HEAP_ARGSORT1(type, (array), (increment), (N), (iarray), (iincrement));\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
(iarray) += (istrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
} while(0)
#endif
#if ULAB_MAX_DIMS == 3
#define RUN_SUM(type, array, results, rarray, ss) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_SUM1(type, (array), (results), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_MEAN(type, array, rarray, ss) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_MEAN1(type, (array), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_STD(type, array, rarray, ss, div) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_STD1(type, (array), (rarray), (ss), (div));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_MEAN_STD1(type, (array), (rarray), (ss), (div), (isStd));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_ARGMIN(ndarray, type, array, results, rarray, shape, strides, index, op) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_ARGMIN1((ndarray), type, (array), (results), (rarray), (index), (op));\
(array) -= (ndarray)->strides[(index)] * (ndarray)->shape[(index)];\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
(array) -= (strides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(array) += (strides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_DIFF(ndarray, type, array, results, rarray, shape, strides, index, stencil, N) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_DIFF1((ndarray), type, (array), (results), (rarray), (index), (stencil), (N));\
(array) -= (ndarray)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(array) += (ndarray)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (results)->strides[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 2]);\
(array) -= (ndarray)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(array) += (ndarray)->strides[ULAB_MAX_DIMS - 3];\
(rarray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (results)->strides[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 3]);\
} while(0)
#define HEAPSORT(ndarray, type, array, shape, strides, index, increment, N) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
HEAPSORT1(type, (array), (increment), (N));\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
(array) -= (strides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(array) += (strides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 2]);\
} while(0)
#define HEAP_ARGSORT(ndarray, type, array, shape, strides, index, increment, N, iarray, istrides, iincrement) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
HEAP_ARGSORT1(type, (array), (increment), (N), (iarray), (iincrement));\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
(iarray) += (istrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
(iarray) -= (istrides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(iarray) += (istrides)[ULAB_MAX_DIMS - 2];\
(array) -= (strides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(array) += (strides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 2]);\
} while(0)
#endif
#if ULAB_MAX_DIMS == 4
#define RUN_SUM(type, array, results, rarray, ss) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_SUM1(type, (array), (results), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 2] * (ss).shape[ULAB_MAX_DIMS - 2];\
(array) += (ss).strides[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_MEAN(type, array, rarray, ss) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_MEAN1(type, (array), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 2] * (ss).shape[ULAB_MAX_DIMS - 2];\
(array) += (ss).strides[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_STD(type, array, rarray, ss, div) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_STD1(type, (array), (rarray), (ss), (div));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 2] * (ss).shape[ULAB_MAX_DIMS - 2];\
(array) += (ss).strides[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_MEAN_STD1(type, (array), (rarray), (ss), (div), (isStd));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 2] * (ss).shape[ULAB_MAX_DIMS - 2];\
(array) += (ss).strides[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_ARGMIN(ndarray, type, array, results, rarray, shape, strides, index, op) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_ARGMIN1((ndarray), type, (array), (results), (rarray), (index), (op));\
(array) -= (ndarray)->strides[(index)] * (ndarray)->shape[(index)];\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
(array) -= (strides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(array) += (strides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 2]);\
(array) -= (strides)[ULAB_MAX_DIMS - 2] * (shape)[ULAB_MAX_DIMS-2];\
(array) += (strides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (shape)[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_DIFF(ndarray, type, array, results, rarray, shape, strides, index, stencil, N) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_DIFF1((ndarray), type, (array), (results), (rarray), (index), (stencil), (N));\
(array) -= (ndarray)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(array) += (ndarray)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (results)->strides[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 2]);\
(array) -= (strides)[ULAB_MAX_DIMS - 2] * (shape)[ULAB_MAX_DIMS-2];\
(array) += (strides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (results)->strides[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 3]);\
(array) -= (strides)[ULAB_MAX_DIMS - 3] * (shape)[ULAB_MAX_DIMS-3];\
(array) += (strides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (results)->strides[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(rarray) += (results)->strides[ULAB_MAX_DIMS - 4];\
j++;\
} while(j < (shape)[ULAB_MAX_DIMS - 4]);\
} while(0)
#define HEAPSORT(ndarray, type, array, shape, strides, index, increment, N) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
HEAPSORT1(type, (array), (increment), (N));\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
(array) -= (strides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(array) += (strides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 2]);\
(array) -= (strides)[ULAB_MAX_DIMS - 2] * (shape)[ULAB_MAX_DIMS-2];\
(array) += (strides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (shape)[ULAB_MAX_DIMS - 3]);\
} while(0)
#define HEAP_ARGSORT(ndarray, type, array, shape, strides, index, increment, N, iarray, istrides, iincrement) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
HEAP_ARGSORT1(type, (array), (increment), (N), (iarray), (iincrement));\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
(iarray) += (istrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
(iarray) -= (istrides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(iarray) += (istrides)[ULAB_MAX_DIMS - 2];\
(array) -= (strides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(array) += (strides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 2]);\
(iarray) -= (istrides)[ULAB_MAX_DIMS - 2] * (shape)[ULAB_MAX_DIMS-2];\
(iarray) += (istrides)[ULAB_MAX_DIMS - 3];\
(array) -= (strides)[ULAB_MAX_DIMS - 2] * (shape)[ULAB_MAX_DIMS-2];\
(array) += (strides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (shape)[ULAB_MAX_DIMS - 3]);\
} while(0)
#endif
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_all_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_any_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_argmax_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_argmin_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_argsort_obj);
MP_DECLARE_CONST_FUN_OBJ_2(numerical_cross_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_diff_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_flip_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_max_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_mean_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_median_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_min_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_roll_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_std_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_sum_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_sort_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_sort_inplace_obj);
#endif

View file

@ -1,390 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2020 Scott Shawcroft for Adafruit Industries
* 2020-2022 Zoltán Vörös
* 2020 Taku Fukada
*/
#include <math.h>
#include <string.h>
#include "py/runtime.h"
#include "numpy.h"
#include "approx.h"
#include "carray/carray.h"
#include "compare.h"
#include "create.h"
#include "fft/fft.h"
#include "filter.h"
#include "io/io.h"
#include "linalg/linalg.h"
#include "numerical.h"
#include "stats.h"
#include "transform.h"
#include "poly.h"
#include "vector.h"
//| """Compatibility layer for numpy"""
//|
//| class ndarray: ...
//| def get_printoptions() -> Dict[str, int]:
//| """Get printing options"""
//| ...
//|
//| def set_printoptions(threshold: Optional[int] = None, edgeitems: Optional[int] = None) -> None:
//| """Set printing options"""
//| ...
//|
//| def ndinfo(array: ulab.numpy.ndarray) -> None:
//| ...
//|
//| def array(
//| values: Union[ndarray, Iterable[Union[_float, _bool, Iterable[Any]]]],
//| *,
//| dtype: _DType = ulab.numpy.float
//| ) -> ulab.numpy.ndarray:
//| """alternate constructor function for `ulab.numpy.ndarray`. Mirrors numpy.array"""
//| ...
// math constants
#if ULAB_NUMPY_HAS_E
ULAB_DEFINE_FLOAT_CONST(ulab_const_float_e, MP_E, 0x402df854UL, 0x4005bf0a8b145769ULL);
#endif
#if ULAB_NUMPY_HAS_INF
ULAB_DEFINE_FLOAT_CONST(numpy_const_float_inf, (mp_float_t)INFINITY, 0x7f800000UL, 0x7ff0000000000000ULL);
#endif
#if ULAB_NUMPY_HAS_NAN
ULAB_DEFINE_FLOAT_CONST(numpy_const_float_nan, (mp_float_t)NAN, 0x7fc00000UL, 0x7ff8000000000000ULL);
#endif
#if ULAB_NUMPY_HAS_PI
ULAB_DEFINE_FLOAT_CONST(ulab_const_float_pi, MP_PI, 0x40490fdbUL, 0x400921fb54442d18ULL);
#endif
static const mp_rom_map_elem_t ulab_numpy_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_numpy) },
{ MP_ROM_QSTR(MP_QSTR_ndarray), MP_ROM_PTR(&ulab_ndarray_type) },
{ MP_ROM_QSTR(MP_QSTR_array), MP_ROM_PTR(&ndarray_array_constructor_obj) },
#if ULAB_NUMPY_HAS_FROMBUFFER
{ MP_ROM_QSTR(MP_QSTR_frombuffer), MP_ROM_PTR(&create_frombuffer_obj) },
#endif
// math constants
#if ULAB_NUMPY_HAS_E
{ MP_ROM_QSTR(MP_QSTR_e), ULAB_REFERENCE_FLOAT_CONST(ulab_const_float_e) },
#endif
#if ULAB_NUMPY_HAS_INF
{ MP_ROM_QSTR(MP_QSTR_inf), ULAB_REFERENCE_FLOAT_CONST(numpy_const_float_inf) },
#endif
#if ULAB_NUMPY_HAS_NAN
{ MP_ROM_QSTR(MP_QSTR_nan), ULAB_REFERENCE_FLOAT_CONST(numpy_const_float_nan) },
#endif
#if ULAB_NUMPY_HAS_PI
{ MP_ROM_QSTR(MP_QSTR_pi), ULAB_REFERENCE_FLOAT_CONST(ulab_const_float_pi) },
#endif
// class constants, always included
{ MP_ROM_QSTR(MP_QSTR_bool), MP_ROM_INT(NDARRAY_BOOL) },
{ MP_ROM_QSTR(MP_QSTR_uint8), MP_ROM_INT(NDARRAY_UINT8) },
{ MP_ROM_QSTR(MP_QSTR_int8), MP_ROM_INT(NDARRAY_INT8) },
{ MP_ROM_QSTR(MP_QSTR_uint16), MP_ROM_INT(NDARRAY_UINT16) },
{ MP_ROM_QSTR(MP_QSTR_int16), MP_ROM_INT(NDARRAY_INT16) },
{ MP_ROM_QSTR(MP_QSTR_float), MP_ROM_INT(NDARRAY_FLOAT) },
#if ULAB_SUPPORTS_COMPLEX
{ MP_ROM_QSTR(MP_QSTR_complex), MP_ROM_INT(NDARRAY_COMPLEX) },
#endif
// modules of numpy
#if ULAB_NUMPY_HAS_FFT_MODULE
{ MP_ROM_QSTR(MP_QSTR_fft), MP_ROM_PTR(&ulab_fft_module) },
#endif
#if ULAB_NUMPY_HAS_LINALG_MODULE
{ MP_ROM_QSTR(MP_QSTR_linalg), MP_ROM_PTR(&ulab_linalg_module) },
#endif
#if ULAB_HAS_PRINTOPTIONS
{ MP_ROM_QSTR(MP_QSTR_set_printoptions), MP_ROM_PTR(&ndarray_set_printoptions_obj) },
{ MP_ROM_QSTR(MP_QSTR_get_printoptions), MP_ROM_PTR(&ndarray_get_printoptions_obj) },
#endif
#if ULAB_NUMPY_HAS_NDINFO
{ MP_ROM_QSTR(MP_QSTR_ndinfo), MP_ROM_PTR(&ndarray_info_obj) },
#endif
#if ULAB_NUMPY_HAS_ARANGE
{ MP_ROM_QSTR(MP_QSTR_arange), MP_ROM_PTR(&create_arange_obj) },
#endif
#if ULAB_NUMPY_HAS_COMPRESS
{ MP_ROM_QSTR(MP_QSTR_compress), MP_ROM_PTR(&transform_compress_obj) },
#endif
#if ULAB_NUMPY_HAS_CONCATENATE
{ MP_ROM_QSTR(MP_QSTR_concatenate), MP_ROM_PTR(&create_concatenate_obj) },
#endif
#if ULAB_NUMPY_HAS_DELETE
{ MP_ROM_QSTR(MP_QSTR_delete), MP_ROM_PTR(&transform_delete_obj) },
#endif
#if ULAB_NUMPY_HAS_DIAG
#if ULAB_MAX_DIMS > 1
{ MP_ROM_QSTR(MP_QSTR_diag), MP_ROM_PTR(&create_diag_obj) },
#endif
#endif
#if ULAB_NUMPY_HAS_EMPTY
{ MP_ROM_QSTR(MP_QSTR_empty), MP_ROM_PTR(&create_zeros_obj) },
#endif
#if ULAB_MAX_DIMS > 1
#if ULAB_NUMPY_HAS_EYE
{ MP_ROM_QSTR(MP_QSTR_eye), MP_ROM_PTR(&create_eye_obj) },
#endif
#endif /* ULAB_MAX_DIMS */
// functions of the approx sub-module
#if ULAB_NUMPY_HAS_INTERP
{ MP_ROM_QSTR(MP_QSTR_interp), MP_ROM_PTR(&approx_interp_obj) },
#endif
#if ULAB_NUMPY_HAS_TRAPZ
{ MP_ROM_QSTR(MP_QSTR_trapz), MP_ROM_PTR(&approx_trapz_obj) },
#endif
// functions of the create sub-module
#if ULAB_NUMPY_HAS_FULL
{ MP_ROM_QSTR(MP_QSTR_full), MP_ROM_PTR(&create_full_obj) },
#endif
#if ULAB_NUMPY_HAS_LINSPACE
{ MP_ROM_QSTR(MP_QSTR_linspace), MP_ROM_PTR(&create_linspace_obj) },
#endif
#if ULAB_NUMPY_HAS_LOGSPACE
{ MP_ROM_QSTR(MP_QSTR_logspace), MP_ROM_PTR(&create_logspace_obj) },
#endif
#if ULAB_NUMPY_HAS_ONES
{ MP_ROM_QSTR(MP_QSTR_ones), MP_ROM_PTR(&create_ones_obj) },
#endif
#if ULAB_NUMPY_HAS_ZEROS
{ MP_ROM_QSTR(MP_QSTR_zeros), MP_ROM_PTR(&create_zeros_obj) },
#endif
// functions of the compare sub-module
#if ULAB_NUMPY_HAS_CLIP
{ MP_ROM_QSTR(MP_QSTR_clip), MP_ROM_PTR(&compare_clip_obj) },
#endif
#if ULAB_NUMPY_HAS_EQUAL
{ MP_ROM_QSTR(MP_QSTR_equal), MP_ROM_PTR(&compare_equal_obj) },
#endif
#if ULAB_NUMPY_HAS_NOTEQUAL
{ MP_ROM_QSTR(MP_QSTR_not_equal), MP_ROM_PTR(&compare_not_equal_obj) },
#endif
#if ULAB_NUMPY_HAS_ISFINITE
{ MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&compare_isfinite_obj) },
#endif
#if ULAB_NUMPY_HAS_ISINF
{ MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&compare_isinf_obj) },
#endif
#if ULAB_NUMPY_HAS_MAXIMUM
{ MP_ROM_QSTR(MP_QSTR_maximum), MP_ROM_PTR(&compare_maximum_obj) },
#endif
#if ULAB_NUMPY_HAS_MINIMUM
{ MP_ROM_QSTR(MP_QSTR_minimum), MP_ROM_PTR(&compare_minimum_obj) },
#endif
#if ULAB_NUMPY_HAS_NONZERO
{ MP_ROM_QSTR(MP_QSTR_nonzero), MP_ROM_PTR(&compare_nonzero_obj) },
#endif
#if ULAB_NUMPY_HAS_WHERE
{ MP_ROM_QSTR(MP_QSTR_where), MP_ROM_PTR(&compare_where_obj) },
#endif
// functions of the filter sub-module
#if ULAB_NUMPY_HAS_CONVOLVE
{ MP_ROM_QSTR(MP_QSTR_convolve), MP_ROM_PTR(&filter_convolve_obj) },
#endif
// functions of the numerical sub-module
#if ULAB_NUMPY_HAS_ALL
{ MP_ROM_QSTR(MP_QSTR_all), MP_ROM_PTR(&numerical_all_obj) },
#endif
#if ULAB_NUMPY_HAS_ANY
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&numerical_any_obj) },
#endif
#if ULAB_NUMPY_HAS_ARGMINMAX
{ MP_ROM_QSTR(MP_QSTR_argmax), MP_ROM_PTR(&numerical_argmax_obj) },
{ MP_ROM_QSTR(MP_QSTR_argmin), MP_ROM_PTR(&numerical_argmin_obj) },
#endif
#if ULAB_NUMPY_HAS_ARGSORT
{ MP_ROM_QSTR(MP_QSTR_argsort), MP_ROM_PTR(&numerical_argsort_obj) },
#endif
#if ULAB_NUMPY_HAS_ASARRAY
{ MP_ROM_QSTR(MP_QSTR_asarray), MP_ROM_PTR(&create_asarray_obj) },
#endif
#if ULAB_NUMPY_HAS_CROSS
{ MP_ROM_QSTR(MP_QSTR_cross), MP_ROM_PTR(&numerical_cross_obj) },
#endif
#if ULAB_NUMPY_HAS_DIFF
{ MP_ROM_QSTR(MP_QSTR_diff), MP_ROM_PTR(&numerical_diff_obj) },
#endif
#if ULAB_NUMPY_HAS_DOT
#if ULAB_MAX_DIMS > 1
{ MP_ROM_QSTR(MP_QSTR_dot), MP_ROM_PTR(&transform_dot_obj) },
#endif
#endif
#if ULAB_NUMPY_HAS_TRACE
#if ULAB_MAX_DIMS > 1
{ MP_ROM_QSTR(MP_QSTR_trace), MP_ROM_PTR(&stats_trace_obj) },
#endif
#endif
#if ULAB_NUMPY_HAS_FLIP
{ MP_ROM_QSTR(MP_QSTR_flip), MP_ROM_PTR(&numerical_flip_obj) },
#endif
#if ULAB_NUMPY_HAS_LOAD
{ MP_ROM_QSTR(MP_QSTR_load), MP_ROM_PTR(&io_load_obj) },
#endif
#if ULAB_NUMPY_HAS_LOADTXT
{ MP_ROM_QSTR(MP_QSTR_loadtxt), MP_ROM_PTR(&io_loadtxt_obj) },
#endif
#if ULAB_NUMPY_HAS_MINMAX
{ MP_ROM_QSTR(MP_QSTR_max), MP_ROM_PTR(&numerical_max_obj) },
#endif
#if ULAB_NUMPY_HAS_MEAN
{ MP_ROM_QSTR(MP_QSTR_mean), MP_ROM_PTR(&numerical_mean_obj) },
#endif
#if ULAB_NUMPY_HAS_MEDIAN
{ MP_ROM_QSTR(MP_QSTR_median), MP_ROM_PTR(&numerical_median_obj) },
#endif
#if ULAB_NUMPY_HAS_MINMAX
{ MP_ROM_QSTR(MP_QSTR_min), MP_ROM_PTR(&numerical_min_obj) },
#endif
#if ULAB_NUMPY_HAS_ROLL
{ MP_ROM_QSTR(MP_QSTR_roll), MP_ROM_PTR(&numerical_roll_obj) },
#endif
#if ULAB_NUMPY_HAS_SAVE
{ MP_ROM_QSTR(MP_QSTR_save), MP_ROM_PTR(&io_save_obj) },
#endif
#if ULAB_NUMPY_HAS_SAVETXT
{ MP_ROM_QSTR(MP_QSTR_savetxt), MP_ROM_PTR(&io_savetxt_obj) },
#endif
#if ULAB_NUMPY_HAS_SIZE
{ MP_ROM_QSTR(MP_QSTR_size), MP_ROM_PTR(&transform_size_obj) },
#endif
#if ULAB_NUMPY_HAS_SORT
{ MP_ROM_QSTR(MP_QSTR_sort), MP_ROM_PTR(&numerical_sort_obj) },
#endif
#if ULAB_NUMPY_HAS_STD
{ MP_ROM_QSTR(MP_QSTR_std), MP_ROM_PTR(&numerical_std_obj) },
#endif
#if ULAB_NUMPY_HAS_SUM
{ MP_ROM_QSTR(MP_QSTR_sum), MP_ROM_PTR(&numerical_sum_obj) },
#endif
// functions of the poly sub-module
#if ULAB_NUMPY_HAS_POLYFIT
{ MP_ROM_QSTR(MP_QSTR_polyfit), MP_ROM_PTR(&poly_polyfit_obj) },
#endif
#if ULAB_NUMPY_HAS_POLYVAL
{ MP_ROM_QSTR(MP_QSTR_polyval), MP_ROM_PTR(&poly_polyval_obj) },
#endif
// functions of the vector sub-module
#if ULAB_NUMPY_HAS_ACOS
{ MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&vector_acos_obj) },
#endif
#if ULAB_NUMPY_HAS_ACOSH
{ MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&vector_acosh_obj) },
#endif
#if ULAB_NUMPY_HAS_ARCTAN2
{ MP_ROM_QSTR(MP_QSTR_arctan2), MP_ROM_PTR(&vector_arctan2_obj) },
#endif
#if ULAB_NUMPY_HAS_AROUND
{ MP_ROM_QSTR(MP_QSTR_around), MP_ROM_PTR(&vector_around_obj) },
#endif
#if ULAB_NUMPY_HAS_ASIN
{ MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&vector_asin_obj) },
#endif
#if ULAB_NUMPY_HAS_ASINH
{ MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&vector_asinh_obj) },
#endif
#if ULAB_NUMPY_HAS_ATAN
{ MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&vector_atan_obj) },
#endif
#if ULAB_NUMPY_HAS_ATANH
{ MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&vector_atanh_obj) },
#endif
#if ULAB_NUMPY_HAS_CEIL
{ MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&vector_ceil_obj) },
#endif
#if ULAB_NUMPY_HAS_COS
{ MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&vector_cos_obj) },
#endif
#if ULAB_NUMPY_HAS_COSH
{ MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&vector_cosh_obj) },
#endif
#if ULAB_NUMPY_HAS_DEGREES
{ MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&vector_degrees_obj) },
#endif
#if ULAB_NUMPY_HAS_EXP
{ MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&vector_exp_obj) },
#endif
#if ULAB_NUMPY_HAS_EXPM1
{ MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&vector_expm1_obj) },
#endif
#if ULAB_NUMPY_HAS_FLOOR
{ MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&vector_floor_obj) },
#endif
#if ULAB_NUMPY_HAS_LOG
{ MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&vector_log_obj) },
#endif
#if ULAB_NUMPY_HAS_LOG10
{ MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&vector_log10_obj) },
#endif
#if ULAB_NUMPY_HAS_LOG2
{ MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&vector_log2_obj) },
#endif
#if ULAB_NUMPY_HAS_RADIANS
{ MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&vector_radians_obj) },
#endif
#if ULAB_NUMPY_HAS_SIN
{ MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&vector_sin_obj) },
#endif
#if ULAB_NUMPY_HAS_SINC
{ MP_ROM_QSTR(MP_QSTR_sinc), MP_ROM_PTR(&vector_sinc_obj) },
#endif
#if ULAB_NUMPY_HAS_SINH
{ MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&vector_sinh_obj) },
#endif
#if ULAB_NUMPY_HAS_SQRT
{ MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&vector_sqrt_obj) },
#endif
#if ULAB_NUMPY_HAS_TAN
{ MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&vector_tan_obj) },
#endif
#if ULAB_NUMPY_HAS_TANH
{ MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&vector_tanh_obj) },
#endif
#if ULAB_NUMPY_HAS_VECTORIZE
{ MP_ROM_QSTR(MP_QSTR_vectorize), MP_ROM_PTR(&vector_vectorize_obj) },
#endif
#if ULAB_SUPPORTS_COMPLEX
#if ULAB_NUMPY_HAS_REAL
{ MP_ROM_QSTR(MP_QSTR_real), MP_ROM_PTR(&carray_real_obj) },
#endif
#if ULAB_NUMPY_HAS_IMAG
{ MP_ROM_QSTR(MP_QSTR_imag), MP_ROM_PTR(&carray_imag_obj) },
#endif
#if ULAB_NUMPY_HAS_CONJUGATE
{ MP_ROM_QSTR(MP_QSTR_conjugate), MP_ROM_PTR(&carray_conjugate_obj) },
#endif
#if ULAB_NUMPY_HAS_SORT_COMPLEX
{ MP_ROM_QSTR(MP_QSTR_sort_complex), MP_ROM_PTR(&carray_sort_complex_obj) },
#endif
#endif
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_numpy_globals, ulab_numpy_globals_table);
const mp_obj_module_t ulab_numpy_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_numpy_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy, ulab_numpy_module, MODULE_ULAB_ENABLED);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy, ulab_numpy_module);
#endif
#endif

View file

@ -1,21 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*
*/
#ifndef _NUMPY_
#define _NUMPY_
#include "../ulab.h"
#include "../ndarray.h"
extern const mp_obj_module_t ulab_numpy_module;
#endif /* _NUMPY_ */

View file

@ -1,250 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
* 2020 Jeff Epler for Adafruit Industries
* 2020 Scott Shawcroft for Adafruit Industries
* 2020 Taku Fukada
*/
#include "py/obj.h"
#include "py/runtime.h"
#include "py/objarray.h"
#include "../ulab.h"
#include "linalg/linalg_tools.h"
#include "../ulab_tools.h"
#include "carray/carray_tools.h"
#include "poly.h"
#if ULAB_NUMPY_HAS_POLYFIT
mp_obj_t poly_polyfit(size_t n_args, const mp_obj_t *args) {
if(!ndarray_object_is_array_like(args[0])) {
mp_raise_ValueError(translate("input data must be an iterable"));
}
#if ULAB_SUPPORTS_COMPLEX
if(mp_obj_is_type(args[0], &ulab_ndarray_type)) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0]);
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
}
#endif
size_t lenx = 0, leny = 0;
uint8_t deg = 0;
mp_float_t *x, *XT, *y, *prod;
if(n_args == 2) { // only the y values are supplied
// TODO: this is actually not enough: the first argument can very well be a matrix,
// in which case we are between the rock and a hard place
leny = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[0]));
deg = (uint8_t)mp_obj_get_int(args[1]);
if(leny < deg) {
mp_raise_ValueError(translate("more degrees of freedom than data points"));
}
lenx = leny;
x = m_new(mp_float_t, lenx); // assume uniformly spaced data points
for(size_t i=0; i < lenx; i++) {
x[i] = i;
}
y = m_new(mp_float_t, leny);
fill_array_iterable(y, args[0]);
} else /* n_args == 3 */ {
if(!ndarray_object_is_array_like(args[1])) {
mp_raise_ValueError(translate("input data must be an iterable"));
}
lenx = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[0]));
leny = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[1]));
if(lenx != leny) {
mp_raise_ValueError(translate("input vectors must be of equal length"));
}
deg = (uint8_t)mp_obj_get_int(args[2]);
if(leny < deg) {
mp_raise_ValueError(translate("more degrees of freedom than data points"));
}
x = m_new(mp_float_t, lenx);
fill_array_iterable(x, args[0]);
y = m_new(mp_float_t, leny);
fill_array_iterable(y, args[1]);
}
// one could probably express X as a function of XT,
// and thereby save RAM, because X is used only in the product
XT = m_new(mp_float_t, (deg+1)*leny); // XT is a matrix of shape (deg+1, len) (rows, columns)
for(size_t i=0; i < leny; i++) { // column index
XT[i+0*lenx] = 1.0; // top row
for(uint8_t j=1; j < deg+1; j++) { // row index
XT[i+j*leny] = XT[i+(j-1)*leny]*x[i];
}
}
prod = m_new(mp_float_t, (deg+1)*(deg+1)); // the product matrix is of shape (deg+1, deg+1)
mp_float_t sum;
for(uint8_t i=0; i < deg+1; i++) { // column index
for(uint8_t j=0; j < deg+1; j++) { // row index
sum = 0.0;
for(size_t k=0; k < lenx; k++) {
// (j, k) * (k, i)
// Note that the second matrix is simply the transpose of the first:
// X(k, i) = XT(i, k) = XT[k*lenx+i]
sum += XT[j*lenx+k]*XT[i*lenx+k]; // X[k*(deg+1)+i];
}
prod[j*(deg+1)+i] = sum;
}
}
if(!linalg_invert_matrix(prod, deg+1)) {
// Although X was a Vandermonde matrix, whose inverse is guaranteed to exist,
// we bail out here, if prod couldn't be inverted: if the values in x are not all
// distinct, prod is singular
m_del(mp_float_t, XT, (deg+1)*lenx);
m_del(mp_float_t, x, lenx);
m_del(mp_float_t, y, lenx);
m_del(mp_float_t, prod, (deg+1)*(deg+1));
mp_raise_ValueError(translate("could not invert Vandermonde matrix"));
}
// at this point, we have the inverse of X^T * X
// y is a column vector; x is free now, we can use it for storing intermediate values
for(uint8_t i=0; i < deg+1; i++) { // row index
sum = 0.0;
for(size_t j=0; j < lenx; j++) { // column index
sum += XT[i*lenx+j]*y[j];
}
x[i] = sum;
}
// XT is no longer needed
m_del(mp_float_t, XT, (deg+1)*leny);
ndarray_obj_t *beta = ndarray_new_linear_array(deg+1, NDARRAY_FLOAT);
mp_float_t *betav = (mp_float_t *)beta->array;
// x[0..(deg+1)] contains now the product X^T * y; we can get rid of y
m_del(float, y, leny);
// now, we calculate beta, i.e., we apply prod = (X^T * X)^(-1) on x = X^T * y; x is a column vector now
for(uint8_t i=0; i < deg+1; i++) {
sum = 0.0;
for(uint8_t j=0; j < deg+1; j++) {
sum += prod[i*(deg+1)+j]*x[j];
}
betav[i] = sum;
}
m_del(mp_float_t, x, lenx);
m_del(mp_float_t, prod, (deg+1)*(deg+1));
for(uint8_t i=0; i < (deg+1)/2; i++) {
// We have to reverse the array, for the leading coefficient comes first.
SWAP(mp_float_t, betav[i], betav[deg-i]);
}
return MP_OBJ_FROM_PTR(beta);
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(poly_polyfit_obj, 2, 3, poly_polyfit);
#endif
#if ULAB_NUMPY_HAS_POLYVAL
mp_obj_t poly_polyval(mp_obj_t o_p, mp_obj_t o_x) {
if(!ndarray_object_is_array_like(o_p) || !ndarray_object_is_array_like(o_x)) {
mp_raise_TypeError(translate("inputs are not iterable"));
}
#if ULAB_SUPPORTS_COMPLEX
ndarray_obj_t *input;
if(mp_obj_is_type(o_p, &ulab_ndarray_type)) {
input = MP_OBJ_TO_PTR(o_p);
COMPLEX_DTYPE_NOT_IMPLEMENTED(input->dtype)
}
if(mp_obj_is_type(o_x, &ulab_ndarray_type)) {
input = MP_OBJ_TO_PTR(o_x);
COMPLEX_DTYPE_NOT_IMPLEMENTED(input->dtype)
}
#endif
// p had better be a one-dimensional standard iterable
uint8_t plen = mp_obj_get_int(mp_obj_len_maybe(o_p));
mp_float_t *p = m_new(mp_float_t, plen);
mp_obj_iter_buf_t p_buf;
mp_obj_t p_item, p_iterable = mp_getiter(o_p, &p_buf);
uint8_t i = 0;
while((p_item = mp_iternext(p_iterable)) != MP_OBJ_STOP_ITERATION) {
p[i] = mp_obj_get_float(p_item);
i++;
}
// polynomials are going to be of type float, except, when both
// the coefficients and the independent variable are integers
ndarray_obj_t *ndarray;
if(mp_obj_is_type(o_x, &ulab_ndarray_type)) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(o_x);
uint8_t *sarray = (uint8_t *)source->array;
ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_FLOAT);
mp_float_t *array = (mp_float_t *)ndarray->array;
mp_float_t (*func)(void *) = ndarray_get_float_function(source->dtype);
// TODO: these loops are really nothing, but the re-impplementation of
// ITERATE_VECTOR from vectorise.c. We could pass a function pointer here
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t y = p[0];
mp_float_t _x = func(sarray);
for(uint8_t m=0; m < plen-1; m++) {
y *= _x;
y += p[m+1];
}
*array++ = y;
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
} else {
// o_x had better be a one-dimensional standard iterable
ndarray = ndarray_new_linear_array(mp_obj_get_int(mp_obj_len_maybe(o_x)), NDARRAY_FLOAT);
mp_float_t *array = (mp_float_t *)ndarray->array;
mp_obj_iter_buf_t x_buf;
mp_obj_t x_item, x_iterable = mp_getiter(o_x, &x_buf);
while ((x_item = mp_iternext(x_iterable)) != MP_OBJ_STOP_ITERATION) {
mp_float_t _x = mp_obj_get_float(x_item);
mp_float_t y = p[0];
for(uint8_t j=0; j < plen-1; j++) {
y *= _x;
y += p[j+1];
}
*array++ = y;
}
}
m_del(mp_float_t, p, plen);
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_2(poly_polyval_obj, poly_polyval);
#endif

View file

@ -1,54 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
* 2020 Scott Shawcroft for Adafruit Industries
* 2020 Roberto Colistete Jr.
* 2020 Taku Fukada
*
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../ulab.h"
#include "../ulab_tools.h"
#include "carray/carray_tools.h"
#include "stats.h"
#if ULAB_MAX_DIMS > 1
#if ULAB_NUMPY_HAS_TRACE
//| def trace(m: ulab.numpy.ndarray) -> _float:
//| """
//| :param m: a square matrix
//|
//| Compute the trace of the matrix, the sum of its diagonal elements."""
//| ...
//|
static mp_obj_t stats_trace(mp_obj_t oin) {
ndarray_obj_t *ndarray = tools_object_is_square(oin);
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
mp_float_t trace = 0.0;
for(size_t i=0; i < ndarray->shape[ULAB_MAX_DIMS - 1]; i++) {
int32_t pos = i * (ndarray->strides[ULAB_MAX_DIMS - 1] + ndarray->strides[ULAB_MAX_DIMS - 2]);
trace += ndarray_get_float_index(ndarray->array, ndarray->dtype, pos/ndarray->itemsize);
}
if(ndarray->dtype == NDARRAY_FLOAT) {
return mp_obj_new_float(trace);
}
return mp_obj_new_int_from_float(trace);
}
MP_DEFINE_CONST_FUN_OBJ_1(stats_trace_obj, stats_trace);
#endif
#endif

View file

@ -1,20 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*/
#ifndef _STATS_
#define _STATS_
#include "../ulab.h"
#include "../ndarray.h"
MP_DECLARE_CONST_FUN_OBJ_1(stats_trace_obj);
#endif

View file

@ -1,451 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*
*/
#include <sys/types.h>
#include <unistd.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../ulab.h"
#include "../ulab_tools.h"
#include "carray/carray_tools.h"
#include "numerical.h"
#include "transform.h"
#if ULAB_NUMPY_HAS_COMPRESS
static mp_obj_t transform_compress(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t condition = args[0].u_obj;
if(!mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("wrong input type"));
}
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[1].u_obj);
uint8_t *array = (uint8_t *)ndarray->array;
mp_obj_t axis = args[2].u_obj;
size_t len = MP_OBJ_SMALL_INT_VALUE(mp_obj_len_maybe(condition));
int8_t ax, shift_ax = 0;
if(axis != mp_const_none) {
ax = tools_get_axis(axis, ndarray->ndim);
shift_ax = ULAB_MAX_DIMS - ndarray->ndim + ax;
}
if(((axis == mp_const_none) && (len != ndarray->len)) ||
((axis != mp_const_none) && (len != ndarray->shape[shift_ax]))) {
mp_raise_ValueError(translate("wrong length of condition array"));
}
size_t true_count = 0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(condition, &iter_buf);
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
if(mp_obj_is_true(item)) {
true_count++;
}
}
iterable = mp_getiter(condition, &iter_buf);
ndarray_obj_t *result = NULL;
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
memcpy(shape, ndarray->shape, ULAB_MAX_DIMS * sizeof(size_t));
size_t *rshape = m_new(size_t, ULAB_MAX_DIMS);
memcpy(rshape, ndarray->shape, ULAB_MAX_DIMS * sizeof(size_t));
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
memcpy(strides, ndarray->strides, ULAB_MAX_DIMS * sizeof(int32_t));
int32_t *rstrides = m_new0(int32_t, ULAB_MAX_DIMS);
if(axis == mp_const_none) {
result = ndarray_new_linear_array(true_count, ndarray->dtype);
rstrides[ULAB_MAX_DIMS - 1] = ndarray->itemsize;
rshape[ULAB_MAX_DIMS - 1] = 0;
} else {
rshape[shift_ax] = true_count;
result = ndarray_new_dense_ndarray(ndarray->ndim, rshape, ndarray->dtype);
SWAP(size_t, shape[shift_ax], shape[ULAB_MAX_DIMS - 1]);
SWAP(size_t, rshape[shift_ax], rshape[ULAB_MAX_DIMS - 1]);
SWAP(int32_t, strides[shift_ax], strides[ULAB_MAX_DIMS - 1]);
memcpy(rstrides, result->strides, ULAB_MAX_DIMS * sizeof(int32_t));
SWAP(int32_t, rstrides[shift_ax], rstrides[ULAB_MAX_DIMS - 1]);
}
uint8_t *rarray = (uint8_t *)result->array;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
if(axis != mp_const_none) {
iterable = mp_getiter(condition, &iter_buf);
}
do {
item = mp_iternext(iterable);
if(mp_obj_is_true(item)) {
memcpy(rarray, array, ndarray->itemsize);
rarray += rstrides[ULAB_MAX_DIMS - 1];
}
array += strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
array -= strides[ULAB_MAX_DIMS - 1] * shape[ULAB_MAX_DIMS - 1];
array += strides[ULAB_MAX_DIMS - 2];
rarray -= rstrides[ULAB_MAX_DIMS - 1] * rshape[ULAB_MAX_DIMS - 1];
rarray += rstrides[ULAB_MAX_DIMS - 2];
k++;
} while(k < shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
array -= strides[ULAB_MAX_DIMS - 2] * shape[ULAB_MAX_DIMS - 2];
array += strides[ULAB_MAX_DIMS - 3];
rarray -= rstrides[ULAB_MAX_DIMS - 2] * rshape[ULAB_MAX_DIMS - 2];
rarray += rstrides[ULAB_MAX_DIMS - 3];
j++;
} while(j < shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
array -= strides[ULAB_MAX_DIMS - 3] * shape[ULAB_MAX_DIMS - 3];
array += strides[ULAB_MAX_DIMS - 4];
rarray -= rstrides[ULAB_MAX_DIMS - 2] * rshape[ULAB_MAX_DIMS - 2];
rarray += rstrides[ULAB_MAX_DIMS - 3];
i++;
} while(i < shape[ULAB_MAX_DIMS - 4]);
#endif
m_del(size_t, shape, ULAB_MAX_DIMS);
m_del(size_t, rshape, ULAB_MAX_DIMS);
m_del(int32_t, strides, ULAB_MAX_DIMS);
m_del(int32_t, rstrides, ULAB_MAX_DIMS);
return MP_OBJ_FROM_PTR(result);
}
MP_DEFINE_CONST_FUN_OBJ_KW(transform_compress_obj, 2, transform_compress);
#endif /* ULAB_NUMPY_HAS_COMPRESS */
#if ULAB_NUMPY_HAS_DELETE
static mp_obj_t transform_delete(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("first argument must be an ndarray"));
}
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
uint8_t *array = (uint8_t *)ndarray->array;
mp_obj_t indices = args[1].u_obj;
mp_obj_t axis = args[2].u_obj;
int8_t shift_ax;
size_t axis_len;
if(axis != mp_const_none) {
int8_t ax = tools_get_axis(axis, ndarray->ndim);
shift_ax = ULAB_MAX_DIMS - ndarray->ndim + ax;
axis_len = ndarray->shape[shift_ax];
} else {
axis_len = ndarray->len;
}
size_t index_len;
if(mp_obj_is_int(indices)) {
index_len = 1;
} else {
if(mp_obj_len_maybe(indices) == MP_OBJ_NULL) {
mp_raise_TypeError(translate("wrong index type"));
}
index_len = MP_OBJ_SMALL_INT_VALUE(mp_obj_len_maybe(indices));
}
if(index_len > axis_len) {
mp_raise_ValueError(translate("wrong length of index array"));
}
size_t *index_array = m_new(size_t, index_len);
if(mp_obj_is_int(indices)) {
ssize_t value = (ssize_t)mp_obj_get_int(indices);
if(value < 0) {
value += axis_len;
}
if((value < 0) || (value > (ssize_t)axis_len)) {
mp_raise_ValueError(translate("index is out of bounds"));
} else {
*index_array++ = (size_t)value;
}
} else {
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(indices, &iter_buf);
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
ssize_t value = (ssize_t)mp_obj_get_int(item);
if(value < 0) {
value += axis_len;
}
if((value < 0) || (value > (ssize_t)axis_len)) {
mp_raise_ValueError(translate("index is out of bounds"));
} else {
*index_array++ = (size_t)value;
}
}
}
// sort the array, since it is not guaranteed that the input is sorted
HEAPSORT1(size_t, index_array, 1, index_len);
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
memcpy(shape, ndarray->shape, ULAB_MAX_DIMS * sizeof(size_t));
size_t *rshape = m_new(size_t, ULAB_MAX_DIMS);
memcpy(rshape, ndarray->shape, ULAB_MAX_DIMS * sizeof(size_t));
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
memcpy(strides, ndarray->strides, ULAB_MAX_DIMS * sizeof(int32_t));
int32_t *rstrides = m_new0(int32_t, ULAB_MAX_DIMS);
ndarray_obj_t *result = NULL;
if(axis == mp_const_none) {
result = ndarray_new_linear_array(ndarray->len - index_len, ndarray->dtype);
rstrides[ULAB_MAX_DIMS - 1] = ndarray->itemsize;
memset(rshape, 0, sizeof(size_t) * ULAB_MAX_DIMS);
} else {
rshape[shift_ax] = shape[shift_ax] - index_len;
result = ndarray_new_dense_ndarray(ndarray->ndim, rshape, ndarray->dtype);
SWAP(size_t, shape[shift_ax], shape[ULAB_MAX_DIMS - 1]);
SWAP(size_t, rshape[shift_ax], rshape[ULAB_MAX_DIMS - 1]);
SWAP(int32_t, strides[shift_ax], strides[ULAB_MAX_DIMS - 1]);
memcpy(rstrides, result->strides, ULAB_MAX_DIMS * sizeof(int32_t));
SWAP(int32_t, rstrides[shift_ax], rstrides[ULAB_MAX_DIMS - 1]);
}
uint8_t *rarray = (uint8_t *)result->array;
index_array -= index_len;
size_t count = 0;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
if(count == *index_array) {
index_array++;
} else {
memcpy(rarray, array, ndarray->itemsize);
rarray += rstrides[ULAB_MAX_DIMS - 1];
}
array += strides[ULAB_MAX_DIMS - 1];
l++;
count++;
} while(l < shape[ULAB_MAX_DIMS - 1]);
if(axis != mp_const_none) {
index_array -= index_len;
count = 0;
}
#if ULAB_MAX_DIMS > 1
array -= strides[ULAB_MAX_DIMS - 1] * shape[ULAB_MAX_DIMS - 1];
array += strides[ULAB_MAX_DIMS - 2];
rarray -= rstrides[ULAB_MAX_DIMS - 1] * rshape[ULAB_MAX_DIMS - 1];
rarray += rstrides[ULAB_MAX_DIMS - 2];
k++;
} while(k < shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
array -= strides[ULAB_MAX_DIMS - 2] * shape[ULAB_MAX_DIMS - 2];
array += strides[ULAB_MAX_DIMS - 3];
rarray -= rstrides[ULAB_MAX_DIMS - 2] * rshape[ULAB_MAX_DIMS - 2];
rarray += rstrides[ULAB_MAX_DIMS - 3];
j++;
} while(j < shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
array -= strides[ULAB_MAX_DIMS - 3] * shape[ULAB_MAX_DIMS - 3];
array += strides[ULAB_MAX_DIMS - 4];
rarray -= rstrides[ULAB_MAX_DIMS - 3] * rshape[ULAB_MAX_DIMS - 3];
rarray += rstrides[ULAB_MAX_DIMS - 4];
i++;
} while(i < shape[ULAB_MAX_DIMS - 4]);
#endif
// TODO: deleting shape generates a seg fault
// m_del(size_t, shape, ULAB_MAX_DIMS);
m_del(size_t, rshape, ULAB_MAX_DIMS);
m_del(int32_t, strides, ULAB_MAX_DIMS);
m_del(int32_t, rstrides, ULAB_MAX_DIMS);
return MP_OBJ_FROM_PTR(result);
}
MP_DEFINE_CONST_FUN_OBJ_KW(transform_delete_obj, 2, transform_delete);
#endif /* ULAB_NUMPY_HAS_DELETE */
#if ULAB_MAX_DIMS > 1
#if ULAB_NUMPY_HAS_DOT
//| def dot(m1: ulab.numpy.ndarray, m2: ulab.numpy.ndarray) -> Union[ulab.numpy.ndarray, _float]:
//| """
//| :param ~ulab.numpy.ndarray m1: a matrix, or a vector
//| :param ~ulab.numpy.ndarray m2: a matrix, or a vector
//|
//| Computes the product of two matrices, or two vectors. In the letter case, the inner product is returned."""
//| ...
//|
mp_obj_t transform_dot(mp_obj_t _m1, mp_obj_t _m2) {
// TODO: should the results be upcast?
// This implements 2D operations only!
if(!mp_obj_is_type(_m1, &ulab_ndarray_type) || !mp_obj_is_type(_m2, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("arguments must be ndarrays"));
}
ndarray_obj_t *m1 = MP_OBJ_TO_PTR(_m1);
ndarray_obj_t *m2 = MP_OBJ_TO_PTR(_m2);
COMPLEX_DTYPE_NOT_IMPLEMENTED(m1->dtype)
COMPLEX_DTYPE_NOT_IMPLEMENTED(m2->dtype)
uint8_t *array1 = (uint8_t *)m1->array;
uint8_t *array2 = (uint8_t *)m2->array;
mp_float_t (*func1)(void *) = ndarray_get_float_function(m1->dtype);
mp_float_t (*func2)(void *) = ndarray_get_float_function(m2->dtype);
if(m1->shape[ULAB_MAX_DIMS - 1] != m2->shape[ULAB_MAX_DIMS - m2->ndim]) {
mp_raise_ValueError(translate("dimensions do not match"));
}
uint8_t ndim = MIN(m1->ndim, m2->ndim);
size_t shape1 = m1->ndim == 2 ? m1->shape[ULAB_MAX_DIMS - m1->ndim] : 1;
size_t shape2 = m2->ndim == 2 ? m2->shape[ULAB_MAX_DIMS - 1] : 1;
size_t *shape = NULL;
if(ndim == 2) { // matrix times matrix -> matrix
shape = ndarray_shape_vector(0, 0, shape1, shape2);
} else { // matrix times vector -> vector, vector times vector -> vector (size 1)
shape = ndarray_shape_vector(0, 0, 0, shape1 * shape2);
}
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
mp_float_t *rarray = (mp_float_t *)results->array;
for(size_t i=0; i < shape1; i++) { // rows of m1
for(size_t j=0; j < shape2; j++) { // columns of m2
mp_float_t dot = 0.0;
for(size_t k=0; k < m1->shape[ULAB_MAX_DIMS - 1]; k++) {
// (i, k) * (k, j)
dot += func1(array1) * func2(array2);
array1 += m1->strides[ULAB_MAX_DIMS - 1];
array2 += m2->strides[ULAB_MAX_DIMS - m2->ndim];
}
*rarray++ = dot;
array1 -= m1->strides[ULAB_MAX_DIMS - 1] * m1->shape[ULAB_MAX_DIMS - 1];
array2 -= m2->strides[ULAB_MAX_DIMS - m2->ndim] * m2->shape[ULAB_MAX_DIMS - m2->ndim];
array2 += m2->strides[ULAB_MAX_DIMS - 1];
}
array1 += m1->strides[ULAB_MAX_DIMS - m1->ndim];
array2 = m2->array;
}
if((m1->ndim * m2->ndim) == 1) { // return a scalar, if product of two vectors
return mp_obj_new_float(*(--rarray));
} else {
return MP_OBJ_FROM_PTR(results);
}
}
MP_DEFINE_CONST_FUN_OBJ_2(transform_dot_obj, transform_dot);
#endif /* ULAB_NUMPY_HAS_DOT */
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_NUMPY_HAS_SIZE
static mp_obj_t transform_size(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(ulab_tools_mp_obj_is_scalar(args[0].u_obj)) {
return mp_obj_new_int(1);
}
if(!ndarray_object_is_array_like(args[0].u_obj)) {
mp_raise_TypeError(translate("first argument must be an ndarray"));
}
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
return mp_obj_len_maybe(args[0].u_obj);
}
// at this point, the args[0] is most certainly an ndarray
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
mp_obj_t axis = args[1].u_obj;
size_t len;
if(axis != mp_const_none) {
int8_t ax = tools_get_axis(axis, ndarray->ndim);
len = ndarray->shape[ULAB_MAX_DIMS - ndarray->ndim + ax];
} else {
len = ndarray->len;
}
return mp_obj_new_int(len);
}
MP_DEFINE_CONST_FUN_OBJ_KW(transform_size_obj, 1, transform_size);
#endif

View file

@ -1,30 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*
*/
#ifndef _TRANSFORM_
#define _TRANSFORM_
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../ulab.h"
#include "../ulab_tools.h"
MP_DECLARE_CONST_FUN_OBJ_KW(transform_compress_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(transform_delete_obj);
MP_DECLARE_CONST_FUN_OBJ_2(transform_dot_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(transform_size_obj);
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,298 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*/
#ifndef _VECTOR_
#define _VECTOR_
#include "../ulab.h"
#include "../ndarray.h"
#if ULAB_MATH_FUNCTIONS_OUT_KEYWORD
MP_DECLARE_CONST_FUN_OBJ_KW(vector_acos_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_acosh_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_asin_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_asinh_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_atan_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_atanh_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_ceil_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_cos_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_cosh_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_degrees_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_erf_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_erfc_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_exp_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_expm1_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_floor_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_gamma_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_lgamma_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_log_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_log10_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_log2_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_radians_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_sin_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_sinc_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_sinh_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_tan_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_tanh_obj);
#else
MP_DECLARE_CONST_FUN_OBJ_1(vector_acos_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_acosh_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_asin_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_asinh_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_atan_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_atanh_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_ceil_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_cos_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_cosh_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_degrees_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_erf_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_erfc_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_exp_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_expm1_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_floor_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_gamma_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_lgamma_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_log_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_log10_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_log2_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_radians_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_sin_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_sinc_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_sinh_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_tan_obj);
MP_DECLARE_CONST_FUN_OBJ_1(vector_tanh_obj);
#endif
MP_DECLARE_CONST_FUN_OBJ_2(vector_arctan2_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(vector_around_obj);
#if ULAB_SUPPORTS_COMPLEX | ULAB_MATH_FUNCTIONS_OUT_KEYWORD
MP_DECLARE_CONST_FUN_OBJ_KW(vector_sqrt_obj);
#else
MP_DECLARE_CONST_FUN_OBJ_1(vector_sqrt_obj);
#endif
MP_DECLARE_CONST_FUN_OBJ_KW(vector_vectorize_obj);
typedef struct _vectorized_function_obj_t {
mp_obj_base_t base;
uint8_t otypes;
mp_obj_t fun;
const mp_obj_type_t *type;
} vectorized_function_obj_t;
#if ULAB_HAS_FUNCTION_ITERATOR
#define ITERATE_VECTOR(type, array, source, sarray, shift)\
({\
size_t *scoords = ndarray_new_coords((source)->ndim);\
for(size_t i=0; i < (source)->len/(source)->shape[ULAB_MAX_DIMS -1]; i++) {\
for(size_t l=0; l < (source)->shape[ULAB_MAX_DIMS - 1]; l++) {\
*(array) = f(*((type *)(sarray)));\
(array) += (shift);\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 1];\
}\
ndarray_rewind_array((source)->ndim, sarray, (source)->shape, (source)->strides, scoords);\
}\
})
#endif /* ULAB_HAS_FUNCTION_ITERATOR */
#if ULAB_MATH_FUNCTIONS_OUT_KEYWORD
#if ULAB_MAX_DIMS == 1
#define ITERATE_VECTOR(type, target, tarray, tstrides, source, sarray) do {\
size_t l = 0;\
do {\
*(tarray) = f(*((type *)(sarray)));\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 1];\
(tarray) += (tstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (source)->shape[ULAB_MAX_DIMS-1]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 1 */
#if ULAB_MAX_DIMS == 2
#define ITERATE_VECTOR(type, target, tarray, tstrides, source, sarray) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*(tarray) = f(*((type *)(sarray)));\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 1];\
(tarray) += (tstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (source)->shape[ULAB_MAX_DIMS-1]);\
(sarray) -= (source)->strides[ULAB_MAX_DIMS - 1] * (source)->shape[ULAB_MAX_DIMS - 1];\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 2];\
(tarray) -= (tstrides)[ULAB_MAX_DIMS - 1] * (target)->shape[ULAB_MAX_DIMS - 1];\
(tarray) += (tstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (source)->shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 2 */
#if ULAB_MAX_DIMS == 3
#define ITERATE_VECTOR(type, target, tarray, tstrides, source, sarray) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*(tarray) = f(*((type *)(sarray)));\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 1];\
(tarray) += (tstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (source)->shape[ULAB_MAX_DIMS-1]);\
(sarray) -= (source)->strides[ULAB_MAX_DIMS - 1] * (source)->shape[ULAB_MAX_DIMS - 1];\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 2];\
(tarray) -= (tstrides)[ULAB_MAX_DIMS - 1] * (target)->shape[ULAB_MAX_DIMS - 1];\
(tarray) += (tstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (source)->shape[ULAB_MAX_DIMS-2]);\
(sarray) -= (source)->strides[ULAB_MAX_DIMS - 2] * (source)->shape[ULAB_MAX_DIMS - 2];\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 3];\
(tarray) -= (tstrides)[ULAB_MAX_DIMS - 2] * (target)->shape[ULAB_MAX_DIMS - 2];\
(tarray) += (tstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (source)->shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 3 */
#if ULAB_MAX_DIMS == 4
#define ITERATE_VECTOR(type, target, tshape, tstrides, source, sarray) do {\
size_t i = 0;\
do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*(tarray) = f(*((type *)(sarray)));\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 1];\
(tarray) += (tstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (source)->shape[ULAB_MAX_DIMS-1]);\
(sarray) -= (source)->strides[ULAB_MAX_DIMS - 1] * (source)->shape[ULAB_MAX_DIMS - 1];\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 2];\
(tarray) -= (tstrides)[ULAB_MAX_DIMS - 1] * (target)->shape[ULAB_MAX_DIMS - 1];\
(tarray) += (tstrides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (source)->shape[ULAB_MAX_DIMS-2]);\
(sarray) -= (source)->strides[ULAB_MAX_DIMS - 2] * (source)->shape[ULAB_MAX_DIMS - 2];\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 3];\
(tarray) -= (tstrides)[ULAB_MAX_DIMS - 2] * (target)->shape[ULAB_MAX_DIMS - 2];\
(tarray) += (tstrides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (source)->shape[ULAB_MAX_DIMS - 3]);\
(sarray) -= (source)->strides[ULAB_MAX_DIMS - 3] * (source)->shape[ULAB_MAX_DIMS - 3];\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 4];\
(tarray) -= (tstrides)[ULAB_MAX_DIMS - 3] * (target)->shape[ULAB_MAX_DIMS - 3];\
(tarray) += (tstrides)[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < (source)->shape[ULAB_MAX_DIMS - 4]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 4 */
#define MATH_FUN_1(py_name, c_name) \
static mp_obj_t vector_ ## py_name(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { \
return vector_generic_vector(n_args, pos_args, kw_args, MICROPY_FLOAT_C_FUN(c_name)); \
}
#else /* ULAB_MATH_FUNCTIONS_OUT_KEYWORD */
#if ULAB_MAX_DIMS == 1
#define ITERATE_VECTOR(type, array, source, sarray) do {\
size_t l = 0;\
do {\
*(array)++ = f(*((type *)(sarray)));\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (source)->shape[ULAB_MAX_DIMS - 1]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 1 */
#if ULAB_MAX_DIMS == 2
#define ITERATE_VECTOR(type, array, source, sarray) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*(array)++ = f(*((type *)(sarray)));\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (source)->shape[ULAB_MAX_DIMS - 1]);\
(sarray) -= (source)->strides[ULAB_MAX_DIMS - 1] * (source)->shape[ULAB_MAX_DIMS - 1];\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (source)->shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 2 */
#if ULAB_MAX_DIMS == 3
#define ITERATE_VECTOR(type, array, source, sarray) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*(array)++ = f(*((type *)(sarray)));\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (source)->shape[ULAB_MAX_DIMS - 1]);\
(sarray) -= (source)->strides[ULAB_MAX_DIMS - 1] * (source)->shape[ULAB_MAX_DIMS - 1];\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (source)->shape[ULAB_MAX_DIMS - 2]);\
(sarray) -= (source)->strides[ULAB_MAX_DIMS - 2] * (source)->shape[ULAB_MAX_DIMS - 2];\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (source)->shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 3 */
#if ULAB_MAX_DIMS == 4
#define ITERATE_VECTOR(type, array, source, sarray) do {\
size_t i = 0;\
do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
*(array)++ = f(*((type *)(sarray)));\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (source)->shape[ULAB_MAX_DIMS - 1]);\
(sarray) -= (source)->strides[ULAB_MAX_DIMS - 1] * (source)->shape[ULAB_MAX_DIMS - 1];\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (source)->shape[ULAB_MAX_DIMS - 2]);\
(sarray) -= (source)->strides[ULAB_MAX_DIMS - 2] * (source)->shape[ULAB_MAX_DIMS - 2];\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (source)->shape[ULAB_MAX_DIMS - 3]);\
(sarray) -= (source)->strides[ULAB_MAX_DIMS - 3] * (source)->shape[ULAB_MAX_DIMS - 3];\
(sarray) += (source)->strides[ULAB_MAX_DIMS - 4];\
i++;\
} while(i < (source)->shape[ULAB_MAX_DIMS - 4]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 4 */
#define MATH_FUN_1(py_name, c_name) \
static mp_obj_t vector_ ## py_name(mp_obj_t x_obj) { \
return vector_generic_vector(x_obj, MICROPY_FLOAT_C_FUN(c_name)); \
}
#endif /* ULAB_MATH_FUNCTIONS_OUT_KEYWORD */
#endif /* _VECTOR_ */

215
code/poly.c Normal file
View file

@ -0,0 +1,215 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#include "py/obj.h"
#include "py/runtime.h"
#include "py/objarray.h"
#include "ndarray.h"
#include "linalg.h"
#include "poly.h"
#if ULAB_POLY_MODULE
bool object_is_nditerable(mp_obj_t o_in) {
if(MP_OBJ_IS_TYPE(o_in, &ulab_ndarray_type) ||
MP_OBJ_IS_TYPE(o_in, &mp_type_tuple) ||
MP_OBJ_IS_TYPE(o_in, &mp_type_list) ||
MP_OBJ_IS_TYPE(o_in, &mp_type_range)) {
return true;
}
return false;
}
size_t get_nditerable_len(mp_obj_t o_in) {
if(MP_OBJ_IS_TYPE(o_in, &ulab_ndarray_type)) {
ndarray_obj_t *in = MP_OBJ_TO_PTR(o_in);
return in->array->len;
} else {
return (size_t)mp_obj_get_int(mp_obj_len_maybe(o_in));
}
}
mp_obj_t poly_polyval(mp_obj_t o_p, mp_obj_t o_x) {
// TODO: return immediately, if o_p is not an iterable
// TODO: there is a bug here: matrices won't work,
// because there is a single iteration loop
size_t m, n;
if(MP_OBJ_IS_TYPE(o_x, &ulab_ndarray_type)) {
ndarray_obj_t *ndx = MP_OBJ_TO_PTR(o_x);
m = ndx->m;
n = ndx->n;
} else {
mp_obj_array_t *ix = MP_OBJ_TO_PTR(o_x);
m = 1;
n = ix->len;
}
// polynomials are going to be of type float, except, when both
// the coefficients and the independent variable are integers
ndarray_obj_t *out = create_new_ndarray(m, n, NDARRAY_FLOAT);
mp_obj_iter_buf_t x_buf;
mp_obj_t x_item, x_iterable = mp_getiter(o_x, &x_buf);
mp_obj_iter_buf_t p_buf;
mp_obj_t p_item, p_iterable;
mp_float_t x, y;
mp_float_t *outf = (mp_float_t *)out->array->items;
uint8_t plen = mp_obj_get_int(mp_obj_len_maybe(o_p));
mp_float_t *p = m_new(mp_float_t, plen);
p_iterable = mp_getiter(o_p, &p_buf);
uint16_t i = 0;
while((p_item = mp_iternext(p_iterable)) != MP_OBJ_STOP_ITERATION) {
p[i] = mp_obj_get_float(p_item);
i++;
}
i = 0;
while ((x_item = mp_iternext(x_iterable)) != MP_OBJ_STOP_ITERATION) {
x = mp_obj_get_float(x_item);
y = p[0];
for(uint8_t j=0; j < plen-1; j++) {
y *= x;
y += p[j+1];
}
outf[i++] = y;
}
m_del(mp_float_t, p, plen);
return MP_OBJ_FROM_PTR(out);
}
MP_DEFINE_CONST_FUN_OBJ_2(poly_polyval_obj, poly_polyval);
mp_obj_t poly_polyfit(size_t n_args, const mp_obj_t *args) {
if((n_args != 2) && (n_args != 3)) {
mp_raise_ValueError(translate("number of arguments must be 2, or 3"));
}
if(!object_is_nditerable(args[0])) {
mp_raise_ValueError(translate("input data must be an iterable"));
}
uint16_t lenx = 0, leny = 0;
uint8_t deg = 0;
mp_float_t *x, *XT, *y, *prod;
if(n_args == 2) { // only the y values are supplied
// TODO: this is actually not enough: the first argument can very well be a matrix,
// in which case we are between the rock and a hard place
leny = (uint16_t)mp_obj_get_int(mp_obj_len_maybe(args[0]));
deg = (uint8_t)mp_obj_get_int(args[1]);
if(leny < deg) {
mp_raise_ValueError(translate("more degrees of freedom than data points"));
}
lenx = leny;
x = m_new(mp_float_t, lenx); // assume uniformly spaced data points
for(size_t i=0; i < lenx; i++) {
x[i] = i;
}
y = m_new(mp_float_t, leny);
fill_array_iterable(y, args[0]);
} else if(n_args == 3) {
lenx = (uint16_t)mp_obj_get_int(mp_obj_len_maybe(args[0]));
leny = (uint16_t)mp_obj_get_int(mp_obj_len_maybe(args[0]));
if(lenx != leny) {
mp_raise_ValueError(translate("input vectors must be of equal length"));
}
deg = (uint8_t)mp_obj_get_int(args[2]);
if(leny < deg) {
mp_raise_ValueError(translate("more degrees of freedom than data points"));
}
x = m_new(mp_float_t, lenx);
fill_array_iterable(x, args[0]);
y = m_new(mp_float_t, leny);
fill_array_iterable(y, args[1]);
}
// one could probably express X as a function of XT,
// and thereby save RAM, because X is used only in the product
XT = m_new(mp_float_t, (deg+1)*leny); // XT is a matrix of shape (deg+1, len) (rows, columns)
for(uint8_t i=0; i < leny; i++) { // column index
XT[i+0*lenx] = 1.0; // top row
for(uint8_t j=1; j < deg+1; j++) { // row index
XT[i+j*leny] = XT[i+(j-1)*leny]*x[i];
}
}
prod = m_new(mp_float_t, (deg+1)*(deg+1)); // the product matrix is of shape (deg+1, deg+1)
mp_float_t sum;
for(uint16_t i=0; i < deg+1; i++) { // column index
for(uint16_t j=0; j < deg+1; j++) { // row index
sum = 0.0;
for(size_t k=0; k < lenx; k++) {
// (j, k) * (k, i)
// Note that the second matrix is simply the transpose of the first:
// X(k, i) = XT(i, k) = XT[k*lenx+i]
sum += XT[j*lenx+k]*XT[i*lenx+k]; // X[k*(deg+1)+i];
}
prod[j*(deg+1)+i] = sum;
}
}
if(!linalg_invert_matrix(prod, deg+1)) {
// Although X was a Vandermonde matrix, whose inverse is guaranteed to exist,
// we bail out here, if prod couldn't be inverted: if the values in x are not all
// distinct, prod is singular
m_del(mp_float_t, XT, (deg+1)*lenx);
m_del(mp_float_t, x, lenx);
m_del(mp_float_t, y, lenx);
m_del(mp_float_t, prod, (deg+1)*(deg+1));
mp_raise_ValueError(translate("could not invert Vandermonde matrix"));
}
// at this point, we have the inverse of X^T * X
// y is a column vector; x is free now, we can use it for storing intermediate values
for(uint16_t i=0; i < deg+1; i++) { // row index
sum = 0.0;
for(uint16_t j=0; j < lenx; j++) { // column index
sum += XT[i*lenx+j]*y[j];
}
x[i] = sum;
}
// XT is no longer needed
m_del(mp_float_t, XT, (deg+1)*leny);
ndarray_obj_t *beta = create_new_ndarray(deg+1, 1, NDARRAY_FLOAT);
mp_float_t *betav = (mp_float_t *)beta->array->items;
// x[0..(deg+1)] contains now the product X^T * y; we can get rid of y
m_del(float, y, leny);
// now, we calculate beta, i.e., we apply prod = (X^T * X)^(-1) on x = X^T * y; x is a column vector now
for(uint16_t i=0; i < deg+1; i++) {
sum = 0.0;
for(uint16_t j=0; j < deg+1; j++) {
sum += prod[i*(deg+1)+j]*x[j];
}
betav[i] = sum;
}
m_del(mp_float_t, x, lenx);
m_del(mp_float_t, prod, (deg+1)*(deg+1));
for(uint8_t i=0; i < (deg+1)/2; i++) {
// We have to reverse the array, for the leading coefficient comes first.
SWAP(mp_float_t, betav[i], betav[deg-i]);
}
return MP_OBJ_FROM_PTR(beta);
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(poly_polyfit_obj, 2, 3, poly_polyfit);
#if !CIRCUITPY
STATIC const mp_rom_map_elem_t ulab_poly_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_poly) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_polyval), (mp_obj_t)&poly_polyval_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_polyfit), (mp_obj_t)&poly_polyfit_obj },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_poly_globals, ulab_poly_globals_table);
mp_obj_module_t ulab_poly_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_poly_globals,
};
#endif
#endif

View file

@ -6,16 +6,20 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#ifndef _POLY_
#define _POLY_
#include "../ulab.h"
#include "../ndarray.h"
#include "ulab.h"
#if ULAB_POLY_MODULE
extern mp_obj_module_t ulab_poly_module;
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(poly_polyfit_obj);
MP_DECLARE_CONST_FUN_OBJ_2(poly_polyval_obj);
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(poly_polyfit_obj);
#endif
#endif

View file

@ -1,285 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Vikas Udupa
*
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../../ulab.h"
#include "../../ulab_tools.h"
#include "../../numpy/linalg/linalg_tools.h"
#include "linalg.h"
#if ULAB_SCIPY_HAS_LINALG_MODULE
//|
//| import ulab.scipy
//| import ulab.numpy
//|
//| """Linear algebra functions"""
//|
#if ULAB_MAX_DIMS > 1
//| def solve_triangular(A: ulab.numpy.ndarray, b: ulab.numpy.ndarray, lower: bool) -> ulab.numpy.ndarray:
//| """
//| :param ~ulab.numpy.ndarray A: a matrix
//| :param ~ulab.numpy.ndarray b: a vector
//| :param ~bool lower: if true, use only data contained in lower triangle of A, else use upper triangle of A
//| :return: solution to the system A x = b. Shape of return matches b
//| :raises TypeError: if A and b are not of type ndarray and are not dense
//| :raises ValueError: if A is a singular matrix
//|
//| Solve the equation A x = b for x, assuming A is a triangular matrix"""
//| ...
//|
static mp_obj_t solve_triangular(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
size_t i, j;
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE} } ,
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE} } ,
{ MP_QSTR_lower, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_TRUE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type) || !mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("first two arguments must be ndarrays"));
}
ndarray_obj_t *A = MP_OBJ_TO_PTR(args[0].u_obj);
ndarray_obj_t *b = MP_OBJ_TO_PTR(args[1].u_obj);
if(!ndarray_is_dense(A) || !ndarray_is_dense(b)) {
mp_raise_TypeError(translate("input must be a dense ndarray"));
}
size_t A_rows = A->shape[ULAB_MAX_DIMS - 2];
size_t A_cols = A->shape[ULAB_MAX_DIMS - 1];
uint8_t *A_arr = (uint8_t *)A->array;
uint8_t *b_arr = (uint8_t *)b->array;
mp_float_t (*get_A_ele)(void *) = ndarray_get_float_function(A->dtype);
mp_float_t (*get_b_ele)(void *) = ndarray_get_float_function(b->dtype);
uint8_t *temp_A = A_arr;
// check if input matrix A is singular
for (i = 0; i < A_rows; i++) {
if (MICROPY_FLOAT_C_FUN(fabs)(get_A_ele(A_arr)) < LINALG_EPSILON)
mp_raise_ValueError(translate("input matrix is singular"));
A_arr += A->strides[ULAB_MAX_DIMS - 2];
A_arr += A->strides[ULAB_MAX_DIMS - 1];
}
A_arr = temp_A;
ndarray_obj_t *x = ndarray_new_dense_ndarray(b->ndim, b->shape, NDARRAY_FLOAT);
mp_float_t *x_arr = (mp_float_t *)x->array;
if (mp_obj_is_true(args[2].u_obj)) {
// Solve the lower triangular matrix by iterating each row of A.
// Start by finding the first unknown using the first row.
// On finding this unknown, find the second unknown using the second row.
// Continue the same till the last unknown is found using the last row.
for (i = 0; i < A_rows; i++) {
mp_float_t sum = 0.0;
for (j = 0; j < i; j++) {
sum += (get_A_ele(A_arr) * (*x_arr++));
A_arr += A->strides[ULAB_MAX_DIMS - 1];
}
sum = (get_b_ele(b_arr) - sum) / (get_A_ele(A_arr));
*x_arr = sum;
x_arr -= j;
A_arr -= A->strides[ULAB_MAX_DIMS - 1] * j;
A_arr += A->strides[ULAB_MAX_DIMS - 2];
b_arr += b->strides[ULAB_MAX_DIMS - 1];
}
} else {
// Solve the upper triangular matrix by iterating each row of A.
// Start by finding the last unknown using the last row.
// On finding this unknown, find the last-but-one unknown using the last-but-one row.
// Continue the same till the first unknown is found using the first row.
A_arr += (A->strides[ULAB_MAX_DIMS - 2] * A_rows);
b_arr += (b->strides[ULAB_MAX_DIMS - 1] * A_cols);
x_arr += A_cols;
for (i = A_rows - 1; i < A_rows; i--) {
mp_float_t sum = 0.0;
for (j = i + 1; j < A_cols; j++) {
sum += (get_A_ele(A_arr) * (*x_arr++));
A_arr += A->strides[ULAB_MAX_DIMS - 1];
}
x_arr -= (j - i);
A_arr -= (A->strides[ULAB_MAX_DIMS - 1] * (j - i));
b_arr -= b->strides[ULAB_MAX_DIMS - 1];
sum = (get_b_ele(b_arr) - sum) / get_A_ele(A_arr);
*x_arr = sum;
A_arr -= A->strides[ULAB_MAX_DIMS - 2];
}
}
return MP_OBJ_FROM_PTR(x);
}
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_solve_triangular_obj, 2, solve_triangular);
//| def cho_solve(L: ulab.numpy.ndarray, b: ulab.numpy.ndarray) -> ulab.numpy.ndarray:
//| """
//| :param ~ulab.numpy.ndarray L: the lower triangular, Cholesky factorization of A
//| :param ~ulab.numpy.ndarray b: right-hand-side vector b
//| :return: solution to the system A x = b. Shape of return matches b
//| :raises TypeError: if L and b are not of type ndarray and are not dense
//|
//| Solve the linear equations A x = b, given the Cholesky factorization of A as input"""
//| ...
//|
static mp_obj_t cho_solve(mp_obj_t _L, mp_obj_t _b) {
if(!mp_obj_is_type(_L, &ulab_ndarray_type) || !mp_obj_is_type(_b, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("first two arguments must be ndarrays"));
}
ndarray_obj_t *L = MP_OBJ_TO_PTR(_L);
ndarray_obj_t *b = MP_OBJ_TO_PTR(_b);
if(!ndarray_is_dense(L) || !ndarray_is_dense(b)) {
mp_raise_TypeError(translate("input must be a dense ndarray"));
}
mp_float_t (*get_L_ele)(void *) = ndarray_get_float_function(L->dtype);
mp_float_t (*get_b_ele)(void *) = ndarray_get_float_function(b->dtype);
void (*set_L_ele)(void *, mp_float_t) = ndarray_set_float_function(L->dtype);
size_t L_rows = L->shape[ULAB_MAX_DIMS - 2];
size_t L_cols = L->shape[ULAB_MAX_DIMS - 1];
// Obtain transpose of the input matrix L in L_t
size_t L_t_shape[ULAB_MAX_DIMS];
size_t L_t_rows = L_t_shape[ULAB_MAX_DIMS - 2] = L_cols;
size_t L_t_cols = L_t_shape[ULAB_MAX_DIMS - 1] = L_rows;
ndarray_obj_t *L_t = ndarray_new_dense_ndarray(L->ndim, L_t_shape, L->dtype);
uint8_t *L_arr = (uint8_t *)L->array;
uint8_t *L_t_arr = (uint8_t *)L_t->array;
uint8_t *b_arr = (uint8_t *)b->array;
size_t i, j;
uint8_t *L_ptr = L_arr;
uint8_t *L_t_ptr = L_t_arr;
for (i = 0; i < L_rows; i++) {
for (j = 0; j < L_cols; j++) {
set_L_ele(L_t_ptr, get_L_ele(L_ptr));
L_t_ptr += L_t->strides[ULAB_MAX_DIMS - 2];
L_ptr += L->strides[ULAB_MAX_DIMS - 1];
}
L_t_ptr -= j * L_t->strides[ULAB_MAX_DIMS - 2];
L_t_ptr += L_t->strides[ULAB_MAX_DIMS - 1];
L_ptr -= j * L->strides[ULAB_MAX_DIMS - 1];
L_ptr += L->strides[ULAB_MAX_DIMS - 2];
}
ndarray_obj_t *x = ndarray_new_dense_ndarray(b->ndim, b->shape, NDARRAY_FLOAT);
mp_float_t *x_arr = (mp_float_t *)x->array;
ndarray_obj_t *y = ndarray_new_dense_ndarray(b->ndim, b->shape, NDARRAY_FLOAT);
mp_float_t *y_arr = (mp_float_t *)y->array;
// solve L y = b to obtain y, where L_t x = y
for (i = 0; i < L_rows; i++) {
mp_float_t sum = 0.0;
for (j = 0; j < i; j++) {
sum += (get_L_ele(L_arr) * (*y_arr++));
L_arr += L->strides[ULAB_MAX_DIMS - 1];
}
sum = (get_b_ele(b_arr) - sum) / (get_L_ele(L_arr));
*y_arr = sum;
y_arr -= j;
L_arr -= L->strides[ULAB_MAX_DIMS - 1] * j;
L_arr += L->strides[ULAB_MAX_DIMS - 2];
b_arr += b->strides[ULAB_MAX_DIMS - 1];
}
// using y, solve L_t x = y to obtain x
L_t_arr += (L_t->strides[ULAB_MAX_DIMS - 2] * L_t_rows);
y_arr += L_t_cols;
x_arr += L_t_cols;
for (i = L_t_rows - 1; i < L_t_rows; i--) {
mp_float_t sum = 0.0;
for (j = i + 1; j < L_t_cols; j++) {
sum += (get_L_ele(L_t_arr) * (*x_arr++));
L_t_arr += L_t->strides[ULAB_MAX_DIMS - 1];
}
x_arr -= (j - i);
L_t_arr -= (L_t->strides[ULAB_MAX_DIMS - 1] * (j - i));
y_arr--;
sum = ((*y_arr) - sum) / get_L_ele(L_t_arr);
*x_arr = sum;
L_t_arr -= L_t->strides[ULAB_MAX_DIMS - 2];
}
return MP_OBJ_FROM_PTR(x);
}
MP_DEFINE_CONST_FUN_OBJ_2(linalg_cho_solve_obj, cho_solve);
#endif
static const mp_rom_map_elem_t ulab_scipy_linalg_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_linalg) },
#if ULAB_MAX_DIMS > 1
#if ULAB_SCIPY_LINALG_HAS_SOLVE_TRIANGULAR
{ MP_ROM_QSTR(MP_QSTR_solve_triangular), MP_ROM_PTR(&linalg_solve_triangular_obj) },
#endif
#if ULAB_SCIPY_LINALG_HAS_CHO_SOLVE
{ MP_ROM_QSTR(MP_QSTR_cho_solve), MP_ROM_PTR(&linalg_cho_solve_obj) },
#endif
#endif
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_scipy_linalg_globals, ulab_scipy_linalg_globals_table);
const mp_obj_module_t ulab_scipy_linalg_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_linalg_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_linalg, ulab_scipy_linalg_module, MODULE_ULAB_ENABLED);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_linalg, ulab_scipy_linalg_module);
#endif
#endif
#endif

View file

@ -1,21 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Vikas Udupa
*
*/
#ifndef _SCIPY_LINALG_
#define _SCIPY_LINALG_
extern const mp_obj_module_t ulab_scipy_linalg_module;
MP_DECLARE_CONST_FUN_OBJ_KW(linalg_solve_triangular_obj);
MP_DECLARE_CONST_FUN_OBJ_2(linalg_cho_solve_obj);
#endif /* _SCIPY_LINALG_ */

View file

@ -1,421 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2020 Scott Shawcroft for Adafruit Industries
* 2020-2021 Zoltán Vörös
* 2020 Taku Fukada
*/
#include <math.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../../ndarray.h"
#include "../../ulab.h"
#include "../../ulab_tools.h"
#include "optimize.h"
ULAB_DEFINE_FLOAT_CONST(xtolerance, MICROPY_FLOAT_CONST(2.4e-7), 0x3480d959UL, 0x3e901b2b29a4692bULL);
ULAB_DEFINE_FLOAT_CONST(rtolerance, MICROPY_FLOAT_CONST(0.0), 0UL, 0ULL);
static mp_float_t optimize_python_call(const mp_obj_type_t *type, mp_obj_t fun, mp_float_t x, mp_obj_t *fargs, uint8_t nparams) {
// Helper function for calculating the value of f(x, a, b, c, ...),
// where f is defined in python. Takes a float, returns a float.
// The array of mp_obj_t type must be supplied, as must the number of parameters (a, b, c...) in nparams
fargs[0] = mp_obj_new_float(x);
return mp_obj_get_float(MP_OBJ_TYPE_GET_SLOT(type, call)(fun, nparams+1, 0, fargs));
}
#if ULAB_SCIPY_OPTIMIZE_HAS_BISECT
//| def bisect(
//| fun: Callable[[float], float],
//| a: float,
//| b: float,
//| *,
//| xtol: float = 2.4e-7,
//| maxiter: int = 100
//| ) -> float:
//| """
//| :param callable f: The function to bisect
//| :param float a: The left side of the interval
//| :param float b: The right side of the interval
//| :param float xtol: The tolerance value
//| :param float maxiter: The maximum number of iterations to perform
//|
//| Find a solution (zero) of the function ``f(x)`` on the interval
//| (``a``..``b``) using the bisection method. The result is accurate to within
//| ``xtol`` unless more than ``maxiter`` steps are required."""
//| ...
//|
STATIC mp_obj_t optimize_bisect(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// Simple bisection routine
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_xtol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(xtolerance)} },
{ MP_QSTR_maxiter, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 100} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t fun = args[0].u_obj;
const mp_obj_type_t *type = mp_obj_get_type(fun);
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
mp_raise_TypeError(translate("first argument must be a function"));
}
mp_float_t xtol = mp_obj_get_float(args[3].u_obj);
mp_obj_t fargs[1];
mp_float_t left, right;
mp_float_t x_mid;
mp_float_t a = mp_obj_get_float(args[1].u_obj);
mp_float_t b = mp_obj_get_float(args[2].u_obj);
left = optimize_python_call(type, fun, a, fargs, 0);
right = optimize_python_call(type, fun, b, fargs, 0);
if(left * right > 0) {
mp_raise_ValueError(translate("function has the same sign at the ends of interval"));
}
mp_float_t rtb = left < MICROPY_FLOAT_CONST(0.0) ? a : b;
mp_float_t dx = left < MICROPY_FLOAT_CONST(0.0) ? b - a : a - b;
if(args[4].u_int < 0) {
mp_raise_ValueError(translate("maxiter should be > 0"));
}
for(uint16_t i=0; i < args[4].u_int; i++) {
dx *= MICROPY_FLOAT_CONST(0.5);
x_mid = rtb + dx;
if(optimize_python_call(type, fun, x_mid, fargs, 0) < MICROPY_FLOAT_CONST(0.0)) {
rtb = x_mid;
}
if(MICROPY_FLOAT_C_FUN(fabs)(dx) < xtol) break;
}
return mp_obj_new_float(rtb);
}
MP_DEFINE_CONST_FUN_OBJ_KW(optimize_bisect_obj, 3, optimize_bisect);
#endif
#if ULAB_SCIPY_OPTIMIZE_HAS_FMIN
//| def fmin(
//| fun: Callable[[float], float],
//| x0: float,
//| *,
//| xatol: float = 2.4e-7,
//| fatol: float = 2.4e-7,
//| maxiter: int = 200
//| ) -> float:
//| """
//| :param callable f: The function to bisect
//| :param float x0: The initial x value
//| :param float xatol: The absolute tolerance value
//| :param float fatol: The relative tolerance value
//|
//| Find a minimum of the function ``f(x)`` using the downhill simplex method.
//| The located ``x`` is within ``fxtol`` of the actual minimum, and ``f(x)``
//| is within ``fatol`` of the actual minimum unless more than ``maxiter``
//| steps are requried."""
//| ...
//|
STATIC mp_obj_t optimize_fmin(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// downhill simplex method in 1D
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_xatol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(xtolerance)} },
{ MP_QSTR_fatol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(xtolerance)} },
{ MP_QSTR_maxiter, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 200} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t fun = args[0].u_obj;
const mp_obj_type_t *type = mp_obj_get_type(fun);
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
mp_raise_TypeError(translate("first argument must be a function"));
}
// parameters controlling convergence conditions
mp_float_t xatol = mp_obj_get_float(args[2].u_obj);
mp_float_t fatol = mp_obj_get_float(args[3].u_obj);
if(args[4].u_int <= 0) {
mp_raise_ValueError(translate("maxiter must be > 0"));
}
uint16_t maxiter = (uint16_t)args[4].u_int;
mp_float_t x0 = mp_obj_get_float(args[1].u_obj);
mp_float_t x1 = MICROPY_FLOAT_C_FUN(fabs)(x0) > OPTIMIZE_EPSILON ? (MICROPY_FLOAT_CONST(1.0) + OPTIMIZE_NONZDELTA) * x0 : OPTIMIZE_ZDELTA;
mp_obj_t fargs[1];
mp_float_t f0 = optimize_python_call(type, fun, x0, fargs, 0);
mp_float_t f1 = optimize_python_call(type, fun, x1, fargs, 0);
if(f1 < f0) {
SWAP(mp_float_t, x0, x1);
SWAP(mp_float_t, f0, f1);
}
for(uint16_t i=0; i < maxiter; i++) {
uint8_t shrink = 0;
f0 = optimize_python_call(type, fun, x0, fargs, 0);
f1 = optimize_python_call(type, fun, x1, fargs, 0);
// reflection
mp_float_t xr = (MICROPY_FLOAT_CONST(1.0) + OPTIMIZE_ALPHA) * x0 - OPTIMIZE_ALPHA * x1;
mp_float_t fr = optimize_python_call(type, fun, xr, fargs, 0);
if(fr < f0) { // expansion
mp_float_t xe = (1 + OPTIMIZE_ALPHA * OPTIMIZE_BETA) * x0 - OPTIMIZE_ALPHA * OPTIMIZE_BETA * x1;
mp_float_t fe = optimize_python_call(type, fun, xe, fargs, 0);
if(fe < fr) {
x1 = xe;
f1 = fe;
} else {
x1 = xr;
f1 = fr;
}
} else {
if(fr < f1) { // contraction
mp_float_t xc = (1 + OPTIMIZE_GAMMA * OPTIMIZE_ALPHA) * x0 - OPTIMIZE_GAMMA * OPTIMIZE_ALPHA * x1;
mp_float_t fc = optimize_python_call(type, fun, xc, fargs, 0);
if(fc < fr) {
x1 = xc;
f1 = fc;
} else {
shrink = 1;
}
} else { // inside contraction
mp_float_t xc = (MICROPY_FLOAT_CONST(1.0) - OPTIMIZE_GAMMA) * x0 + OPTIMIZE_GAMMA * x1;
mp_float_t fc = optimize_python_call(type, fun, xc, fargs, 0);
if(fc < f1) {
x1 = xc;
f1 = fc;
} else {
shrink = 1;
}
}
if(shrink == 1) {
x1 = x0 + OPTIMIZE_DELTA * (x1 - x0);
f1 = optimize_python_call(type, fun, x1, fargs, 0);
}
if((MICROPY_FLOAT_C_FUN(fabs)(f1 - f0) < fatol) ||
(MICROPY_FLOAT_C_FUN(fabs)(x1 - x0) < xatol)) {
break;
}
if(f1 < f0) {
SWAP(mp_float_t, x0, x1);
SWAP(mp_float_t, f0, f1);
}
}
}
return mp_obj_new_float(x0);
}
MP_DEFINE_CONST_FUN_OBJ_KW(optimize_fmin_obj, 2, optimize_fmin);
#endif
#if ULAB_SCIPY_OPTIMIZE_HAS_CURVE_FIT
static void optimize_jacobi(const mp_obj_type_t *type, mp_obj_t fun, mp_float_t *x, mp_float_t *y, uint16_t len, mp_float_t *params, uint8_t nparams, mp_float_t *jacobi, mp_float_t *grad) {
/* Calculates the Jacobian and the gradient of the cost function
*
* The entries in the Jacobian are
* J(m, n) = de_m/da_n,
*
* where
*
* e_m = (f(x_m, a1, a2, ...) - y_m)/sigma_m is the error at x_m,
*
* and
*
* a1, a2, ..., a_n are the free parameters
*/
mp_obj_t *fargs0 = m_new(mp_obj_t, lenp+1);
mp_obj_t *fargs1 = m_new(mp_obj_t, lenp+1);
for(uint8_t p=0; p < nparams; p++) {
fargs0[p+1] = mp_obj_new_float(params[p]);
fargs1[p+1] = mp_obj_new_float(params[p]);
}
for(uint8_t p=0; p < nparams; p++) {
mp_float_t da = params[p] != MICROPY_FLOAT_CONST(0.0) ? (MICROPY_FLOAT_CONST(1.0) + APPROX_NONZDELTA) * params[p] : APPROX_ZDELTA;
fargs1[p+1] = mp_obj_new_float(params[p] + da);
grad[p] = MICROPY_FLOAT_CONST(0.0);
for(uint16_t i=0; i < len; i++) {
mp_float_t f0 = optimize_python_call(type, fun, x[i], fargs0, nparams);
mp_float_t f1 = optimize_python_call(type, fun, x[i], fargs1, nparams);
jacobi[i*nparamp+p] = (f1 - f0) / da;
grad[p] += (f0 - y[i]) * jacobi[i*nparamp+p];
}
fargs1[p+1] = fargs0[p+1]; // set back to the original value
}
}
static void optimize_delta(mp_float_t *jacobi, mp_float_t *grad, uint16_t len, uint8_t nparams, mp_float_t lambda) {
//
}
mp_obj_t optimize_curve_fit(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// Levenberg-Marquardt non-linear fit
// The implementation follows the introductory discussion in Mark Tanstrum's paper, https://arxiv.org/abs/1201.5885
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_p0, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_xatol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&xtolerance)} },
{ MP_QSTR_fatol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&xtolerance)} },
{ MP_QSTR_maxiter, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t fun = args[0].u_obj;
const mp_obj_type_t *type = mp_obj_get_type(fun);
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
mp_raise_TypeError(translate("first argument must be a function"));
}
mp_obj_t x_obj = args[1].u_obj;
mp_obj_t y_obj = args[2].u_obj;
mp_obj_t p0_obj = args[3].u_obj;
if(!ndarray_object_is_array_like(x_obj) || !ndarray_object_is_array_like(y_obj)) {
mp_raise_TypeError(translate("data must be iterable"));
}
if(!ndarray_object_is_nditerable(p0_obj)) {
mp_raise_TypeError(translate("initial values must be iterable"));
}
size_t len = (size_t)mp_obj_get_int(mp_obj_len_maybe(x_obj));
uint8_t lenp = (uint8_t)mp_obj_get_int(mp_obj_len_maybe(p0_obj));
if(len != (uint16_t)mp_obj_get_int(mp_obj_len_maybe(y_obj))) {
mp_raise_ValueError(translate("data must be of equal length"));
}
mp_float_t *x = m_new(mp_float_t, len);
fill_array_iterable(x, x_obj);
mp_float_t *y = m_new(mp_float_t, len);
fill_array_iterable(y, y_obj);
mp_float_t *p0 = m_new(mp_float_t, lenp);
fill_array_iterable(p0, p0_obj);
mp_float_t *grad = m_new(mp_float_t, len);
mp_float_t *jacobi = m_new(mp_float_t, len*len);
mp_obj_t *fargs = m_new(mp_obj_t, lenp+1);
m_del(mp_float_t, p0, lenp);
// parameters controlling convergence conditions
//mp_float_t xatol = mp_obj_get_float(args[2].u_obj);
//mp_float_t fatol = mp_obj_get_float(args[3].u_obj);
// this has finite binary representation; we will multiply/divide by 4
//mp_float_t lambda = 0.0078125;
//linalg_invert_matrix(mp_float_t *data, size_t N)
m_del(mp_float_t, x, len);
m_del(mp_float_t, y, len);
m_del(mp_float_t, grad, len);
m_del(mp_float_t, jacobi, len*len);
m_del(mp_obj_t, fargs, lenp+1);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(optimize_curve_fit_obj, 2, optimize_curve_fit);
#endif
#if ULAB_SCIPY_OPTIMIZE_HAS_NEWTON
//| def newton(
//| fun: Callable[[float], float],
//| x0: float,
//| *,
//| xtol: float = 2.4e-7,
//| rtol: float = 0.0,
//| maxiter: int = 50
//| ) -> float:
//| """
//| :param callable f: The function to bisect
//| :param float x0: The initial x value
//| :param float xtol: The absolute tolerance value
//| :param float rtol: The relative tolerance value
//| :param float maxiter: The maximum number of iterations to perform
//|
//| Find a solution (zero) of the function ``f(x)`` using Newton's Method.
//| The result is accurate to within ``xtol * rtol * |f(x)|`` unless more than
//| ``maxiter`` steps are requried."""
//| ...
//|
static mp_obj_t optimize_newton(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// this is actually the secant method, as the first derivative of the function
// is not accepted as an argument. The function whose root we want to solve for
// must depend on a single variable without parameters, i.e., f(x)
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(xtolerance) } },
{ MP_QSTR_rtol, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(rtolerance) } },
{ MP_QSTR_maxiter, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 50 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t fun = args[0].u_obj;
const mp_obj_type_t *type = mp_obj_get_type(fun);
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
mp_raise_TypeError(translate("first argument must be a function"));
}
mp_float_t x = mp_obj_get_float(args[1].u_obj);
mp_float_t tol = mp_obj_get_float(args[2].u_obj);
mp_float_t rtol = mp_obj_get_float(args[3].u_obj);
mp_float_t dx, df, fx;
dx = x > MICROPY_FLOAT_CONST(0.0) ? OPTIMIZE_EPS * x : -OPTIMIZE_EPS * x;
mp_obj_t fargs[1];
if(args[4].u_int <= 0) {
mp_raise_ValueError(translate("maxiter must be > 0"));
}
for(uint16_t i=0; i < args[4].u_int; i++) {
fx = optimize_python_call(type, fun, x, fargs, 0);
df = (optimize_python_call(type, fun, x + dx, fargs, 0) - fx) / dx;
dx = fx / df;
x -= dx;
if(MICROPY_FLOAT_C_FUN(fabs)(dx) < (tol + rtol * MICROPY_FLOAT_C_FUN(fabs)(x))) break;
}
return mp_obj_new_float(x);
}
MP_DEFINE_CONST_FUN_OBJ_KW(optimize_newton_obj, 2, optimize_newton);
#endif
static const mp_rom_map_elem_t ulab_scipy_optimize_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_optimize) },
#if ULAB_SCIPY_OPTIMIZE_HAS_BISECT
{ MP_ROM_QSTR(MP_QSTR_bisect), MP_ROM_PTR(&optimize_bisect_obj) },
#endif
#if ULAB_SCIPY_OPTIMIZE_HAS_CURVE_FIT
{ MP_ROM_QSTR(MP_QSTR_curve_fit), MP_ROM_PTR(&optimize_curve_fit_obj) },
#endif
#if ULAB_SCIPY_OPTIMIZE_HAS_FMIN
{ MP_ROM_QSTR(MP_QSTR_fmin), MP_ROM_PTR(&optimize_fmin_obj) },
#endif
#if ULAB_SCIPY_OPTIMIZE_HAS_NEWTON
{ MP_ROM_QSTR(MP_QSTR_newton), MP_ROM_PTR(&optimize_newton_obj) },
#endif
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_scipy_optimize_globals, ulab_scipy_optimize_globals_table);
const mp_obj_module_t ulab_scipy_optimize_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_optimize_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_optimize, ulab_scipy_optimize_module, MODULE_ULAB_ENABLED);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_optimize, ulab_scipy_optimize_module);
#endif
#endif

View file

@ -1,41 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*
*/
#ifndef _SCIPY_OPTIMIZE_
#define _SCIPY_OPTIMIZE_
#include "../../ulab_tools.h"
#ifndef OPTIMIZE_EPSILON
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#define OPTIMIZE_EPSILON MICROPY_FLOAT_CONST(1.2e-7)
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
#define OPTIMIZE_EPSILON MICROPY_FLOAT_CONST(2.3e-16)
#endif
#endif
#define OPTIMIZE_EPS MICROPY_FLOAT_CONST(1.0e-4)
#define OPTIMIZE_NONZDELTA MICROPY_FLOAT_CONST(0.05)
#define OPTIMIZE_ZDELTA MICROPY_FLOAT_CONST(0.00025)
#define OPTIMIZE_ALPHA MICROPY_FLOAT_CONST(1.0)
#define OPTIMIZE_BETA MICROPY_FLOAT_CONST(2.0)
#define OPTIMIZE_GAMMA MICROPY_FLOAT_CONST(0.5)
#define OPTIMIZE_DELTA MICROPY_FLOAT_CONST(0.5)
extern const mp_obj_module_t ulab_scipy_optimize_module;
MP_DECLARE_CONST_FUN_OBJ_KW(optimize_bisect_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(optimize_curve_fit_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(optimize_fmin_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(optimize_newton_obj);
#endif /* _SCIPY_OPTIMIZE_ */

View file

@ -1,58 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2020 Scott Shawcroft for Adafruit Industries
* 2020-2021 Zoltán Vörös
* 2020 Taku Fukada
*/
#include <math.h>
#include "py/runtime.h"
#include "../ulab.h"
#include "optimize/optimize.h"
#include "signal/signal.h"
#include "special/special.h"
#include "linalg/linalg.h"
#if ULAB_HAS_SCIPY
//| """Compatibility layer for scipy"""
//|
static const mp_rom_map_elem_t ulab_scipy_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_scipy) },
#if ULAB_SCIPY_HAS_LINALG_MODULE
{ MP_ROM_QSTR(MP_QSTR_linalg), MP_ROM_PTR(&ulab_scipy_linalg_module) },
#endif
#if ULAB_SCIPY_HAS_OPTIMIZE_MODULE
{ MP_ROM_QSTR(MP_QSTR_optimize), MP_ROM_PTR(&ulab_scipy_optimize_module) },
#endif
#if ULAB_SCIPY_HAS_SIGNAL_MODULE
{ MP_ROM_QSTR(MP_QSTR_signal), MP_ROM_PTR(&ulab_scipy_signal_module) },
#endif
#if ULAB_SCIPY_HAS_SPECIAL_MODULE
{ MP_ROM_QSTR(MP_QSTR_special), MP_ROM_PTR(&ulab_scipy_special_module) },
#endif
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_scipy_globals, ulab_scipy_globals_table);
const mp_obj_module_t ulab_scipy_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy, ulab_scipy_module, MODULE_ULAB_ENABLED);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy, ulab_scipy_module);
#endif
#endif
#endif /* ULAB_HAS_SCIPY */

View file

@ -1,21 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*
*/
#ifndef _SCIPY_
#define _SCIPY_
#include "../ulab.h"
#include "../ndarray.h"
extern const mp_obj_module_t ulab_scipy_module;
#endif /* _SCIPY_ */

View file

@ -1,142 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2020 Scott Shawcroft for Adafruit Industries
* 2020-2021 Zoltán Vörös
* 2020 Taku Fukada
*/
#include <math.h>
#include <string.h>
#include "py/runtime.h"
#include "../../ulab.h"
#include "../../ndarray.h"
#include "../../numpy/carray/carray_tools.h"
#if ULAB_SCIPY_SIGNAL_HAS_SOSFILT & ULAB_MAX_DIMS > 1
static void signal_sosfilt_array(mp_float_t *x, const mp_float_t *coeffs, mp_float_t *zf, const size_t len) {
for(size_t i=0; i < len; i++) {
mp_float_t xn = *x;
*x = coeffs[0] * xn + zf[0];
zf[0] = zf[1] + coeffs[1] * xn - coeffs[4] * *x;
zf[1] = coeffs[2] * xn - coeffs[5] * *x;
x++;
}
x -= len;
}
mp_obj_t signal_sosfilt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_sos, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_zi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!ndarray_object_is_array_like(args[0].u_obj) || !ndarray_object_is_array_like(args[1].u_obj)) {
mp_raise_TypeError(translate("sosfilt requires iterable arguments"));
}
#if ULAB_SUPPORTS_COMPLEX
if(mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[1].u_obj);
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
}
#endif
size_t lenx = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[1].u_obj));
ndarray_obj_t *y = ndarray_new_linear_array(lenx, NDARRAY_FLOAT);
mp_float_t *yarray = (mp_float_t *)y->array;
mp_float_t coeffs[6];
if(mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) {
ndarray_obj_t *inarray = MP_OBJ_TO_PTR(args[1].u_obj);
#if ULAB_MAX_DIMS > 1
if(inarray->ndim > 1) {
mp_raise_ValueError(translate("input must be one-dimensional"));
}
#endif
uint8_t *iarray = (uint8_t *)inarray->array;
for(size_t i=0; i < lenx; i++) {
*yarray++ = ndarray_get_float_value(iarray, inarray->dtype);
iarray += inarray->strides[ULAB_MAX_DIMS - 1];
}
yarray -= lenx;
} else {
fill_array_iterable(yarray, args[1].u_obj);
}
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(args[0].u_obj, &iter_buf);
size_t lensos = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[0].u_obj));
size_t *shape = ndarray_shape_vector(0, 0, lensos, 2);
ndarray_obj_t *zf = ndarray_new_dense_ndarray(2, shape, NDARRAY_FLOAT);
mp_float_t *zf_array = (mp_float_t *)zf->array;
if(args[2].u_obj != mp_const_none) {
if(!mp_obj_is_type(args[2].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("zi must be an ndarray"));
} else {
ndarray_obj_t *zi = MP_OBJ_TO_PTR(args[2].u_obj);
if((zi->shape[ULAB_MAX_DIMS - 2] != lensos) || (zi->shape[ULAB_MAX_DIMS - 1] != 2)) {
mp_raise_ValueError(translate("zi must be of shape (n_section, 2)"));
}
if(zi->dtype != NDARRAY_FLOAT) {
mp_raise_ValueError(translate("zi must be of float type"));
}
// TODO: this won't work with sparse arrays
memcpy(zf_array, zi->array, 2*lensos*sizeof(mp_float_t));
}
}
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
if(mp_obj_get_int(mp_obj_len_maybe(item)) != 6) {
mp_raise_ValueError(translate("sos array must be of shape (n_section, 6)"));
} else {
fill_array_iterable(coeffs, item);
if(coeffs[3] != MICROPY_FLOAT_CONST(1.0)) {
mp_raise_ValueError(translate("sos[:, 3] should be all ones"));
}
signal_sosfilt_array(yarray, coeffs, zf_array, lenx);
zf_array += 2;
}
}
if(args[2].u_obj == mp_const_none) {
return MP_OBJ_FROM_PTR(y);
} else {
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
tuple->items[0] = MP_OBJ_FROM_PTR(y);
tuple->items[1] = MP_OBJ_FROM_PTR(zf);
return MP_OBJ_FROM_PTR(tuple);
}
}
MP_DEFINE_CONST_FUN_OBJ_KW(signal_sosfilt_obj, 2, signal_sosfilt);
#endif /* ULAB_SCIPY_SIGNAL_HAS_SOSFILT */
static const mp_rom_map_elem_t ulab_scipy_signal_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_signal) },
#if ULAB_SCIPY_SIGNAL_HAS_SOSFILT & ULAB_MAX_DIMS > 1
{ MP_ROM_QSTR(MP_QSTR_sosfilt), MP_ROM_PTR(&signal_sosfilt_obj) },
#endif
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_scipy_signal_globals, ulab_scipy_signal_globals_table);
const mp_obj_module_t ulab_scipy_signal_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_signal_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_signal, ulab_scipy_signal_module, MODULE_ULAB_ENABLED);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_signal, ulab_scipy_signal_module);
#endif
#endif

View file

@ -1,23 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*
*/
#ifndef _SCIPY_SIGNAL_
#define _SCIPY_SIGNAL_
#include "../../ulab.h"
#include "../../ndarray.h"
extern const mp_obj_module_t ulab_scipy_signal_module;
MP_DECLARE_CONST_FUN_OBJ_KW(signal_sosfilt_obj);
#endif /* _SCIPY_SIGNAL_ */

View file

@ -1,49 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2020 Scott Shawcroft for Adafruit Industries
* 2020-2021 Zoltán Vörös
* 2020 Taku Fukada
*/
#include <math.h>
#include "py/runtime.h"
#include "../../ulab.h"
#include "../../numpy/vector.h"
static const mp_rom_map_elem_t ulab_scipy_special_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_special) },
#if ULAB_SCIPY_SPECIAL_HAS_ERF
{ MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&vector_erf_obj) },
#endif
#if ULAB_SCIPY_SPECIAL_HAS_ERFC
{ MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&vector_erfc_obj) },
#endif
#if ULAB_SCIPY_SPECIAL_HAS_GAMMA
{ MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&vector_gamma_obj) },
#endif
#if ULAB_SCIPY_SPECIAL_HAS_GAMMALN
{ MP_ROM_QSTR(MP_QSTR_gammaln), MP_ROM_PTR(&vector_lgamma_obj) },
#endif
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_scipy_special_globals, ulab_scipy_special_globals_table);
const mp_obj_module_t ulab_scipy_special_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_special_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_special, ulab_scipy_special_module, MODULE_ULAB_ENABLED);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_special, ulab_scipy_special_module);
#endif
#endif

View file

@ -1,21 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*
*/
#ifndef _SCIPY_SPECIAL_
#define _SCIPY_SPECIAL_
#include "../../ulab.h"
#include "../../ndarray.h"
extern const mp_obj_module_t ulab_scipy_special_module;
#endif /* _SCIPY_SPECIAL_ */

View file

@ -6,8 +6,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
* 2020 Jeff Epler for Adafruit Industries
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#include <math.h>
@ -22,221 +21,73 @@
#include "ulab.h"
#include "ndarray.h"
#include "ndarray_properties.h"
#include "numpy/create.h"
#include "numpy/ndarray/ndarray_iter.h"
#include "linalg.h"
#include "vectorise.h"
#include "poly.h"
#include "fft.h"
#include "filter.h"
#include "numerical.h"
#include "extras.h"
#include "numpy/numpy.h"
#include "scipy/scipy.h"
// TODO: we should get rid of this; array.sort depends on it
#include "numpy/numerical.h"
#include "user/user.h"
#include "utils/utils.h"
#define ULAB_VERSION 6.2.0
#define xstr(s) str(s)
#define str(s) #s
#if ULAB_SUPPORTS_COMPLEX
#define ULAB_VERSION_STRING xstr(ULAB_VERSION) xstr(-) xstr(ULAB_MAX_DIMS) xstr(D-c)
#else
#define ULAB_VERSION_STRING xstr(ULAB_VERSION) xstr(-) xstr(ULAB_MAX_DIMS) xstr(D)
#endif
STATIC MP_DEFINE_STR_OBJ(ulab_version_obj, ULAB_VERSION_STRING);
#ifdef ULAB_HASH
STATIC MP_DEFINE_STR_OBJ(ulab_sha_obj, xstr(ULAB_HASH));
#endif
STATIC MP_DEFINE_STR_OBJ(ulab_version_obj, "0.34.0");
STATIC const mp_rom_map_elem_t ulab_ndarray_locals_dict_table[] = {
#if ULAB_MAX_DIMS > 1
#if NDARRAY_HAS_RESHAPE
{ MP_ROM_QSTR(MP_QSTR_reshape), MP_ROM_PTR(&ndarray_reshape_obj) },
#endif
#if NDARRAY_HAS_TRANSPOSE
{ MP_ROM_QSTR(MP_QSTR_transpose), MP_ROM_PTR(&ndarray_transpose_obj) },
#endif
#endif
#if NDARRAY_HAS_BYTESWAP
{ MP_ROM_QSTR(MP_QSTR_byteswap), MP_ROM_PTR(&ndarray_byteswap_obj) },
#endif
#if NDARRAY_HAS_COPY
{ MP_ROM_QSTR(MP_QSTR_copy), MP_ROM_PTR(&ndarray_copy_obj) },
#endif
#if NDARRAY_HAS_FLATTEN
{ MP_ROM_QSTR(MP_QSTR_flatten), MP_ROM_PTR(&ndarray_flatten_obj) },
#endif
#if NDARRAY_HAS_TOBYTES
{ MP_ROM_QSTR(MP_QSTR_tobytes), MP_ROM_PTR(&ndarray_tobytes_obj) },
#endif
#if NDARRAY_HAS_TOLIST
{ MP_ROM_QSTR(MP_QSTR_tolist), MP_ROM_PTR(&ndarray_tolist_obj) },
#endif
#if NDARRAY_HAS_SORT
{ MP_ROM_QSTR(MP_QSTR_sort), MP_ROM_PTR(&numerical_sort_inplace_obj) },
#endif
#ifdef CIRCUITPY
#if NDARRAY_HAS_DTYPE
{ MP_ROM_QSTR(MP_QSTR_dtype), MP_ROM_PTR(&ndarray_dtype_obj) },
#endif
#if NDARRAY_HAS_FLATITER
{ MP_ROM_QSTR(MP_QSTR_flat), MP_ROM_PTR(&ndarray_flat_obj) },
#endif
#if NDARRAY_HAS_ITEMSIZE
{ MP_ROM_QSTR(MP_QSTR_itemsize), MP_ROM_PTR(&ndarray_itemsize_obj) },
#endif
#if NDARRAY_HAS_SHAPE
{ MP_ROM_QSTR(MP_QSTR_reshape), MP_ROM_PTR(&ndarray_reshape_obj) },
{ MP_ROM_QSTR(MP_QSTR_transpose), MP_ROM_PTR(&ndarray_transpose_obj) },
{ MP_ROM_QSTR(MP_QSTR_shape), MP_ROM_PTR(&ndarray_shape_obj) },
#endif
#if NDARRAY_HAS_SIZE
{ MP_ROM_QSTR(MP_QSTR_size), MP_ROM_PTR(&ndarray_size_obj) },
#endif
#if NDARRAY_HAS_STRIDES
{ MP_ROM_QSTR(MP_QSTR_strides), MP_ROM_PTR(&ndarray_strides_obj) },
#endif
#endif /* CIRCUITPY */
{ MP_ROM_QSTR(MP_QSTR_itemsize), MP_ROM_PTR(&ndarray_itemsize_obj) },
// { MP_ROM_QSTR(MP_QSTR_sort), MP_ROM_PTR(&numerical_sort_inplace_obj) },
};
STATIC MP_DEFINE_CONST_DICT(ulab_ndarray_locals_dict, ulab_ndarray_locals_dict_table);
#if defined(MP_DEFINE_CONST_OBJ_TYPE)
// MicroPython after-b41aaaa (Sept 19 2022).
#if NDARRAY_IS_SLICEABLE
#define NDARRAY_TYPE_SUBSCR subscr, ndarray_subscr,
#else
#define NDARRAY_TYPE_SUBSCR
#endif
#if NDARRAY_IS_ITERABLE
#define NDARRAY_TYPE_ITER iter, ndarray_getiter,
#define NDARRAY_TYPE_ITER_FLAGS MP_TYPE_FLAG_ITER_IS_GETITER
#else
#define NDARRAY_TYPE_ITER
#define NDARRAY_TYPE_ITER_FLAGS 0
#endif
#if NDARRAY_HAS_UNARY_OPS
#define NDARRAY_TYPE_UNARY_OP unary_op, ndarray_unary_op,
#else
#define NDARRAY_TYPE_UNARY_OP
#endif
#if NDARRAY_HAS_BINARY_OPS
#define NDARRAY_TYPE_BINARY_OP binary_op, ndarray_binary_op,
#else
#define NDARRAY_TYPE_BINARY_OP
#endif
MP_DEFINE_CONST_OBJ_TYPE(
ulab_ndarray_type,
MP_QSTR_ndarray,
MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE | MP_TYPE_FLAG_EQ_HAS_NEQ_TEST | NDARRAY_TYPE_ITER_FLAGS,
print, ndarray_print,
make_new, ndarray_make_new,
locals_dict, &ulab_ndarray_locals_dict,
NDARRAY_TYPE_SUBSCR
NDARRAY_TYPE_ITER
NDARRAY_TYPE_UNARY_OP
NDARRAY_TYPE_BINARY_OP
attr, ndarray_properties_attr,
buffer, ndarray_get_buffer
);
#else
// CircuitPython and earlier MicroPython revisions.
const mp_obj_type_t ulab_ndarray_type = {
{ &mp_type_type },
.flags = MP_TYPE_FLAG_EXTENDED
#if defined(MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE) && defined(MP_TYPE_FLAG_EQ_HAS_NEQ_TEST)
| MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE | MP_TYPE_FLAG_EQ_HAS_NEQ_TEST
#endif
,
.name = MP_QSTR_ndarray,
.print = ndarray_print,
.make_new = ndarray_make_new,
.locals_dict = (mp_obj_dict_t*)&ulab_ndarray_locals_dict,
MP_TYPE_EXTENDED_FIELDS(
#if NDARRAY_IS_SLICEABLE
.subscr = ndarray_subscr,
#endif
#if NDARRAY_IS_ITERABLE
.getiter = ndarray_getiter,
#endif
#if NDARRAY_HAS_UNARY_OPS
.unary_op = ndarray_unary_op,
#endif
#if NDARRAY_HAS_BINARY_OPS
.binary_op = ndarray_binary_op,
#endif
#ifndef CIRCUITPY
.attr = ndarray_properties_attr,
#endif
.buffer_p = { .get_buffer = ndarray_get_buffer, },
)
.locals_dict = (mp_obj_dict_t*)&ulab_ndarray_locals_dict,
};
#endif
#if ULAB_HAS_DTYPE_OBJECT
#if defined(MP_DEFINE_CONST_OBJ_TYPE)
MP_DEFINE_CONST_OBJ_TYPE(
ulab_dtype_type,
MP_QSTR_dtype,
MP_TYPE_FLAG_NONE,
print, ndarray_dtype_print,
make_new, ndarray_dtype_make_new
);
#else
const mp_obj_type_t ulab_dtype_type = {
{ &mp_type_type },
.name = MP_QSTR_dtype,
.print = ndarray_dtype_print,
.make_new = ndarray_dtype_make_new,
};
#endif
#endif
#if NDARRAY_HAS_FLATITER
#if defined(MP_DEFINE_CONST_OBJ_TYPE)
MP_DEFINE_CONST_OBJ_TYPE(
ndarray_flatiter_type,
MP_QSTR_flatiter,
MP_TYPE_FLAG_ITER_IS_GETITER,
iter, ndarray_get_flatiterator
);
#else
const mp_obj_type_t ndarray_flatiter_type = {
{ &mp_type_type },
.name = MP_QSTR_flatiter,
MP_TYPE_EXTENDED_FIELDS(
.getiter = ndarray_get_flatiterator,
)
};
#endif
#endif
STATIC const mp_rom_map_elem_t ulab_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_ulab) },
#if !CIRCUITPY
STATIC const mp_map_elem_t ulab_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_ulab) },
{ MP_ROM_QSTR(MP_QSTR___version__), MP_ROM_PTR(&ulab_version_obj) },
#ifdef ULAB_HASH
{ MP_ROM_QSTR(MP_QSTR___sha__), MP_ROM_PTR(&ulab_sha_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_array), (mp_obj_t)&ulab_ndarray_type },
#if ULAB_LINALG_MODULE
{ MP_ROM_QSTR(MP_QSTR_linalg), MP_ROM_PTR(&ulab_linalg_module) },
#endif
#if ULAB_HAS_DTYPE_OBJECT
{ MP_ROM_QSTR(MP_QSTR_dtype), MP_ROM_PTR(&ulab_dtype_type) },
#else
#if NDARRAY_HAS_DTYPE
{ MP_ROM_QSTR(MP_QSTR_dtype), MP_ROM_PTR(&ndarray_dtype_obj) },
#endif /* NDARRAY_HAS_DTYPE */
#endif /* ULAB_HAS_DTYPE_OBJECT */
{ MP_ROM_QSTR(MP_QSTR_numpy), MP_ROM_PTR(&ulab_numpy_module) },
#if ULAB_HAS_SCIPY
{ MP_ROM_QSTR(MP_QSTR_scipy), MP_ROM_PTR(&ulab_scipy_module) },
#if ULAB_VECTORISE_MODULE
{ MP_ROM_QSTR(MP_QSTR_vector), MP_ROM_PTR(&ulab_vectorise_module) },
#endif
#if ULAB_HAS_USER_MODULE
{ MP_ROM_QSTR(MP_QSTR_user), MP_ROM_PTR(&ulab_user_module) },
#if ULAB_NUMERICAL_MODULE
{ MP_ROM_QSTR(MP_QSTR_numerical), MP_ROM_PTR(&ulab_numerical_module) },
#endif
#if ULAB_HAS_UTILS_MODULE
{ MP_ROM_QSTR(MP_QSTR_utils), MP_ROM_PTR(&ulab_utils_module) },
#if ULAB_POLY_MODULE
{ MP_ROM_QSTR(MP_QSTR_poly), MP_ROM_PTR(&ulab_poly_module) },
#endif
#if ULAB_FFT_MODULE
{ MP_ROM_QSTR(MP_QSTR_fft), MP_ROM_PTR(&ulab_fft_module) },
#endif
#if ULAB_FILTER_MODULE
{ MP_ROM_QSTR(MP_QSTR_filter), MP_ROM_PTR(&ulab_filter_module) },
#endif
#if ULAB_EXTRAS_MODULE
{ MP_ROM_QSTR(MP_QSTR_extras), MP_ROM_PTR(&ulab_extras_module) },
#endif
// class constants
{ MP_ROM_QSTR(MP_QSTR_uint8), MP_ROM_INT(NDARRAY_UINT8) },
{ MP_ROM_QSTR(MP_QSTR_int8), MP_ROM_INT(NDARRAY_INT8) },
{ MP_ROM_QSTR(MP_QSTR_uint16), MP_ROM_INT(NDARRAY_UINT16) },
{ MP_ROM_QSTR(MP_QSTR_int16), MP_ROM_INT(NDARRAY_INT16) },
{ MP_ROM_QSTR(MP_QSTR_float), MP_ROM_INT(NDARRAY_FLOAT) },
};
STATIC MP_DEFINE_CONST_DICT (
@ -244,19 +95,10 @@ STATIC MP_DEFINE_CONST_DICT (
ulab_globals_table
);
#ifdef OPENMV
const struct _mp_obj_module_t ulab_user_cmodule = {
#else
const mp_obj_module_t ulab_user_cmodule = {
#endif
mp_obj_module_t ulab_user_cmodule = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_globals,
};
// Use old three-argument MP_REGISTER_MODULE for
// MicroPython <= v1.18.0: (1 << 16) | (18 << 8) | 0
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab, ulab_user_cmodule, MODULE_ULAB_ENABLED);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab, ulab_user_cmodule);
#endif

View file

@ -6,754 +6,31 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2022 Zoltán Vörös
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#ifndef __ULAB__
#define __ULAB__
// vectorise (all functions) takes approx. 3 kB of flash space
#define ULAB_VECTORISE_MODULE (1)
// linalg adds around 6 kB
#define ULAB_LINALG_MODULE (1)
// The pre-processor constants in this file determine how ulab behaves:
//
// - how many dimensions ulab can handle
// - which functions are included in the compiled firmware
// - whether arrays can be sliced and iterated over
// - which binary/unary operators are supported
// - whether ulab can deal with complex numbers
//
// A considerable amount of flash space can be saved by removing (setting
// the corresponding constants to 0) the unnecessary functions and features.
// poly is approx. 2.5 kB
#define ULAB_POLY_MODULE (1)
// Values defined here can be overridden by your own config file as
// make -DULAB_CONFIG_FILE="my_ulab_config.h"
#if defined(ULAB_CONFIG_FILE)
#include ULAB_CONFIG_FILE
#endif
// Adds support for complex ndarrays
#ifndef ULAB_SUPPORTS_COMPLEX
#define ULAB_SUPPORTS_COMPLEX (1)
#endif
// Determines, whether scipy is defined in ulab. The sub-modules and functions
// of scipy have to be defined separately
#ifndef ULAB_HAS_SCIPY
#define ULAB_HAS_SCIPY (1)
#endif
// The maximum number of dimensions the firmware should be able to support
// Possible values lie between 1, and 4, inclusive
#ifndef ULAB_MAX_DIMS
#define ULAB_MAX_DIMS 2
#endif
// By setting this constant to 1, iteration over array dimensions will be implemented
// as a function (ndarray_rewind_array), instead of writing out the loops in macros
// This reduces firmware size at the expense of speed
#ifndef ULAB_HAS_FUNCTION_ITERATOR
#define ULAB_HAS_FUNCTION_ITERATOR (0)
#endif
// If NDARRAY_IS_ITERABLE is 1, the ndarray object defines its own iterator function
// This option saves approx. 250 bytes of flash space
#ifndef NDARRAY_IS_ITERABLE
#define NDARRAY_IS_ITERABLE (1)
#endif
// Slicing can be switched off by setting this variable to 0
#ifndef NDARRAY_IS_SLICEABLE
#define NDARRAY_IS_SLICEABLE (1)
#endif
// The default threshold for pretty printing. These variables can be overwritten
// at run-time via the set_printoptions() function
#ifndef ULAB_HAS_PRINTOPTIONS
#define ULAB_HAS_PRINTOPTIONS (1)
#endif
#define NDARRAY_PRINT_THRESHOLD 10
#define NDARRAY_PRINT_EDGEITEMS 3
// determines, whether the dtype is an object, or simply a character
// the object implementation is numpythonic, but requires more space
#ifndef ULAB_HAS_DTYPE_OBJECT
#define ULAB_HAS_DTYPE_OBJECT (0)
#endif
// the ndarray binary operators
#ifndef NDARRAY_HAS_BINARY_OPS
#define NDARRAY_HAS_BINARY_OPS (1)
#endif
// Firmware size can be reduced at the expense of speed by using function
// pointers in iterations. For each operator, he function pointer saves around
// 2 kB in the two-dimensional case, and around 4 kB in the four-dimensional case.
#ifndef NDARRAY_BINARY_USES_FUN_POINTER
#define NDARRAY_BINARY_USES_FUN_POINTER (0)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_ADD
#define NDARRAY_HAS_BINARY_OP_ADD (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_EQUAL
#define NDARRAY_HAS_BINARY_OP_EQUAL (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_FLOOR_DIVIDE
#define NDARRAY_HAS_BINARY_OP_FLOOR_DIVIDE (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_LESS
#define NDARRAY_HAS_BINARY_OP_LESS (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_LESS_EQUAL
#define NDARRAY_HAS_BINARY_OP_LESS_EQUAL (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_MORE
#define NDARRAY_HAS_BINARY_OP_MORE (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_MORE_EQUAL
#define NDARRAY_HAS_BINARY_OP_MORE_EQUAL (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_MULTIPLY
#define NDARRAY_HAS_BINARY_OP_MULTIPLY (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_NOT_EQUAL
#define NDARRAY_HAS_BINARY_OP_NOT_EQUAL (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_POWER
#define NDARRAY_HAS_BINARY_OP_POWER (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_SUBTRACT
#define NDARRAY_HAS_BINARY_OP_SUBTRACT (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_TRUE_DIVIDE
#define NDARRAY_HAS_BINARY_OP_TRUE_DIVIDE (1)
#endif
#ifndef NDARRAY_HAS_INPLACE_OPS
#define NDARRAY_HAS_INPLACE_OPS (1)
#endif
#ifndef NDARRAY_HAS_INPLACE_ADD
#define NDARRAY_HAS_INPLACE_ADD (1)
#endif
#ifndef NDARRAY_HAS_INPLACE_MULTIPLY
#define NDARRAY_HAS_INPLACE_MULTIPLY (1)
#endif
#ifndef NDARRAY_HAS_INPLACE_POWER
#define NDARRAY_HAS_INPLACE_POWER (1)
#endif
#ifndef NDARRAY_HAS_INPLACE_SUBTRACT
#define NDARRAY_HAS_INPLACE_SUBTRACT (1)
#endif
#ifndef NDARRAY_HAS_INPLACE_TRUE_DIVIDE
#define NDARRAY_HAS_INPLACE_TRUE_DIVIDE (1)
#endif
// the ndarray unary operators
#ifndef NDARRAY_HAS_UNARY_OPS
#define NDARRAY_HAS_UNARY_OPS (1)
#endif
#ifndef NDARRAY_HAS_UNARY_OP_ABS
#define NDARRAY_HAS_UNARY_OP_ABS (1)
#endif
#ifndef NDARRAY_HAS_UNARY_OP_INVERT
#define NDARRAY_HAS_UNARY_OP_INVERT (1)
#endif
#ifndef NDARRAY_HAS_UNARY_OP_LEN
#define NDARRAY_HAS_UNARY_OP_LEN (1)
#endif
#ifndef NDARRAY_HAS_UNARY_OP_NEGATIVE
#define NDARRAY_HAS_UNARY_OP_NEGATIVE (1)
#endif
#ifndef NDARRAY_HAS_UNARY_OP_POSITIVE
#define NDARRAY_HAS_UNARY_OP_POSITIVE (1)
#endif
// determines, which ndarray methods are available
#ifndef NDARRAY_HAS_BYTESWAP
#define NDARRAY_HAS_BYTESWAP (1)
#endif
#ifndef NDARRAY_HAS_COPY
#define NDARRAY_HAS_COPY (1)
#endif
#ifndef NDARRAY_HAS_DTYPE
#define NDARRAY_HAS_DTYPE (1)
#endif
#ifndef NDARRAY_HAS_FLATTEN
#define NDARRAY_HAS_FLATTEN (1)
#endif
#ifndef NDARRAY_HAS_ITEMSIZE
#define NDARRAY_HAS_ITEMSIZE (1)
#endif
#ifndef NDARRAY_HAS_RESHAPE
#define NDARRAY_HAS_RESHAPE (1)
#endif
#ifndef NDARRAY_HAS_SHAPE
#define NDARRAY_HAS_SHAPE (1)
#endif
#ifndef NDARRAY_HAS_SIZE
#define NDARRAY_HAS_SIZE (1)
#endif
#ifndef NDARRAY_HAS_SORT
#define NDARRAY_HAS_SORT (1)
#endif
#ifndef NDARRAY_HAS_STRIDES
#define NDARRAY_HAS_STRIDES (1)
#endif
#ifndef NDARRAY_HAS_TOBYTES
#define NDARRAY_HAS_TOBYTES (1)
#endif
#ifndef NDARRAY_HAS_TOLIST
#define NDARRAY_HAS_TOLIST (1)
#endif
#ifndef NDARRAY_HAS_TRANSPOSE
#define NDARRAY_HAS_TRANSPOSE (1)
#endif
// Firmware size can be reduced at the expense of speed by using a function
// pointer in iterations. Setting ULAB_VECTORISE_USES_FUNCPOINTER to 1 saves
// around 800 bytes in the four-dimensional case, and around 200 in two dimensions.
#ifndef ULAB_VECTORISE_USES_FUN_POINTER
#define ULAB_VECTORISE_USES_FUN_POINTER (1)
#endif
// determines, whether e is defined in ulab.numpy itself
#ifndef ULAB_NUMPY_HAS_E
#define ULAB_NUMPY_HAS_E (1)
#endif
// ulab defines infinite as a class constant in ulab.numpy
#ifndef ULAB_NUMPY_HAS_INF
#define ULAB_NUMPY_HAS_INF (1)
#endif
// ulab defines NaN as a class constant in ulab.numpy
#ifndef ULAB_NUMPY_HAS_NAN
#define ULAB_NUMPY_HAS_NAN (1)
#endif
// determines, whether pi is defined in ulab.numpy itself
#ifndef ULAB_NUMPY_HAS_PI
#define ULAB_NUMPY_HAS_PI (1)
#endif
// determines, whether the ndinfo function is available
#ifndef ULAB_NUMPY_HAS_NDINFO
#define ULAB_NUMPY_HAS_NDINFO (1)
#endif
// if this constant is set to 1, the interpreter can iterate
// over the flat array without copying any data
#ifndef NDARRAY_HAS_FLATITER
#define NDARRAY_HAS_FLATITER (1)
#endif
// frombuffer adds 600 bytes to the firmware
#ifndef ULAB_NUMPY_HAS_FROMBUFFER
#define ULAB_NUMPY_HAS_FROMBUFFER (1)
#endif
// functions that create an array
#ifndef ULAB_NUMPY_HAS_ARANGE
#define ULAB_NUMPY_HAS_ARANGE (1)
#endif
#ifndef ULAB_NUMPY_HAS_CONCATENATE
#define ULAB_NUMPY_HAS_CONCATENATE (1)
#endif
#ifndef ULAB_NUMPY_HAS_DIAG
#define ULAB_NUMPY_HAS_DIAG (1)
#endif
#ifndef ULAB_NUMPY_HAS_EMPTY
#define ULAB_NUMPY_HAS_EMPTY (1)
#endif
#ifndef ULAB_NUMPY_HAS_EYE
#define ULAB_NUMPY_HAS_EYE (1)
#endif
#ifndef ULAB_NUMPY_HAS_FULL
#define ULAB_NUMPY_HAS_FULL (1)
#endif
#ifndef ULAB_NUMPY_HAS_LINSPACE
#define ULAB_NUMPY_HAS_LINSPACE (1)
#endif
#ifndef ULAB_NUMPY_HAS_LOGSPACE
#define ULAB_NUMPY_HAS_LOGSPACE (1)
#endif
#ifndef ULAB_NUMPY_HAS_ONES
#define ULAB_NUMPY_HAS_ONES (1)
#endif
#ifndef ULAB_NUMPY_HAS_ZEROS
#define ULAB_NUMPY_HAS_ZEROS (1)
#endif
// functions that compare arrays
#ifndef ULAB_NUMPY_HAS_CLIP
#define ULAB_NUMPY_HAS_CLIP (1)
#endif
#ifndef ULAB_NUMPY_HAS_EQUAL
#define ULAB_NUMPY_HAS_EQUAL (1)
#endif
#ifndef ULAB_NUMPY_HAS_ISFINITE
#define ULAB_NUMPY_HAS_ISFINITE (1)
#endif
#ifndef ULAB_NUMPY_HAS_ISINF
#define ULAB_NUMPY_HAS_ISINF (1)
#endif
#ifndef ULAB_NUMPY_HAS_MAXIMUM
#define ULAB_NUMPY_HAS_MAXIMUM (1)
#endif
#ifndef ULAB_NUMPY_HAS_MINIMUM
#define ULAB_NUMPY_HAS_MINIMUM (1)
#endif
#ifndef ULAB_NUMPY_HAS_NONZERO
#define ULAB_NUMPY_HAS_NONZERO (1)
#endif
// numerical is about 12 kB
#define ULAB_NUMERICAL_MODULE (1)
#ifndef ULAB_NUMPY_HAS_NOTEQUAL
#define ULAB_NUMPY_HAS_NOTEQUAL (1)
#endif
#ifndef ULAB_NUMPY_HAS_WHERE
#define ULAB_NUMPY_HAS_WHERE (1)
#endif
// FFT costs about 2 kB of flash space
#define ULAB_FFT_MODULE (1)
// the linalg module; functions of the linalg module still have
// to be defined separately
#ifndef ULAB_NUMPY_HAS_LINALG_MODULE
#define ULAB_NUMPY_HAS_LINALG_MODULE (1)
#endif
#ifndef ULAB_LINALG_HAS_CHOLESKY
#define ULAB_LINALG_HAS_CHOLESKY (1)
#endif
// the filter module takes about 1 kB of flash space
#define ULAB_FILTER_MODULE (1)
#ifndef ULAB_LINALG_HAS_DET
#define ULAB_LINALG_HAS_DET (1)
#endif
#ifndef ULAB_LINALG_HAS_EIG
#define ULAB_LINALG_HAS_EIG (1)
#endif
#ifndef ULAB_LINALG_HAS_INV
#define ULAB_LINALG_HAS_INV (1)
#endif
#ifndef ULAB_LINALG_HAS_NORM
#define ULAB_LINALG_HAS_NORM (1)
#endif
#ifndef ULAB_LINALG_HAS_QR
#define ULAB_LINALG_HAS_QR (1)
#endif
// the FFT module; functions of the fft module still have
// to be defined separately
#ifndef ULAB_NUMPY_HAS_FFT_MODULE
#define ULAB_NUMPY_HAS_FFT_MODULE (1)
#endif
// By setting this constant to 1, the FFT routine will behave in a
// numpy-compatible way, i.e., it will output a complex array
// This setting has no effect, if ULAB_SUPPORTS_COMPLEX is 0
// Note that in this case, the input also must be numpythonic,
// i.e., the real an imaginary parts cannot be passed as two arguments
#ifndef ULAB_FFT_IS_NUMPY_COMPATIBLE
#define ULAB_FFT_IS_NUMPY_COMPATIBLE (0)
#endif
#ifndef ULAB_FFT_HAS_FFT
#define ULAB_FFT_HAS_FFT (1)
#endif
#ifndef ULAB_FFT_HAS_IFFT
#define ULAB_FFT_HAS_IFFT (1)
#endif
#ifndef ULAB_NUMPY_HAS_ALL
#define ULAB_NUMPY_HAS_ALL (1)
#endif
#ifndef ULAB_NUMPY_HAS_ANY
#define ULAB_NUMPY_HAS_ANY (1)
#endif
#ifndef ULAB_NUMPY_HAS_ARGMINMAX
#define ULAB_NUMPY_HAS_ARGMINMAX (1)
#endif
#ifndef ULAB_NUMPY_HAS_ARGSORT
#define ULAB_NUMPY_HAS_ARGSORT (1)
#endif
#ifndef ULAB_NUMPY_HAS_ASARRAY
#define ULAB_NUMPY_HAS_ASARRAY (1)
#endif
#ifndef ULAB_NUMPY_HAS_COMPRESS
#define ULAB_NUMPY_HAS_COMPRESS (1)
#endif
#ifndef ULAB_NUMPY_HAS_CONVOLVE
#define ULAB_NUMPY_HAS_CONVOLVE (1)
#endif
#ifndef ULAB_NUMPY_HAS_CROSS
#define ULAB_NUMPY_HAS_CROSS (1)
#endif
#ifndef ULAB_NUMPY_HAS_DELETE
#define ULAB_NUMPY_HAS_DELETE (1)
#endif
#ifndef ULAB_NUMPY_HAS_DIFF
#define ULAB_NUMPY_HAS_DIFF (1)
#endif
#ifndef ULAB_NUMPY_HAS_DOT
#define ULAB_NUMPY_HAS_DOT (1)
#endif
#ifndef ULAB_NUMPY_HAS_FLIP
#define ULAB_NUMPY_HAS_FLIP (1)
#endif
#ifndef ULAB_NUMPY_HAS_INTERP
#define ULAB_NUMPY_HAS_INTERP (1)
#endif
#ifndef ULAB_NUMPY_HAS_LOAD
#define ULAB_NUMPY_HAS_LOAD (1)
#endif
#ifndef ULAB_NUMPY_HAS_LOADTXT
#define ULAB_NUMPY_HAS_LOADTXT (1)
#endif
#ifndef ULAB_NUMPY_HAS_MEAN
#define ULAB_NUMPY_HAS_MEAN (1)
#endif
#ifndef ULAB_NUMPY_HAS_MEDIAN
#define ULAB_NUMPY_HAS_MEDIAN (1)
#endif
#ifndef ULAB_NUMPY_HAS_MINMAX
#define ULAB_NUMPY_HAS_MINMAX (1)
#endif
#ifndef ULAB_NUMPY_HAS_POLYFIT
#define ULAB_NUMPY_HAS_POLYFIT (1)
#endif
#ifndef ULAB_NUMPY_HAS_POLYVAL
#define ULAB_NUMPY_HAS_POLYVAL (1)
#endif
#ifndef ULAB_NUMPY_HAS_ROLL
#define ULAB_NUMPY_HAS_ROLL (1)
#endif
#ifndef ULAB_NUMPY_HAS_SAVE
#define ULAB_NUMPY_HAS_SAVE (1)
#endif
#ifndef ULAB_NUMPY_HAS_SAVETXT
#define ULAB_NUMPY_HAS_SAVETXT (1)
#endif
#ifndef ULAB_NUMPY_HAS_SIZE
#define ULAB_NUMPY_HAS_SIZE (1)
#endif
#ifndef ULAB_NUMPY_HAS_SORT
#define ULAB_NUMPY_HAS_SORT (1)
#endif
#ifndef ULAB_NUMPY_HAS_STD
#define ULAB_NUMPY_HAS_STD (1)
#endif
#ifndef ULAB_NUMPY_HAS_SUM
#define ULAB_NUMPY_HAS_SUM (1)
#endif
#ifndef ULAB_NUMPY_HAS_TRACE
#define ULAB_NUMPY_HAS_TRACE (1)
#endif
#ifndef ULAB_NUMPY_HAS_TRAPZ
#define ULAB_NUMPY_HAS_TRAPZ (1)
#endif
// vectorised versions of the functions of the math python module, with
// the exception of the functions listed in scipy.special
// if this constant is set, math functions support the out keyword argument
#ifndef ULAB_MATH_FUNCTIONS_OUT_KEYWORD
#define ULAB_MATH_FUNCTIONS_OUT_KEYWORD (1)
#endif
#ifndef ULAB_NUMPY_HAS_ACOS
#define ULAB_NUMPY_HAS_ACOS (1)
#endif
#ifndef ULAB_NUMPY_HAS_ACOSH
#define ULAB_NUMPY_HAS_ACOSH (1)
#endif
#ifndef ULAB_NUMPY_HAS_ARCTAN2
#define ULAB_NUMPY_HAS_ARCTAN2 (1)
#endif
#ifndef ULAB_NUMPY_HAS_AROUND
#define ULAB_NUMPY_HAS_AROUND (1)
#endif
#ifndef ULAB_NUMPY_HAS_ASIN
#define ULAB_NUMPY_HAS_ASIN (1)
#endif
#ifndef ULAB_NUMPY_HAS_ASINH
#define ULAB_NUMPY_HAS_ASINH (1)
#endif
#ifndef ULAB_NUMPY_HAS_ATAN
#define ULAB_NUMPY_HAS_ATAN (1)
#endif
#ifndef ULAB_NUMPY_HAS_ATANH
#define ULAB_NUMPY_HAS_ATANH (1)
#endif
#ifndef ULAB_NUMPY_HAS_CEIL
#define ULAB_NUMPY_HAS_CEIL (1)
#endif
#ifndef ULAB_NUMPY_HAS_COS
#define ULAB_NUMPY_HAS_COS (1)
#endif
#ifndef ULAB_NUMPY_HAS_COSH
#define ULAB_NUMPY_HAS_COSH (1)
#endif
#ifndef ULAB_NUMPY_HAS_DEGREES
#define ULAB_NUMPY_HAS_DEGREES (1)
#endif
#ifndef ULAB_NUMPY_HAS_EXP
#define ULAB_NUMPY_HAS_EXP (1)
#endif
#ifndef ULAB_NUMPY_HAS_EXPM1
#define ULAB_NUMPY_HAS_EXPM1 (1)
#endif
#ifndef ULAB_NUMPY_HAS_FLOOR
#define ULAB_NUMPY_HAS_FLOOR (1)
#endif
#ifndef ULAB_NUMPY_HAS_LOG
#define ULAB_NUMPY_HAS_LOG (1)
#endif
#ifndef ULAB_NUMPY_HAS_LOG10
#define ULAB_NUMPY_HAS_LOG10 (1)
#endif
#ifndef ULAB_NUMPY_HAS_LOG2
#define ULAB_NUMPY_HAS_LOG2 (1)
#endif
#ifndef ULAB_NUMPY_HAS_RADIANS
#define ULAB_NUMPY_HAS_RADIANS (1)
#endif
#ifndef ULAB_NUMPY_HAS_SIN
#define ULAB_NUMPY_HAS_SIN (1)
#endif
#ifndef ULAB_NUMPY_HAS_SINC
#define ULAB_NUMPY_HAS_SINC (1)
#endif
#ifndef ULAB_NUMPY_HAS_SINH
#define ULAB_NUMPY_HAS_SINH (1)
#endif
#ifndef ULAB_NUMPY_HAS_SQRT
#define ULAB_NUMPY_HAS_SQRT (1)
#endif
#ifndef ULAB_NUMPY_HAS_TAN
#define ULAB_NUMPY_HAS_TAN (1)
#endif
#ifndef ULAB_NUMPY_HAS_TANH
#define ULAB_NUMPY_HAS_TANH (1)
#endif
#ifndef ULAB_NUMPY_HAS_VECTORIZE
#define ULAB_NUMPY_HAS_VECTORIZE (1)
#endif
// Complex functions. The implementations are compiled into
// the firmware, only if ULAB_SUPPORTS_COMPLEX is set to 1
#ifndef ULAB_NUMPY_HAS_CONJUGATE
#define ULAB_NUMPY_HAS_CONJUGATE (1)
#endif
#ifndef ULAB_NUMPY_HAS_IMAG
#define ULAB_NUMPY_HAS_IMAG (1)
#endif
#ifndef ULAB_NUMPY_HAS_REAL
#define ULAB_NUMPY_HAS_REAL (1)
#endif
#ifndef ULAB_NUMPY_HAS_SORT_COMPLEX
#define ULAB_NUMPY_HAS_SORT_COMPLEX (1)
#endif
// scipy modules
#ifndef ULAB_SCIPY_HAS_LINALG_MODULE
#define ULAB_SCIPY_HAS_LINALG_MODULE (1)
#endif
#ifndef ULAB_SCIPY_LINALG_HAS_CHO_SOLVE
#define ULAB_SCIPY_LINALG_HAS_CHO_SOLVE (1)
#endif
#ifndef ULAB_SCIPY_LINALG_HAS_SOLVE_TRIANGULAR
#define ULAB_SCIPY_LINALG_HAS_SOLVE_TRIANGULAR (1)
#endif
#ifndef ULAB_SCIPY_HAS_SIGNAL_MODULE
#define ULAB_SCIPY_HAS_SIGNAL_MODULE (1)
#endif
#ifndef ULAB_SCIPY_SIGNAL_HAS_SOSFILT
#define ULAB_SCIPY_SIGNAL_HAS_SOSFILT (1)
#endif
#ifndef ULAB_SCIPY_HAS_OPTIMIZE_MODULE
#define ULAB_SCIPY_HAS_OPTIMIZE_MODULE (1)
#endif
#ifndef ULAB_SCIPY_OPTIMIZE_HAS_BISECT
#define ULAB_SCIPY_OPTIMIZE_HAS_BISECT (1)
#endif
#ifndef ULAB_SCIPY_OPTIMIZE_HAS_CURVE_FIT
#define ULAB_SCIPY_OPTIMIZE_HAS_CURVE_FIT (0) // not fully implemented
#endif
#ifndef ULAB_SCIPY_OPTIMIZE_HAS_FMIN
#define ULAB_SCIPY_OPTIMIZE_HAS_FMIN (1)
#endif
#ifndef ULAB_SCIPY_OPTIMIZE_HAS_NEWTON
#define ULAB_SCIPY_OPTIMIZE_HAS_NEWTON (1)
#endif
#ifndef ULAB_SCIPY_HAS_SPECIAL_MODULE
#define ULAB_SCIPY_HAS_SPECIAL_MODULE (1)
#endif
#ifndef ULAB_SCIPY_SPECIAL_HAS_ERF
#define ULAB_SCIPY_SPECIAL_HAS_ERF (1)
#endif
#ifndef ULAB_SCIPY_SPECIAL_HAS_ERFC
#define ULAB_SCIPY_SPECIAL_HAS_ERFC (1)
#endif
#ifndef ULAB_SCIPY_SPECIAL_HAS_GAMMA
#define ULAB_SCIPY_SPECIAL_HAS_GAMMA (1)
#endif
#ifndef ULAB_SCIPY_SPECIAL_HAS_GAMMALN
#define ULAB_SCIPY_SPECIAL_HAS_GAMMALN (1)
#endif
// functions of the utils module
#ifndef ULAB_HAS_UTILS_MODULE
#define ULAB_HAS_UTILS_MODULE (1)
#endif
#ifndef ULAB_UTILS_HAS_FROM_INT16_BUFFER
#define ULAB_UTILS_HAS_FROM_INT16_BUFFER (1)
#endif
#ifndef ULAB_UTILS_HAS_FROM_UINT16_BUFFER
#define ULAB_UTILS_HAS_FROM_UINT16_BUFFER (1)
#endif
#ifndef ULAB_UTILS_HAS_FROM_INT32_BUFFER
#define ULAB_UTILS_HAS_FROM_INT32_BUFFER (1)
#endif
#ifndef ULAB_UTILS_HAS_FROM_UINT32_BUFFER
#define ULAB_UTILS_HAS_FROM_UINT32_BUFFER (1)
#endif
#ifndef ULAB_UTILS_HAS_SPECTROGRAM
#define ULAB_UTILS_HAS_SPECTROGRAM (1)
#endif
// user-defined module; source of the module and
// its sub-modules should be placed in code/user/
#ifndef ULAB_HAS_USER_MODULE
#define ULAB_HAS_USER_MODULE (0)
#endif
// user-defined modules
#define ULAB_EXTRAS_MODULE (0)
#endif

View file

@ -1,276 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2022 Zoltán Vörös
*/
#include <string.h>
#include "py/runtime.h"
#include "ulab.h"
#include "ndarray.h"
#include "ulab_tools.h"
// The following five functions return a float from a void type
// The value in question is supposed to be located at the head of the pointer
mp_float_t ndarray_get_float_uint8(void *data) {
// Returns a float value from an uint8_t type
return (mp_float_t)(*(uint8_t *)data);
}
mp_float_t ndarray_get_float_int8(void *data) {
// Returns a float value from an int8_t type
return (mp_float_t)(*(int8_t *)data);
}
mp_float_t ndarray_get_float_uint16(void *data) {
// Returns a float value from an uint16_t type
return (mp_float_t)(*(uint16_t *)data);
}
mp_float_t ndarray_get_float_int16(void *data) {
// Returns a float value from an int16_t type
return (mp_float_t)(*(int16_t *)data);
}
mp_float_t ndarray_get_float_float(void *data) {
// Returns a float value from an mp_float_t type
return *((mp_float_t *)data);
}
// returns a single function pointer, depending on the dtype
void *ndarray_get_float_function(uint8_t dtype) {
if(dtype == NDARRAY_UINT8) {
return ndarray_get_float_uint8;
} else if(dtype == NDARRAY_INT8) {
return ndarray_get_float_int8;
} else if(dtype == NDARRAY_UINT16) {
return ndarray_get_float_uint16;
} else if(dtype == NDARRAY_INT16) {
return ndarray_get_float_int16;
} else {
return ndarray_get_float_float;
}
}
mp_float_t ndarray_get_float_index(void *data, uint8_t dtype, size_t index) {
// returns a single float value from an array located at index
if(dtype == NDARRAY_UINT8) {
return (mp_float_t)((uint8_t *)data)[index];
} else if(dtype == NDARRAY_INT8) {
return (mp_float_t)((int8_t *)data)[index];
} else if(dtype == NDARRAY_UINT16) {
return (mp_float_t)((uint16_t *)data)[index];
} else if(dtype == NDARRAY_INT16) {
return (mp_float_t)((int16_t *)data)[index];
} else {
return (mp_float_t)((mp_float_t *)data)[index];
}
}
mp_float_t ndarray_get_float_value(void *data, uint8_t dtype) {
// Returns a float value from an arbitrary data type
// The value in question is supposed to be located at the head of the pointer
if(dtype == NDARRAY_UINT8) {
return (mp_float_t)(*(uint8_t *)data);
} else if(dtype == NDARRAY_INT8) {
return (mp_float_t)(*(int8_t *)data);
} else if(dtype == NDARRAY_UINT16) {
return (mp_float_t)(*(uint16_t *)data);
} else if(dtype == NDARRAY_INT16) {
return (mp_float_t)(*(int16_t *)data);
} else {
return *((mp_float_t *)data);
}
}
#if NDARRAY_BINARY_USES_FUN_POINTER | ULAB_NUMPY_HAS_WHERE
uint8_t ndarray_upcast_dtype(uint8_t ldtype, uint8_t rdtype) {
// returns a single character that corresponds to the broadcasting rules
// - if one of the operarands is a float, the result is always float
// - operation on identical types preserves type
//
// uint8 + int8 => int16
// uint8 + int16 => int16
// uint8 + uint16 => uint16
// int8 + int16 => int16
// int8 + uint16 => uint16
// uint16 + int16 => float
if(ldtype == rdtype) {
// if the two dtypes are equal, the result is also of that type
return ldtype;
} else if(((ldtype == NDARRAY_UINT8) && (rdtype == NDARRAY_INT8)) ||
((ldtype == NDARRAY_INT8) && (rdtype == NDARRAY_UINT8)) ||
((ldtype == NDARRAY_UINT8) && (rdtype == NDARRAY_INT16)) ||
((ldtype == NDARRAY_INT16) && (rdtype == NDARRAY_UINT8)) ||
((ldtype == NDARRAY_INT8) && (rdtype == NDARRAY_INT16)) ||
((ldtype == NDARRAY_INT16) && (rdtype == NDARRAY_INT8))) {
return NDARRAY_INT16;
} else if(((ldtype == NDARRAY_UINT8) && (rdtype == NDARRAY_UINT16)) ||
((ldtype == NDARRAY_UINT16) && (rdtype == NDARRAY_UINT8)) ||
((ldtype == NDARRAY_INT8) && (rdtype == NDARRAY_UINT16)) ||
((ldtype == NDARRAY_UINT16) && (rdtype == NDARRAY_INT8))) {
return NDARRAY_UINT16;
}
return NDARRAY_FLOAT;
}
// The following five functions are the inverse of the ndarray_get_... functions,
// and write a floating point datum into a void pointer
void ndarray_set_float_uint8(void *data, mp_float_t datum) {
*((uint8_t *)data) = (uint8_t)datum;
}
void ndarray_set_float_int8(void *data, mp_float_t datum) {
*((int8_t *)data) = (int8_t)datum;
}
void ndarray_set_float_uint16(void *data, mp_float_t datum) {
*((uint16_t *)data) = (uint16_t)datum;
}
void ndarray_set_float_int16(void *data, mp_float_t datum) {
*((int16_t *)data) = (int16_t)datum;
}
void ndarray_set_float_float(void *data, mp_float_t datum) {
*((mp_float_t *)data) = datum;
}
// returns a single function pointer, depending on the dtype
void *ndarray_set_float_function(uint8_t dtype) {
if(dtype == NDARRAY_UINT8) {
return ndarray_set_float_uint8;
} else if(dtype == NDARRAY_INT8) {
return ndarray_set_float_int8;
} else if(dtype == NDARRAY_UINT16) {
return ndarray_set_float_uint16;
} else if(dtype == NDARRAY_INT16) {
return ndarray_set_float_int16;
} else {
return ndarray_set_float_float;
}
}
#endif /* NDARRAY_BINARY_USES_FUN_POINTER */
shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) {
// TODO: replace numerical_reduce_axes with this function, wherever applicable
// This function should be used, whenever a tensor is contracted;
// The shape and strides at `axis` are moved to the zeroth position,
// everything else is aligned to the right
if(!mp_obj_is_int(axis) & (axis != mp_const_none)) {
mp_raise_TypeError(translate("axis must be None, or an integer"));
}
shape_strides _shape_strides;
size_t *shape = m_new(size_t, ULAB_MAX_DIMS + 1);
_shape_strides.shape = shape;
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS + 1);
_shape_strides.strides = strides;
_shape_strides.increment = 0;
// this is the contracted dimension (won't be overwritten for axis == None)
_shape_strides.ndim = 0;
memcpy(_shape_strides.shape, ndarray->shape, sizeof(size_t) * ULAB_MAX_DIMS);
memcpy(_shape_strides.strides, ndarray->strides, sizeof(int32_t) * ULAB_MAX_DIMS);
if(axis == mp_const_none) {
return _shape_strides;
}
uint8_t index = ULAB_MAX_DIMS - 1; // value of index for axis == mp_const_none (won't be overwritten)
if(axis != mp_const_none) { // i.e., axis is an integer
int8_t ax = mp_obj_get_int(axis);
if(ax < 0) ax += ndarray->ndim;
if((ax < 0) || (ax > ndarray->ndim - 1)) {
mp_raise_ValueError(translate("index out of range"));
}
index = ULAB_MAX_DIMS - ndarray->ndim + ax;
_shape_strides.ndim = ndarray->ndim - 1;
}
// move the value stored at index to the leftmost position, and align everything else to the right
_shape_strides.shape[0] = ndarray->shape[index];
_shape_strides.strides[0] = ndarray->strides[index];
for(uint8_t i = 0; i < index; i++) {
// entries to the right of index must be shifted by one position to the left
_shape_strides.shape[i + 1] = ndarray->shape[i];
_shape_strides.strides[i + 1] = ndarray->strides[i];
}
if(_shape_strides.ndim != 0) {
_shape_strides.increment = 1;
}
return _shape_strides;
}
int8_t tools_get_axis(mp_obj_t axis, uint8_t ndim) {
int8_t ax = mp_obj_get_int(axis);
if(ax < 0) ax += ndim;
if((ax < 0) || (ax > ndim - 1)) {
mp_raise_ValueError(translate("axis is out of bounds"));
}
return ax;
}
#if ULAB_MAX_DIMS > 1
ndarray_obj_t *tools_object_is_square(mp_obj_t obj) {
// Returns an ndarray, if the object is a square ndarray,
// raises the appropriate exception otherwise
if(!mp_obj_is_type(obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("size is defined for ndarrays only"));
}
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(obj);
if((ndarray->shape[ULAB_MAX_DIMS - 1] != ndarray->shape[ULAB_MAX_DIMS - 2]) || (ndarray->ndim != 2)) {
mp_raise_ValueError(translate("input must be square matrix"));
}
return ndarray;
}
#endif
uint8_t ulab_binary_get_size(uint8_t dtype) {
#if ULAB_SUPPORTS_COMPLEX
if(dtype == NDARRAY_COMPLEX) {
return 2 * (uint8_t)sizeof(mp_float_t);
}
#endif
return dtype == NDARRAY_BOOL ? 1 : mp_binary_get_size('@', dtype, NULL);
}
#if ULAB_SUPPORTS_COMPLEX
void ulab_rescale_float_strides(int32_t *strides) {
// re-scale the strides, so that we can work with floats, when iterating
uint8_t sz = sizeof(mp_float_t);
for(uint8_t i = 0; i < ULAB_MAX_DIMS; i++) {
strides[i] /= sz;
}
}
#endif
bool ulab_tools_mp_obj_is_scalar(mp_obj_t obj) {
#if ULAB_SUPPORTS_COMPLEX
if(mp_obj_is_int(obj) || mp_obj_is_float(obj) || mp_obj_is_type(obj, &mp_type_complex)) {
return true;
} else {
return false;
}
#else
if(mp_obj_is_int(obj) || mp_obj_is_float(obj)) {
return true;
} else {
return false;
}
#endif
}

View file

@ -1,46 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2022 Zoltán Vörös
*/
#ifndef _TOOLS_
#define _TOOLS_
#include "ndarray.h"
#define SWAP(t, a, b) { t tmp = a; a = b; b = tmp; }
typedef struct _shape_strides_t {
uint8_t increment;
uint8_t ndim;
size_t *shape;
int32_t *strides;
} shape_strides;
mp_float_t ndarray_get_float_uint8(void *);
mp_float_t ndarray_get_float_int8(void *);
mp_float_t ndarray_get_float_uint16(void *);
mp_float_t ndarray_get_float_int16(void *);
mp_float_t ndarray_get_float_float(void *);
void *ndarray_get_float_function(uint8_t );
uint8_t ndarray_upcast_dtype(uint8_t , uint8_t );
void *ndarray_set_float_function(uint8_t );
shape_strides tools_reduce_axes(ndarray_obj_t *, mp_obj_t );
int8_t tools_get_axis(mp_obj_t , uint8_t );
ndarray_obj_t *tools_object_is_square(mp_obj_t );
uint8_t ulab_binary_get_size(uint8_t );
#if ULAB_SUPPORTS_COMPLEX
void ulab_rescale_float_strides(int32_t *);
#endif
bool ulab_tools_mp_obj_is_scalar(mp_obj_t );
#endif

View file

@ -1,102 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "user.h"
#if ULAB_HAS_USER_MODULE
//| """This module should hold arbitrary user-defined functions."""
//|
static mp_obj_t user_square(mp_obj_t arg) {
// the function takes a single dense ndarray, and calculates the
// element-wise square of its entries
// raise a TypeError exception, if the input is not an ndarray
if(!mp_obj_is_type(arg, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("input must be an ndarray"));
}
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(arg);
// make sure that the input is a dense array
if(!ndarray_is_dense(ndarray)) {
mp_raise_TypeError(translate("input must be a dense ndarray"));
}
// if the input is a dense array, create `results` with the same number of
// dimensions, shape, and dtype
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndarray->ndim, ndarray->shape, ndarray->dtype);
// since in a dense array the iteration over the elements is trivial, we
// can cast the data arrays ndarray->array and results->array to the actual type
if(ndarray->dtype == NDARRAY_UINT8) {
uint8_t *array = (uint8_t *)ndarray->array;
uint8_t *rarray = (uint8_t *)results->array;
for(size_t i=0; i < ndarray->len; i++, array++) {
*rarray++ = (*array) * (*array);
}
} else if(ndarray->dtype == NDARRAY_INT8) {
int8_t *array = (int8_t *)ndarray->array;
int8_t *rarray = (int8_t *)results->array;
for(size_t i=0; i < ndarray->len; i++, array++) {
*rarray++ = (*array) * (*array);
}
} else if(ndarray->dtype == NDARRAY_UINT16) {
uint16_t *array = (uint16_t *)ndarray->array;
uint16_t *rarray = (uint16_t *)results->array;
for(size_t i=0; i < ndarray->len; i++, array++) {
*rarray++ = (*array) * (*array);
}
} else if(ndarray->dtype == NDARRAY_INT16) {
int16_t *array = (int16_t *)ndarray->array;
int16_t *rarray = (int16_t *)results->array;
for(size_t i=0; i < ndarray->len; i++, array++) {
*rarray++ = (*array) * (*array);
}
} else { // if we end up here, the dtype is NDARRAY_FLOAT
mp_float_t *array = (mp_float_t *)ndarray->array;
mp_float_t *rarray = (mp_float_t *)results->array;
for(size_t i=0; i < ndarray->len; i++, array++) {
*rarray++ = (*array) * (*array);
}
}
// at the end, return a micrppython object
return MP_OBJ_FROM_PTR(results);
}
MP_DEFINE_CONST_FUN_OBJ_1(user_square_obj, user_square);
static const mp_rom_map_elem_t ulab_user_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_user) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_square), (mp_obj_t)&user_square_obj },
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_user_globals, ulab_user_globals_table);
const mp_obj_module_t ulab_user_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_user_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_user, ulab_user_module, ULAB_HAS_USER_MODULE);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_user, ulab_user_module);
#endif
#endif
#endif

View file

@ -1,20 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*/
#ifndef _USER_
#define _USER_
#include "../ulab.h"
#include "../ndarray.h"
extern const mp_obj_module_t ulab_user_module;
#endif

View file

@ -1,260 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "utils.h"
#include "../numpy/fft/fft_tools.h"
#if ULAB_HAS_UTILS_MODULE
enum UTILS_BUFFER_TYPE {
UTILS_INT16_BUFFER,
UTILS_UINT16_BUFFER,
UTILS_INT32_BUFFER,
UTILS_UINT32_BUFFER,
};
#if ULAB_UTILS_HAS_FROM_INT16_BUFFER | ULAB_UTILS_HAS_FROM_UINT16_BUFFER | ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER
static mp_obj_t utils_from_intbuffer_helper(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, uint8_t buffer_type) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } } ,
{ MP_QSTR_count, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(-1) } },
{ MP_QSTR_offset, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(0) } },
{ MP_QSTR_out, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_byteswap, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_FALSE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
ndarray_obj_t *ndarray = NULL;
if(args[3].u_obj != mp_const_none) {
ndarray = MP_OBJ_TO_PTR(args[3].u_obj);
if((ndarray->dtype != NDARRAY_FLOAT) || !ndarray_is_dense(ndarray)) {
mp_raise_TypeError(translate("out must be a float dense array"));
}
}
size_t offset = mp_obj_get_int(args[2].u_obj);
mp_buffer_info_t bufinfo;
if(mp_get_buffer(args[0].u_obj, &bufinfo, MP_BUFFER_READ)) {
if(bufinfo.len < offset) {
mp_raise_ValueError(translate("offset is too large"));
}
uint8_t sz = sizeof(int16_t);
#if ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER
if((buffer_type == UTILS_INT32_BUFFER) || (buffer_type == UTILS_UINT32_BUFFER)) {
sz = sizeof(int32_t);
}
#endif
size_t len = (bufinfo.len - offset) / sz;
if((len * sz) != (bufinfo.len - offset)) {
mp_raise_ValueError(translate("buffer size must be a multiple of element size"));
}
if(mp_obj_get_int(args[1].u_obj) > 0) {
size_t count = mp_obj_get_int(args[1].u_obj);
if(len < count) {
mp_raise_ValueError(translate("buffer is smaller than requested size"));
} else {
len = count;
}
}
if(args[3].u_obj == mp_const_none) {
ndarray = ndarray_new_linear_array(len, NDARRAY_FLOAT);
} else {
if(ndarray->len < len) {
mp_raise_ValueError(translate("out array is too small"));
}
}
uint8_t *buffer = bufinfo.buf;
mp_float_t *array = (mp_float_t *)ndarray->array;
if(args[4].u_obj == mp_const_true) {
// swap the bytes before conversion
uint8_t *tmpbuff = m_new(uint8_t, sz);
#if ULAB_UTILS_HAS_FROM_INT16_BUFFER | ULAB_UTILS_HAS_FROM_UINT16_BUFFER
if((buffer_type == UTILS_INT16_BUFFER) || (buffer_type == UTILS_UINT16_BUFFER)) {
for(size_t i = 0; i < len; i++) {
tmpbuff += sz;
for(uint8_t j = 0; j < sz; j++) {
memcpy(--tmpbuff, buffer++, 1);
}
if(buffer_type == UTILS_INT16_BUFFER) {
*array++ = (mp_float_t)(*(int16_t *)tmpbuff);
} else {
*array++ = (mp_float_t)(*(uint16_t *)tmpbuff);
}
}
}
#endif
#if ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER
if((buffer_type == UTILS_INT32_BUFFER) || (buffer_type == UTILS_UINT32_BUFFER)) {
for(size_t i = 0; i < len; i++) {
tmpbuff += sz;
for(uint8_t j = 0; j < sz; j++) {
memcpy(--tmpbuff, buffer++, 1);
}
if(buffer_type == UTILS_INT32_BUFFER) {
*array++ = (mp_float_t)(*(int32_t *)tmpbuff);
} else {
*array++ = (mp_float_t)(*(uint32_t *)tmpbuff);
}
}
}
#endif
} else {
#if ULAB_UTILS_HAS_FROM_INT16_BUFFER
if(buffer_type == UTILS_INT16_BUFFER) {
for(size_t i = 0; i < len; i++) {
*array++ = (mp_float_t)(*(int16_t *)buffer);
buffer += sz;
}
}
#endif
#if ULAB_UTILS_HAS_FROM_UINT16_BUFFER
if(buffer_type == UTILS_UINT16_BUFFER) {
for(size_t i = 0; i < len; i++) {
*array++ = (mp_float_t)(*(uint16_t *)buffer);
buffer += sz;
}
}
#endif
#if ULAB_UTILS_HAS_FROM_INT32_BUFFER
if(buffer_type == UTILS_INT32_BUFFER) {
for(size_t i = 0; i < len; i++) {
*array++ = (mp_float_t)(*(int32_t *)buffer);
buffer += sz;
}
}
#endif
#if ULAB_UTILS_HAS_FROM_UINT32_BUFFER
if(buffer_type == UTILS_UINT32_BUFFER) {
for(size_t i = 0; i < len; i++) {
*array++ = (mp_float_t)(*(uint32_t *)buffer);
buffer += sz;
}
}
#endif
}
return MP_OBJ_FROM_PTR(ndarray);
}
return mp_const_none;
}
#ifdef ULAB_UTILS_HAS_FROM_INT16_BUFFER
static mp_obj_t utils_from_int16_buffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return utils_from_intbuffer_helper(n_args, pos_args, kw_args, UTILS_INT16_BUFFER);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_int16_buffer_obj, 1, utils_from_int16_buffer);
#endif
#ifdef ULAB_UTILS_HAS_FROM_UINT16_BUFFER
static mp_obj_t utils_from_uint16_buffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return utils_from_intbuffer_helper(n_args, pos_args, kw_args, UTILS_UINT16_BUFFER);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_uint16_buffer_obj, 1, utils_from_uint16_buffer);
#endif
#ifdef ULAB_UTILS_HAS_FROM_INT32_BUFFER
static mp_obj_t utils_from_int32_buffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return utils_from_intbuffer_helper(n_args, pos_args, kw_args, UTILS_INT32_BUFFER);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_int32_buffer_obj, 1, utils_from_int32_buffer);
#endif
#ifdef ULAB_UTILS_HAS_FROM_UINT32_BUFFER
static mp_obj_t utils_from_uint32_buffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return utils_from_intbuffer_helper(n_args, pos_args, kw_args, UTILS_UINT32_BUFFER);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_uint32_buffer_obj, 1, utils_from_uint32_buffer);
#endif
#endif /* ULAB_UTILS_HAS_FROM_INT16_BUFFER | ULAB_UTILS_HAS_FROM_UINT16_BUFFER | ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER */
#if ULAB_UTILS_HAS_SPECTROGRAM
//| import ulab.numpy
//|
//| def spectrogram(r: ulab.numpy.ndarray) -> ulab.numpy.ndarray:
//| """
//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
//|
//| Computes the spectrum of the input signal. This is the absolute value of the (complex-valued) fft of the signal.
//| This function is similar to scipy's ``scipy.signal.welch`` https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html."""
//| ...
//|
mp_obj_t utils_spectrogram(size_t n_args, const mp_obj_t *args) {
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
return fft_fft_ifft_spectrogram(args[0], FFT_SPECTROGRAM);
#else
if(n_args == 2) {
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_SPECTROGRAM);
} else {
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_SPECTROGRAM);
}
#endif
}
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(utils_spectrogram_obj, 1, 1, utils_spectrogram);
#else
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(utils_spectrogram_obj, 1, 2, utils_spectrogram);
#endif
#endif /* ULAB_UTILS_HAS_SPECTROGRAM */
static const mp_rom_map_elem_t ulab_utils_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_utils) },
#if ULAB_UTILS_HAS_FROM_INT16_BUFFER
{ MP_ROM_QSTR(MP_QSTR_from_int16_buffer), MP_ROM_PTR(&utils_from_int16_buffer_obj) },
#endif
#if ULAB_UTILS_HAS_FROM_UINT16_BUFFER
{ MP_ROM_QSTR(MP_QSTR_from_uint16_buffer), MP_ROM_PTR(&utils_from_uint16_buffer_obj) },
#endif
#if ULAB_UTILS_HAS_FROM_INT32_BUFFER
{ MP_ROM_QSTR(MP_QSTR_from_int32_buffer), MP_ROM_PTR(&utils_from_int32_buffer_obj) },
#endif
#if ULAB_UTILS_HAS_FROM_UINT32_BUFFER
{ MP_ROM_QSTR(MP_QSTR_from_uint32_buffer), MP_ROM_PTR(&utils_from_uint32_buffer_obj) },
#endif
#if ULAB_UTILS_HAS_SPECTROGRAM
{ MP_ROM_QSTR(MP_QSTR_spectrogram), MP_ROM_PTR(&utils_spectrogram_obj) },
#endif
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_utils_globals, ulab_utils_globals_table);
const mp_obj_module_t ulab_utils_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_utils_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_utils, ulab_utils_module, MODULE_ULAB_ENABLED);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_utils, ulab_utils_module);
#endif
#endif
#endif /* ULAB_HAS_UTILS_MODULE */

View file

@ -1,19 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*/
#ifndef _UTILS_
#define _UTILS_
#include "../ulab.h"
#include "../ndarray.h"
extern const mp_obj_module_t ulab_utils_module;
#endif

174
code/vectorise.c Normal file
View file

@ -0,0 +1,174 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "py/runtime.h"
#include "py/binary.h"
#include "py/obj.h"
#include "py/objarray.h"
#include "vectorise.h"
#ifndef MP_PI
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
#endif
#if ULAB_VECTORISE_MODULE
mp_obj_t vectorise_generic_vector(mp_obj_t o_in, mp_float_t (*f)(mp_float_t)) {
// Return a single value, if o_in is not iterable
if(mp_obj_is_float(o_in) || MP_OBJ_IS_INT(o_in)) {
return mp_obj_new_float(f(mp_obj_get_float(o_in)));
}
mp_float_t x;
if(MP_OBJ_IS_TYPE(o_in, &ulab_ndarray_type)) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(o_in);
ndarray_obj_t *ndarray = create_new_ndarray(source->m, source->n, NDARRAY_FLOAT);
mp_float_t *dataout = (mp_float_t *)ndarray->array->items;
if(source->array->typecode == NDARRAY_UINT8) {
ITERATE_VECTOR(uint8_t, source, dataout);
} else if(source->array->typecode == NDARRAY_INT8) {
ITERATE_VECTOR(int8_t, source, dataout);
} else if(source->array->typecode == NDARRAY_UINT16) {
ITERATE_VECTOR(uint16_t, source, dataout);
} else if(source->array->typecode == NDARRAY_INT16) {
ITERATE_VECTOR(int16_t, source, dataout);
} else {
ITERATE_VECTOR(mp_float_t, source, dataout);
}
return MP_OBJ_FROM_PTR(ndarray);
} else if(MP_OBJ_IS_TYPE(o_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(o_in, &mp_type_list) ||
MP_OBJ_IS_TYPE(o_in, &mp_type_range)) { // i.e., the input is a generic iterable
mp_obj_array_t *o = MP_OBJ_TO_PTR(o_in);
ndarray_obj_t *out = create_new_ndarray(1, o->len, NDARRAY_FLOAT);
mp_float_t *dataout = (mp_float_t *)out->array->items;
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(o_in, &iter_buf);
size_t i=0;
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
x = mp_obj_get_float(item);
dataout[i++] = f(x);
}
return MP_OBJ_FROM_PTR(out);
}
return mp_const_none;
}
MATH_FUN_1(acos, acos);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_acos_obj, vectorise_acos);
MATH_FUN_1(acosh, acosh);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_acosh_obj, vectorise_acosh);
MATH_FUN_1(asin, asin);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_asin_obj, vectorise_asin);
MATH_FUN_1(asinh, asinh);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_asinh_obj, vectorise_asinh);
MATH_FUN_1(atan, atan);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_atan_obj, vectorise_atan);
MATH_FUN_1(atanh, atanh);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_atanh_obj, vectorise_atanh);
MATH_FUN_1(ceil, ceil);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_ceil_obj, vectorise_ceil);
MATH_FUN_1(cos, cos);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_cos_obj, vectorise_cos);
MATH_FUN_1(cosh, cosh);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_cosh_obj, vectorise_cosh);
MATH_FUN_1(erf, erf);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_erf_obj, vectorise_erf);
MATH_FUN_1(erfc, erfc);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_erfc_obj, vectorise_erfc);
MATH_FUN_1(exp, exp);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_exp_obj, vectorise_exp);
MATH_FUN_1(expm1, expm1);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_expm1_obj, vectorise_expm1);
MATH_FUN_1(floor, floor);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_floor_obj, vectorise_floor);
MATH_FUN_1(gamma, tgamma);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_gamma_obj, vectorise_gamma);
MATH_FUN_1(lgamma, lgamma);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_lgamma_obj, vectorise_lgamma);
MATH_FUN_1(log, log);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_log_obj, vectorise_log);
MATH_FUN_1(log10, log10);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_log10_obj, vectorise_log10);
MATH_FUN_1(log2, log2);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_log2_obj, vectorise_log2);
MATH_FUN_1(sin, sin);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_sin_obj, vectorise_sin);
MATH_FUN_1(sinh, sinh);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_sinh_obj, vectorise_sinh);
MATH_FUN_1(sqrt, sqrt);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_sqrt_obj, vectorise_sqrt);
MATH_FUN_1(tan, tan);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_tan_obj, vectorise_tan);
MATH_FUN_1(tanh, tanh);
MP_DEFINE_CONST_FUN_OBJ_1(vectorise_tanh_obj, vectorise_tanh);
#if !CIRCUITPY
STATIC const mp_rom_map_elem_t ulab_vectorise_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_vector) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_acos), (mp_obj_t)&vectorise_acos_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_acosh), (mp_obj_t)&vectorise_acosh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_asin), (mp_obj_t)&vectorise_asin_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_asinh), (mp_obj_t)&vectorise_asinh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_atan), (mp_obj_t)&vectorise_atan_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_atanh), (mp_obj_t)&vectorise_atanh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ceil), (mp_obj_t)&vectorise_ceil_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_cos), (mp_obj_t)&vectorise_cos_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_erf), (mp_obj_t)&vectorise_erf_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_erfc), (mp_obj_t)&vectorise_erfc_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_exp), (mp_obj_t)&vectorise_exp_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_expm1), (mp_obj_t)&vectorise_expm1_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_floor), (mp_obj_t)&vectorise_floor_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_gamma), (mp_obj_t)&vectorise_gamma_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_lgamma), (mp_obj_t)&vectorise_lgamma_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_log), (mp_obj_t)&vectorise_log_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_log10), (mp_obj_t)&vectorise_log10_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_log2), (mp_obj_t)&vectorise_log2_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sin), (mp_obj_t)&vectorise_sin_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sinh), (mp_obj_t)&vectorise_sinh_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sqrt), (mp_obj_t)&vectorise_sqrt_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_tan), (mp_obj_t)&vectorise_tan_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_tanh), (mp_obj_t)&vectorise_tanh_obj },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_vectorise_globals, ulab_vectorise_globals_table);
mp_obj_module_t ulab_vectorise_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_vectorise_globals,
};
#endif
#endif

35
code/vectorise.h Normal file
View file

@ -0,0 +1,35 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#ifndef _VECTORISE_
#define _VECTORISE_
#include "ulab.h"
#include "ndarray.h"
#if ULAB_VECTORISE_MODULE
mp_obj_module_t ulab_vectorise_module;
#define ITERATE_VECTOR(type, source, out) do {\
type *input = (type *)(source)->array->items;\
for(size_t i=0; i < (source)->array->len; i++) {\
(out)[i] = f(input[i]);\
}\
} while(0)
#define MATH_FUN_1(py_name, c_name) \
mp_obj_t vectorise_ ## py_name(mp_obj_t x_obj) { \
return vectorise_generic_vector(x_obj, MICROPY_FLOAT_C_FUN(c_name)); \
}
#endif
#endif

View file

@ -14,10 +14,6 @@ help:
.PHONY: help Makefile
clean:
rm -rf "$(BUILDDIR)"
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile

View file

@ -1,35 +0,0 @@
@ECHO OFF
pushd %~dp0
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=source
set BUILDDIR=build
if "%1" == "" goto help
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
echo.installed, then set the SPHINXBUILD environment variable to point
echo.to the full path of the 'sphinx-build' executable. Alternatively you
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.http://sphinx-doc.org/
exit /b 1
)
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end
:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
:end
popd

View file

@ -10,24 +10,19 @@
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
#import sphinx_rtd_theme
from sphinx.transforms import SphinxTransform
from docutils import nodes
from sphinx import addnodes
# -- Project information -----------------------------------------------------
project = 'The ulab book'
copyright = '2019-2022, Zoltán Vörös and contributors'
project = 'micropython-ulab'
copyright = '2019, Zoltán Vörös'
author = 'Zoltán Vörös'
# The full version, including alpha/beta/rc tags
release = '5.1.0'
release = '0.32'
# -- General configuration ---------------------------------------------------
@ -47,46 +42,18 @@ templates_path = ['_templates']
exclude_patterns = []
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'sphinx_rtd_theme'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
latex_maketitle = r'''
\begin{titlepage}
\begin{flushright}
\Huge\textbf{The $\mu$lab book}
\vskip 0.5em
\LARGE
\textbf{Release %s}
\vskip 5em
\huge\textbf{Zoltán Vörös}
\end{flushright}
\begin{flushright}
\LARGE
\vskip 2em
with contributions by
\vskip 2em
\textbf{Roberto Colistete Jr.}
\vskip 0.2em
\textbf{Jeff Epler}
\vskip 0.2em
\textbf{Taku Fukada}
\vskip 0.2em
\textbf{Diego Elio Pettenò}
\vskip 0.2em
\textbf{Scott Shawcroft}
\vskip 5em
\today
\end{flushright}
\end{titlepage}
'''%release
latex_elements = {
'maketitle': latex_maketitle
}
master_doc = 'index'
author=u'Zoltán Vörös'
@ -94,19 +61,7 @@ copyright=author
language='en'
latex_documents = [
(master_doc, 'the-ulab-book.tex', 'The $\mu$lab book',
(master_doc, 'ulab-manual.tex', 'Micropython ulab documentation',
'Zoltán Vörös', 'manual'),
]
# Read the docs theme
on_rtd = os.environ.get('READTHEDOCS', None) == 'True'
if not on_rtd:
try:
import sphinx_rtd_theme
html_theme = 'sphinx_rtd_theme'
html_theme_path = [sphinx_rtd_theme.get_html_theme_path(), '.']
except ImportError:
html_theme = 'default'
html_theme_path = ['.']
else:
html_theme_path = ['.']

View file

@ -1,34 +1,16 @@
.. ulab-manual documentation master file, created by
sphinx-quickstart on Sat Oct 19 12:48:00 2019.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Welcome to the ulab book!
Welcome to micropython-ulab's documentation!
=======================================
.. toctree::
:maxdepth: 2
:caption: Introduction
:caption: Contents:
ulab-intro
.. toctree::
:maxdepth: 2
:caption: User's guide:
ulab-ndarray
numpy-functions
numpy-universal
numpy-fft
numpy-linalg
scipy-linalg
scipy-optimize
scipy-signal
scipy-special
ulab-utils
ulab-tricks
ulab-programming
ulab
Indices and tables
==================

View file

@ -1,197 +0,0 @@
numpy.fft
=========
Functions related to Fourier transforms can be called by prepending them
with ``numpy.fft.``. The module defines the following two functions:
1. `numpy.fft.fft <#fft>`__
2. `numpy.fft.ifft <#ifft>`__
``numpy``:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifft.html
fft
---
Since ``ulab``\ s ``ndarray`` does not support complex numbers, the
invocation of the Fourier transform differs from that in ``numpy``. In
``numpy``, you can simply pass an array or iterable to the function, and
it will be treated as a complex array:
.. code::
# code to be run in CPython
fft.fft([1, 2, 3, 4, 1, 2, 3, 4])
.. parsed-literal::
array([20.+0.j, 0.+0.j, -4.+4.j, 0.+0.j, -4.+0.j, 0.+0.j, -4.-4.j,
0.+0.j])
**WARNING:** The array returned is also complex, i.e., the real and
imaginary components are cast together. In ``ulab``, the real and
imaginary parts are treated separately: you have to pass two
``ndarray``\ s to the function, although, the second argument is
optional, in which case the imaginary part is assumed to be zero.
**WARNING:** The function, as opposed to ``numpy``, returns a 2-tuple,
whose elements are two ``ndarray``\ s, holding the real and imaginary
parts of the transform separately.
.. code::
# code to be run in micropython
from ulab import numpy as np
x = np.linspace(0, 10, num=1024)
y = np.sin(x)
z = np.zeros(len(x))
a, b = np.fft.fft(x)
print('real part:\t', a)
print('\nimaginary part:\t', b)
c, d = np.fft.fft(x, z)
print('\nreal part:\t', c)
print('\nimaginary part:\t', d)
.. parsed-literal::
real part: array([5119.996, -5.004663, -5.004798, ..., -5.005482, -5.005643, -5.006577], dtype=float)
imaginary part: array([0.0, 1631.333, 815.659, ..., -543.764, -815.6588, -1631.333], dtype=float)
real part: array([5119.996, -5.004663, -5.004798, ..., -5.005482, -5.005643, -5.006577], dtype=float)
imaginary part: array([0.0, 1631.333, 815.659, ..., -543.764, -815.6588, -1631.333], dtype=float)
ulab with complex support
~~~~~~~~~~~~~~~~~~~~~~~~~
If the ``ULAB_SUPPORTS_COMPLEX``, and ``ULAB_FFT_IS_NUMPY_COMPATIBLE``
pre-processor constants are set to 1 in
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__
as
.. code:: c
// Adds support for complex ndarrays
#ifndef ULAB_SUPPORTS_COMPLEX
#define ULAB_SUPPORTS_COMPLEX (1)
#endif
.. code:: c
#ifndef ULAB_FFT_IS_NUMPY_COMPATIBLE
#define ULAB_FFT_IS_NUMPY_COMPATIBLE (1)
#endif
then the FFT routine will behave in a ``numpy``-compatible way: the
single input array can either be real, in which case the imaginary part
is assumed to be zero, or complex. The output is also complex.
While ``numpy``-compatibility might be a desired feature, it has one
side effect, namely, the FFT routine consumes approx. 50% more RAM. The
reason for this lies in the implementation details.
ifft
----
The above-mentioned rules apply to the inverse Fourier transform. The
inverse is also normalised by ``N``, the number of elements, as is
customary in ``numpy``. With the normalisation, we can ascertain that
the inverse of the transform is equal to the original array.
.. code::
# code to be run in micropython
from ulab import numpy as np
x = np.linspace(0, 10, num=1024)
y = np.sin(x)
a, b = np.fft.fft(y)
print('original vector:\t', y)
y, z = np.fft.ifft(a, b)
# the real part should be equal to y
print('\nreal part of inverse:\t', y)
# the imaginary part should be equal to zero
print('\nimaginary part of inverse:\t', z)
.. parsed-literal::
original vector: array([0.0, 0.009775016, 0.0195491, ..., -0.5275068, -0.5357859, -0.5440139], dtype=float)
real part of inverse: array([-2.980232e-08, 0.0097754, 0.0195494, ..., -0.5275064, -0.5357857, -0.5440133], dtype=float)
imaginary part of inverse: array([-2.980232e-08, -1.451171e-07, 3.693752e-08, ..., 6.44871e-08, 9.34986e-08, 2.18336e-07], dtype=float)
Note that unlike in ``numpy``, the length of the array on which the
Fourier transform is carried out must be a power of 2. If this is not
the case, the function raises a ``ValueError`` exception.
ulab with complex support
~~~~~~~~~~~~~~~~~~~~~~~~~
The ``fft.ifft`` function can also be made ``numpy``-compatible by
setting the ``ULAB_SUPPORTS_COMPLEX``, and
``ULAB_FFT_IS_NUMPY_COMPATIBLE`` pre-processor constants to 1.
Computation and storage costs
-----------------------------
RAM
~~~
The FFT routine of ``ulab`` calculates the transform in place. This
means that beyond reserving space for the two ``ndarray``\ s that will
be returned (the computation uses these two as intermediate storage
space), only a handful of temporary variables, all floats or 32-bit
integers, are required.
Speed of FFTs
~~~~~~~~~~~~~
A comment on the speed: a 1024-point transform implemented in python
would cost around 90 ms, and 13 ms in assembly, if the code runs on the
pyboard, v.1.1. You can gain a factor of four by moving to the D series
https://github.com/peterhinch/micropython-fourier/blob/master/README.md#8-performance.
.. code::
# code to be run in micropython
from ulab import numpy as np
x = np.linspace(0, 10, num=1024)
y = np.sin(x)
@timeit
def np_fft(y):
return np.fft.fft(y)
a, b = np_fft(y)
.. parsed-literal::
execution time: 1985 us
The C implementation runs in less than 2 ms on the pyboard (we have just
measured that), and has been reported to run in under 0.8 ms on the D
series board. That is an improvement of at least a factor of four.

File diff suppressed because it is too large Load diff

View file

@ -1,386 +0,0 @@
numpy.linalg
============
Functions in the ``linalg`` module can be called by prepending them by
``numpy.linalg.``. The module defines the following seven functions:
1. `numpy.linalg.cholesky <#cholesky>`__
2. `numpy.linalg.det <#det>`__
3. `numpy.linalg.eig <#eig>`__
4. `numpy.linalg.inv <#inv>`__
5. `numpy.linalg.norm <#norm>`__
6. `numpy.linalg.qr <#qr>`__
cholesky
--------
``numpy``:
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.linalg.cholesky.html
The function of the Cholesky decomposition takes a positive definite,
symmetric square matrix as its single argument, and returns the *square
root matrix* in the lower triangular form. If the input argument does
not fulfill the positivity or symmetry condition, a ``ValueError`` is
raised.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([[25, 15, -5], [15, 18, 0], [-5, 0, 11]])
print('a: ', a)
print('\n' + '='*20 + '\nCholesky decomposition\n', np.linalg.cholesky(a))
.. parsed-literal::
a: array([[25.0, 15.0, -5.0],
[15.0, 18.0, 0.0],
[-5.0, 0.0, 11.0]], dtype=float)
====================
Cholesky decomposition
array([[5.0, 0.0, 0.0],
[3.0, 3.0, 0.0],
[-1.0, 1.0, 3.0]], dtype=float)
det
---
``numpy``:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.det.html
The ``det`` function takes a square matrix as its single argument, and
calculates the determinant. The calculation is based on successive
elimination of the matrix elements, and the return value is a float,
even if the input array was of integer type.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([[1, 2], [3, 4]], dtype=np.uint8)
print(np.linalg.det(a))
.. parsed-literal::
-2.0
Benchmark
~~~~~~~~~
Since the routine for calculating the determinant is pretty much the
same as for finding the `inverse of a matrix <#inv>`__, the execution
times are similar:
.. code::
# code to be run in micropython
from ulab import numpy as np
@timeit
def matrix_det(m):
return np.linalg.inv(m)
m = np.array([[1, 2, 3, 4, 5, 6, 7, 8], [0, 5, 6, 4, 5, 6, 4, 5],
[0, 0, 9, 7, 8, 9, 7, 8], [0, 0, 0, 10, 11, 12, 11, 12],
[0, 0, 0, 0, 4, 6, 7, 8], [0, 0, 0, 0, 0, 5, 6, 7],
[0, 0, 0, 0, 0, 0, 7, 6], [0, 0, 0, 0, 0, 0, 0, 2]])
matrix_det(m)
.. parsed-literal::
execution time: 294 us
eig
---
``numpy``:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html
The ``eig`` function calculates the eigenvalues and the eigenvectors of
a real, symmetric square matrix. If the matrix is not symmetric, a
``ValueError`` will be raised. The function takes a single argument, and
returns a tuple with the eigenvalues, and eigenvectors. With the help of
the eigenvectors, amongst other things, you can implement sophisticated
stabilisation routines for robots.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([[1, 2, 1, 4], [2, 5, 3, 5], [1, 3, 6, 1], [4, 5, 1, 7]], dtype=np.uint8)
x, y = np.linalg.eig(a)
print('eigenvectors of a:\n', y)
print('\neigenvalues of a:\n', x)
.. parsed-literal::
eigenvectors of a:
array([[0.8151560042509081, -0.4499411232970823, -0.1644660242574522, 0.3256141906686505],
[0.2211334179893007, 0.7846992598235538, 0.08372081379922657, 0.5730077734355189],
[-0.1340114162071679, -0.3100776411558949, 0.8742786816656, 0.3486109343758527],
[-0.5183258053659028, -0.292663481927148, -0.4489749870391468, 0.6664142156731531]], dtype=float)
eigenvalues of a:
array([-1.165288365404889, 0.8029365530314914, 5.585625756072663, 13.77672605630074], dtype=float)
The same matrix diagonalised with ``numpy`` yields:
.. code::
# code to be run in CPython
a = array([[1, 2, 1, 4], [2, 5, 3, 5], [1, 3, 6, 1], [4, 5, 1, 7]], dtype=np.uint8)
x, y = eig(a)
print('eigenvectors of a:\n', y)
print('\neigenvalues of a:\n', x)
.. parsed-literal::
eigenvectors of a:
[[ 0.32561419 0.815156 0.44994112 -0.16446602]
[ 0.57300777 0.22113342 -0.78469926 0.08372081]
[ 0.34861093 -0.13401142 0.31007764 0.87427868]
[ 0.66641421 -0.51832581 0.29266348 -0.44897499]]
eigenvalues of a:
[13.77672606 -1.16528837 0.80293655 5.58562576]
When comparing results, we should keep two things in mind:
1. the eigenvalues and eigenvectors are not necessarily sorted in the
same way
2. an eigenvector can be multiplied by an arbitrary non-zero scalar, and
it is still an eigenvector with the same eigenvalue. This is why all
signs of the eigenvector belonging to 5.58, and 0.80 are flipped in
``ulab`` with respect to ``numpy``. This difference, however, is of
absolutely no consequence.
Computation expenses
~~~~~~~~~~~~~~~~~~~~
Since the function is based on `Givens
rotations <https://en.wikipedia.org/wiki/Givens_rotation>`__ and runs
till convergence is achieved, or till the maximum number of allowed
rotations is exhausted, there is no universal estimate for the time
required to find the eigenvalues. However, an order of magnitude can, at
least, be guessed based on the measurement below:
.. code::
# code to be run in micropython
from ulab import numpy as np
@timeit
def matrix_eig(a):
return np.linalg.eig(a)
a = np.array([[1, 2, 1, 4], [2, 5, 3, 5], [1, 3, 6, 1], [4, 5, 1, 7]], dtype=np.uint8)
matrix_eig(a)
.. parsed-literal::
execution time: 111 us
inv
---
``numpy``:
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.linalg.inv.html
A square matrix, provided that it is not singular, can be inverted by
calling the ``inv`` function that takes a single argument. The inversion
is based on successive elimination of elements in the lower left
triangle, and raises a ``ValueError`` exception, if the matrix turns out
to be singular (i.e., one of the diagonal entries is zero).
.. code::
# code to be run in micropython
from ulab import numpy as np
m = np.array([[1, 2, 3, 4], [4, 5, 6, 4], [7, 8.6, 9, 4], [3, 4, 5, 6]])
print(np.linalg.inv(m))
.. parsed-literal::
array([[-2.166666666666667, 1.500000000000001, -0.8333333333333337, 1.0],
[1.666666666666667, -3.333333333333335, 1.666666666666668, -0.0],
[0.1666666666666666, 2.166666666666668, -0.8333333333333337, -1.0],
[-0.1666666666666667, -0.3333333333333333, 0.0, 0.5]], dtype=float64)
Computation expenses
~~~~~~~~~~~~~~~~~~~~
Note that the cost of inverting a matrix is approximately twice as many
floats (RAM), as the number of entries in the original matrix, and
approximately as many operations, as the number of entries. Here are a
couple of numbers:
.. code::
# code to be run in micropython
from ulab import numpy as np
@timeit
def invert_matrix(m):
return np.linalg.inv(m)
m = np.array([[1, 2,], [4, 5]])
print('2 by 2 matrix:')
invert_matrix(m)
m = np.array([[1, 2, 3, 4], [4, 5, 6, 4], [7, 8.6, 9, 4], [3, 4, 5, 6]])
print('\n4 by 4 matrix:')
invert_matrix(m)
m = np.array([[1, 2, 3, 4, 5, 6, 7, 8], [0, 5, 6, 4, 5, 6, 4, 5],
[0, 0, 9, 7, 8, 9, 7, 8], [0, 0, 0, 10, 11, 12, 11, 12],
[0, 0, 0, 0, 4, 6, 7, 8], [0, 0, 0, 0, 0, 5, 6, 7],
[0, 0, 0, 0, 0, 0, 7, 6], [0, 0, 0, 0, 0, 0, 0, 2]])
print('\n8 by 8 matrix:')
invert_matrix(m)
.. parsed-literal::
2 by 2 matrix:
execution time: 65 us
4 by 4 matrix:
execution time: 105 us
8 by 8 matrix:
execution time: 299 us
The above-mentioned scaling is not obeyed strictly. The reason for the
discrepancy is that the function call is still the same for all three
cases: the input must be inspected, the output array must be created,
and so on.
norm
----
``numpy``:
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
The function takes a vector or matrix without options, and returns its
2-norm, i.e., the square root of the sum of the square of the elements.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([1, 2, 3, 4, 5])
b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print('norm of a:', np.linalg.norm(a))
print('norm of b:', np.linalg.norm(b))
.. parsed-literal::
norm of a: 7.416198487095663
norm of b: 16.88194301613414
qr
--
``numpy``:
https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html
The function computes the QR decomposition of a matrix ``m`` of
dimensions ``(M, N)``, i.e., it returns two such matrices, ``q``\ , and
``r``, that ``m = qr``, where ``q`` is orthonormal, and ``r`` is upper
triangular. In addition to the input matrix, which is the first
positional argument, the function accepts the ``mode`` keyword argument
with a default value of ``reduced``. If ``mode`` is ``reduced``, ``q``,
and ``r`` are returned in the reduced representation. Otherwise, the
outputs will have dimensions ``(M, M)``, and ``(M, N)``, respectively.
.. code::
# code to be run in micropython
from ulab import numpy as np
A = np.arange(6).reshape((3, 2))
print('A: \n', A)
print('complete decomposition')
q, r = np.linalg.qr(A, mode='complete')
print('q: \n', q)
print()
print('r: \n', r)
print('\n\nreduced decomposition')
q, r = np.linalg.qr(A, mode='reduced')
print('q: \n', q)
print()
print('r: \n', r)
.. parsed-literal::
A:
array([[0, 1],
[2, 3],
[4, 5]], dtype=int16)
complete decomposition
q:
array([[0.0, -0.9128709291752768, 0.408248290463863],
[-0.447213595499958, -0.3651483716701107, -0.8164965809277261],
[-0.8944271909999159, 0.1825741858350553, 0.408248290463863]], dtype=float64)
r:
array([[-4.47213595499958, -5.813776741499454],
[0.0, -1.095445115010332],
[0.0, 0.0]], dtype=float64)
reduced decomposition
q:
array([[0.0, -0.9128709291752768],
[-0.447213595499958, -0.3651483716701107],
[-0.8944271909999159, 0.1825741858350553]], dtype=float64)
r:
array([[-4.47213595499958, -5.813776741499454],
[0.0, -1.095445115010332]], dtype=float64)

View file

@ -1,487 +0,0 @@
Universal functions
===================
Standard mathematical functions can be calculated on any scalar,
scalar-valued iterable (ranges, lists, tuples containing numbers), and
on ``ndarray``\ s without having to change the call signature. In all
cases the functions return a new ``ndarray`` of typecode ``float``
(since these functions usually generate float values, anyway). The only
exceptions to this rule are the ``exp``, and ``sqrt`` functions, which,
if ``ULAB_SUPPORTS_COMPLEX`` is set to 1 in
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__,
can return complex arrays, depending on the argument. All functions
execute faster with ``ndarray`` arguments than with iterables, because
the values of the input vector can be extracted faster.
At present, the following functions are supported (starred functions can
operate on, or can return complex arrays):
``acos``, ``acosh``, ``arctan2``, ``around``, ``asin``, ``asinh``,
``atan``, ``arctan2``, ``atanh``, ``ceil``, ``cos``, ``degrees``,
``exp*``, ``expm1``, ``floor``, ``log``, ``log10``, ``log2``,
``radians``, ``sin``, ``sinh``, ``sqrt*``, ``tan``, ``tanh``.
These functions are applied element-wise to the arguments, thus, e.g.,
the exponential of a matrix cannot be calculated in this way, only the
exponential of the matrix entries.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = range(9)
b = np.array(a)
# works with ranges, lists, tuples etc.
print('a:\t', a)
print('exp(a):\t', np.exp(a))
# with 1D arrays
print('\n=============\nb:\n', b)
print('exp(b):\n', np.exp(b))
# as well as with matrices
c = np.array(range(9)).reshape((3, 3))
print('\n=============\nc:\n', c)
print('exp(c):\n', np.exp(c))
.. parsed-literal::
a: range(0, 9)
exp(a): array([1.0, 2.718281828459045, 7.38905609893065, 20.08553692318767, 54.59815003314424, 148.4131591025766, 403.4287934927351, 1096.633158428459, 2980.957987041728], dtype=float64)
=============
b:
array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64)
exp(b):
array([1.0, 2.718281828459045, 7.38905609893065, 20.08553692318767, 54.59815003314424, 148.4131591025766, 403.4287934927351, 1096.633158428459, 2980.957987041728], dtype=float64)
=============
c:
array([[0.0, 1.0, 2.0],
[3.0, 4.0, 5.0],
[6.0, 7.0, 8.0]], dtype=float64)
exp(c):
array([[1.0, 2.718281828459045, 7.38905609893065],
[20.08553692318767, 54.59815003314424, 148.4131591025766],
[403.4287934927351, 1096.633158428459, 2980.957987041728]], dtype=float64)
Computation expenses
--------------------
The overhead for calculating with micropython iterables is quite
significant: for the 1000 samples below, the difference is more than 800
microseconds, because internally the function has to create the
``ndarray`` for the output, has to fetch the iterables items of unknown
type, and then convert them to floats. All these steps are skipped for
``ndarray``\ s, because these pieces of information are already known.
Doing the same with ``list`` comprehension requires 30 times more time
than with the ``ndarray``, which would become even more, if we converted
the resulting list to an ``ndarray``.
.. code::
# code to be run in micropython
from ulab import numpy as np
import math
a = [0]*1000
b = np.array(a)
@timeit
def timed_vector(iterable):
return np.exp(iterable)
@timeit
def timed_list(iterable):
return [math.exp(i) for i in iterable]
print('iterating over ndarray in ulab')
timed_vector(b)
print('\niterating over list in ulab')
timed_vector(a)
print('\niterating over list in python')
timed_list(a)
.. parsed-literal::
iterating over ndarray in ulab
execution time: 441 us
iterating over list in ulab
execution time: 1266 us
iterating over list in python
execution time: 11379 us
arctan2
-------
``numpy``:
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.arctan2.html
The two-argument inverse tangent function is also part of the ``vector``
sub-module. The function implements broadcasting as discussed in the
section on ``ndarray``\ s. Scalars (``micropython`` integers or floats)
are also allowed.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([1, 2.2, 33.33, 444.444])
print('a:\n', a)
print('\narctan2(a, 1.0)\n', np.arctan2(a, 1.0))
print('\narctan2(1.0, a)\n', np.arctan2(1.0, a))
print('\narctan2(a, a): \n', np.arctan2(a, a))
.. parsed-literal::
a:
array([1.0, 2.2, 33.33, 444.444], dtype=float64)
arctan2(a, 1.0)
array([0.7853981633974483, 1.14416883366802, 1.5408023243361, 1.568546328341769], dtype=float64)
arctan2(1.0, a)
array([0.7853981633974483, 0.426627493126876, 0.02999400245879636, 0.002249998453127392], dtype=float64)
arctan2(a, a):
array([0.7853981633974483, 0.7853981633974483, 0.7853981633974483, 0.7853981633974483], dtype=float64)
around
------
``numpy``:
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.around.html
``numpy``\ s ``around`` function can also be found in the ``vector``
sub-module. The function implements the ``decimals`` keyword argument
with default value ``0``. The first argument must be an ``ndarray``. If
this is not the case, the function raises a ``TypeError`` exception.
Note that ``numpy`` accepts general iterables. The ``out`` keyword
argument known from ``numpy`` is not accepted. The function always
returns an ndarray of type ``mp_float_t``.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([1, 2.2, 33.33, 444.444])
print('a:\t\t', a)
print('\ndecimals = 0\t', np.around(a, decimals=0))
print('\ndecimals = 1\t', np.around(a, decimals=1))
print('\ndecimals = -1\t', np.around(a, decimals=-1))
.. parsed-literal::
a: array([1.0, 2.2, 33.33, 444.444], dtype=float64)
decimals = 0 array([1.0, 2.0, 33.0, 444.0], dtype=float64)
decimals = 1 array([1.0, 2.2, 33.3, 444.4], dtype=float64)
decimals = -1 array([0.0, 0.0, 30.0, 440.0], dtype=float64)
exp
---
If ``ULAB_SUPPORTS_COMPLEX`` is set to 1 in
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__,
the exponential function can also take complex arrays as its argument,
in which case the return value is also complex.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([1, 2, 3])
print('a:\t\t', a)
print('exp(a):\t\t', np.exp(a))
print()
b = np.array([1+1j, 2+2j, 3+3j], dtype=np.complex)
print('b:\t\t', b)
print('exp(b):\t\t', np.exp(b))
.. parsed-literal::
a: array([1.0, 2.0, 3.0], dtype=float64)
exp(a): array([2.718281828459045, 7.38905609893065, 20.08553692318767], dtype=float64)
b: array([1.0+1.0j, 2.0+2.0j, 3.0+3.0j], dtype=complex)
exp(b): array([1.468693939915885+2.287355287178842j, -3.074932320639359+6.71884969742825j, -19.88453084414699+2.834471132487004j], dtype=complex)
sqrt
----
If ``ULAB_SUPPORTS_COMPLEX`` is set to 1 in
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__,
the exponential function can also take complex arrays as its argument,
in which case the return value is also complex. If the input is real,
but the results might be complex, the user is supposed to specify the
output ``dtype`` in the function call. Otherwise, the square roots of
negative numbers will result in ``NaN``.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([1, -1])
print('a:\t\t', a)
print('sqrt(a):\t\t', np.sqrt(a))
print('sqrt(a):\t\t', np.sqrt(a, dtype=np.complex))
.. parsed-literal::
a: array([1.0, -1.0], dtype=float64)
sqrt(a): array([1.0, nan], dtype=float64)
sqrt(a): array([1.0+0.0j, 0.0+1.0j], dtype=complex)
Vectorising generic python functions
------------------------------------
``numpy``:
https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html
The examples above use factory functions. In fact, they are nothing but
the vectorised versions of the standard mathematical functions.
User-defined ``python`` functions can also be vectorised by help of
``vectorize``. This function takes a positional argument, namely, the
``python`` function that you want to vectorise, and a non-mandatory
keyword argument, ``otypes``, which determines the ``dtype`` of the
output array. The ``otypes`` must be ``None`` (default), or any of the
``dtypes`` defined in ``ulab``. With ``None``, the output is
automatically turned into a float array.
The return value of ``vectorize`` is a ``micropython`` object that can
be called as a standard function, but which now accepts either a scalar,
an ``ndarray``, or a generic ``micropython`` iterable as its sole
argument. Note that the function that is to be vectorised must have a
single argument.
.. code::
# code to be run in micropython
from ulab import numpy as np
def f(x):
return x*x
vf = np.vectorize(f)
# calling with a scalar
print('{:20}'.format('f on a scalar: '), vf(44.0))
# calling with an ndarray
a = np.array([1, 2, 3, 4])
print('{:20}'.format('f on an ndarray: '), vf(a))
# calling with a list
print('{:20}'.format('f on a list: '), vf([2, 3, 4]))
.. parsed-literal::
f on a scalar: array([1936.0], dtype=float64)
f on an ndarray: array([1.0, 4.0, 9.0, 16.0], dtype=float64)
f on a list: array([4.0, 9.0, 16.0], dtype=float64)
As mentioned, the ``dtype`` of the resulting ``ndarray`` can be
specified via the ``otypes`` keyword. The value is bound to the function
object that ``vectorize`` returns, therefore, if the same function is to
be vectorised with different output types, then for each type a new
function object must be created.
.. code::
# code to be run in micropython
from ulab import numpy as np
l = [1, 2, 3, 4]
def f(x):
return x*x
vf1 = np.vectorize(f, otypes=np.uint8)
vf2 = np.vectorize(f, otypes=np.float)
print('{:20}'.format('output is uint8: '), vf1(l))
print('{:20}'.format('output is float: '), vf2(l))
.. parsed-literal::
output is uint8: array([1, 4, 9, 16], dtype=uint8)
output is float: array([1.0, 4.0, 9.0, 16.0], dtype=float64)
The ``otypes`` keyword argument cannot be used for type coercion: if the
function evaluates to a float, but ``otypes`` would dictate an integer
type, an exception will be raised:
.. code::
# code to be run in micropython
from ulab import numpy as np
int_list = [1, 2, 3, 4]
float_list = [1.0, 2.0, 3.0, 4.0]
def f(x):
return x*x
vf = np.vectorize(f, otypes=np.uint8)
print('{:20}'.format('integer list: '), vf(int_list))
# this will raise a TypeError exception
print(vf(float_list))
.. parsed-literal::
integer list: array([1, 4, 9, 16], dtype=uint8)
Traceback (most recent call last):
File "/dev/shm/micropython.py", line 14, in <module>
TypeError: can't convert float to int
Benchmarks
~~~~~~~~~~
It should be pointed out that the ``vectorize`` function produces the
pseudo-vectorised version of the ``python`` function that is fed into
it, i.e., on the C level, the same ``python`` function is called, with
the all-encompassing ``mp_obj_t`` type arguments, and all that happens
is that the ``for`` loop in ``[f(i) for i in iterable]`` runs purely in
C. Since type checking and type conversion in ``f()`` is expensive, the
speed-up is not so spectacular as when iterating over an ``ndarray``
with a factory function: a gain of approximately 30% can be expected,
when a native ``python`` type (e.g., ``list``) is returned by the
function, and this becomes around 50% (a factor of 2), if conversion to
an ``ndarray`` is also counted.
The following code snippet calculates the square of a 1000 numbers with
the vectorised function (which returns an ``ndarray``), with ``list``
comprehension, and with ``list`` comprehension followed by conversion to
an ``ndarray``. For comparison, the execution time is measured also for
the case, when the square is calculated entirely in ``ulab``.
.. code::
# code to be run in micropython
from ulab import numpy as np
def f(x):
return x*x
vf = np.vectorize(f)
@timeit
def timed_vectorised_square(iterable):
return vf(iterable)
@timeit
def timed_python_square(iterable):
return [f(i) for i in iterable]
@timeit
def timed_ndarray_square(iterable):
return np.array([f(i) for i in iterable])
@timeit
def timed_ulab_square(ndarray):
return ndarray**2
print('vectorised function')
squares = timed_vectorised_square(range(1000))
print('\nlist comprehension')
squares = timed_python_square(range(1000))
print('\nlist comprehension + ndarray conversion')
squares = timed_ndarray_square(range(1000))
print('\nsquaring an ndarray entirely in ulab')
a = np.array(range(1000))
squares = timed_ulab_square(a)
.. parsed-literal::
vectorised function
execution time: 7237 us
list comprehension
execution time: 10248 us
list comprehension + ndarray conversion
execution time: 12562 us
squaring an ndarray entirely in ulab
execution time: 560 us
From the comparisons above, it is obvious that ``python`` functions
should only be vectorised, when the same effect cannot be gotten in
``ulab`` only. However, although the time savings are not significant,
there is still a good reason for caring about vectorised functions.
Namely, user-defined ``python`` functions become universal, i.e., they
can accept generic iterables as well as ``ndarray``\ s as their
arguments. A vectorised function is still a one-liner, resulting in
transparent and elegant code.
A final comment on this subject: the ``f(x)`` that we defined is a
*generic* ``python`` function. This means that it is not required that
it just crunches some numbers. It has to return a number object, but it
can still access the hardware in the meantime. So, e.g.,
.. code:: python
led = pyb.LED(2)
def f(x):
if x < 100:
led.toggle()
return x*x
is perfectly valid code.

View file

@ -1,151 +0,0 @@
scipy.linalg
============
``scipy``\ s ``linalg`` module contains two functions,
``solve_triangular``, and ``cho_solve``. The functions can be called by
prepending them by ``scipy.linalg.``.
1. `scipy.linalg.solve_cho <#cho_solve>`__
2. `scipy.linalg.solve_triangular <#solve_triangular>`__
cho_solve
---------
``scipy``:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve.html
Solve the linear equations
:raw-latex:`\begin{equation}
\mathbf{A}\cdot\mathbf{x} = \mathbf{b}
\end{equation}`
given the Cholesky factorization of :math:`\mathbf{A}`. As opposed to
``scipy``, the function simply takes the Cholesky-factorised matrix,
:math:`\mathbf{A}`, and :math:`\mathbf{b}` as inputs.
.. code::
# code to be run in micropython
from ulab import numpy as np
from ulab import scipy as spy
A = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 2, 1, 8]])
b = np.array([4, 2, 4, 2])
print(spy.linalg.cho_solve(A, b))
.. parsed-literal::
array([-0.01388888888888906, -0.6458333333333331, 2.677083333333333, -0.01041666666666667], dtype=float64)
solve_triangular
----------------
``scipy``:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_triangular.html
Solve the linear equation
:raw-latex:`\begin{equation}
\mathbf{a}\cdot\mathbf{x} = \mathbf{b}
\end{equation}`
with the assumption that :math:`\mathbf{a}` is a triangular matrix. The
two position arguments are :math:`\mathbf{a}`, and :math:`\mathbf{b}`,
and the optional keyword argument is ``lower`` with a default value of
``False``. ``lower`` determines, whether data are taken from the lower,
or upper triangle of :math:`\mathbf{a}`.
Note that :math:`\mathbf{a}` itself does not have to be a triangular
matrix: if it is not, then the values are simply taken to be 0 in the
upper or lower triangle, as dictated by ``lower``. However,
:math:`\mathbf{a}\cdot\mathbf{x}` will yield :math:`\mathbf{b}` only,
when :math:`\mathbf{a}` is triangular. You should keep this in mind,
when trying to establish the validity of the solution by back
substitution.
.. code::
# code to be run in micropython
from ulab import numpy as np
from ulab import scipy as spy
a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 2, 1, 8]])
b = np.array([4, 2, 4, 2])
print('a:\n')
print(a)
print('\nb: ', b)
x = spy.linalg.solve_triangular(a, b, lower=True)
print('='*20)
print('x: ', x)
print('\ndot(a, x): ', np.dot(a, x))
.. parsed-literal::
a:
array([[3.0, 0.0, 0.0, 0.0],
[2.0, 1.0, 0.0, 0.0],
[1.0, 0.0, 1.0, 0.0],
[1.0, 2.0, 1.0, 8.0]], dtype=float64)
b: array([4.0, 2.0, 4.0, 2.0], dtype=float64)
====================
x: array([1.333333333333333, -0.6666666666666665, 2.666666666666667, -0.08333333333333337], dtype=float64)
dot(a, x): array([4.0, 2.0, 4.0, 2.0], dtype=float64)
With get the same solution, :math:`\mathbf{x}`, with the following
matrix, but the dot product of :math:`\mathbf{a}`, and
:math:`\mathbf{x}` is no longer :math:`\mathbf{b}`:
.. code::
# code to be run in micropython
from ulab import numpy as np
from ulab import scipy as spy
a = np.array([[3, 2, 1, 0], [2, 1, 0, 1], [1, 0, 1, 4], [1, 2, 1, 8]])
b = np.array([4, 2, 4, 2])
print('a:\n')
print(a)
print('\nb: ', b)
x = spy.linalg.solve_triangular(a, b, lower=True)
print('='*20)
print('x: ', x)
print('\ndot(a, x): ', np.dot(a, x))
.. parsed-literal::
a:
array([[3.0, 2.0, 1.0, 0.0],
[2.0, 1.0, 0.0, 1.0],
[1.0, 0.0, 1.0, 4.0],
[1.0, 2.0, 1.0, 8.0]], dtype=float64)
b: array([4.0, 2.0, 4.0, 2.0], dtype=float64)
====================
x: array([1.333333333333333, -0.6666666666666665, 2.666666666666667, -0.08333333333333337], dtype=float64)
dot(a, x): array([5.333333333333334, 1.916666666666666, 3.666666666666667, 2.0], dtype=float64)

View file

@ -1,173 +0,0 @@
scipy.optimize
==============
Functions in the ``optimize`` module can be called by prepending them by
``scipy.optimize.``. The module defines the following three functions:
1. `scipy.optimize.bisect <#bisect>`__
2. `scipy.optimize.fmin <#fmin>`__
3. `scipy.optimize.newton <#newton>`__
Note that routines that work with user-defined functions still have to
call the underlying ``python`` code, and therefore, gains in speed are
not as significant as with other vectorised operations. As a rule of
thumb, a factor of two can be expected, when compared to an optimised
``python`` implementation.
bisect
------
``scipy``:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.bisect.html
``bisect`` finds the root of a function of one variable using a simple
bisection routine. It takes three positional arguments, the function
itself, and two starting points. The function must have opposite signs
at the starting points. Returned is the position of the root.
Two keyword arguments, ``xtol``, and ``maxiter`` can be supplied to
control the accuracy, and the number of bisections, respectively.
.. code::
# code to be run in micropython
from ulab import scipy as spy
def f(x):
return x*x - 1
print(spy.optimize.bisect(f, 0, 4))
print('only 8 bisections: ', spy.optimize.bisect(f, 0, 4, maxiter=8))
print('with 0.1 accuracy: ', spy.optimize.bisect(f, 0, 4, xtol=0.1))
.. parsed-literal::
0.9999997615814209
only 8 bisections: 0.984375
with 0.1 accuracy: 0.9375
Performance
~~~~~~~~~~~
Since the ``bisect`` routine calls user-defined ``python`` functions,
the speed gain is only about a factor of two, if compared to a purely
``python`` implementation.
.. code::
# code to be run in micropython
from ulab import scipy as spy
def f(x):
return (x-1)*(x-1) - 2.0
def bisect(f, a, b, xtol=2.4e-7, maxiter=100):
if f(a) * f(b) > 0:
raise ValueError
rtb = a if f(a) < 0.0 else b
dx = b - a if f(a) < 0.0 else a - b
for i in range(maxiter):
dx *= 0.5
x_mid = rtb + dx
mid_value = f(x_mid)
if mid_value < 0:
rtb = x_mid
if abs(dx) < xtol:
break
return rtb
@timeit
def bisect_scipy(f, a, b):
return spy.optimize.bisect(f, a, b)
@timeit
def bisect_timed(f, a, b):
return bisect(f, a, b)
print('bisect running in python')
bisect_timed(f, 3, 2)
print('bisect running in C')
bisect_scipy(f, 3, 2)
.. parsed-literal::
bisect running in python
execution time: 1270 us
bisect running in C
execution time: 642 us
fmin
----
``scipy``:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html
The ``fmin`` function finds the position of the minimum of a
user-defined function by using the downhill simplex method. Requires two
positional arguments, the function, and the initial value. Three keyword
arguments, ``xatol``, ``fatol``, and ``maxiter`` stipulate conditions
for stopping.
.. code::
# code to be run in micropython
from ulab import scipy as spy
def f(x):
return (x-1)**2 - 1
print(spy.optimize.fmin(f, 3.0))
print(spy.optimize.fmin(f, 3.0, xatol=0.1))
.. parsed-literal::
0.9996093749999952
1.199999999999996
newton
------
``scipy``:https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html
``newton`` finds a zero of a real, user-defined function using the
Newton-Raphson (or secant or Halleys) method. The routine requires two
positional arguments, the function, and the initial value. Three keyword
arguments can be supplied to control the iteration. These are the
absolute and relative tolerances ``tol``, and ``rtol``, respectively,
and the number of iterations before stopping, ``maxiter``. The function
retuns a single scalar, the position of the root.
.. code::
# code to be run in micropython
from ulab import scipy as spy
def f(x):
return x*x*x - 2.0
print(spy.optimize.newton(f, 3., tol=0.001, rtol=0.01))
.. parsed-literal::
1.260135727246117

View file

@ -1,69 +0,0 @@
scipy.signal
============
This module defines the single function:
1. `scipy.signal.sosfilt <#sosfilt>`__
sosfilt
-------
``scipy``:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html
Filter data along one dimension using cascaded second-order sections.
The function takes two positional arguments, ``sos``, the filter
segments of length 6, and the one-dimensional, uniformly sampled data
set to be filtered. Returns the filtered data, or the filtered data and
the final filter delays, if the ``zi`` keyword arguments is supplied.
The keyword argument must be a float ``ndarray`` of shape
``(n_sections, 2)``. If ``zi`` is not passed to the function, the
initial values are assumed to be 0.
.. code::
# code to be run in micropython
from ulab import numpy as np
from ulab import scipy as spy
x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
sos = [[1, 2, 3, 1, 5, 6], [1, 2, 3, 1, 5, 6]]
y = spy.signal.sosfilt(sos, x)
print('y: ', y)
.. parsed-literal::
y: array([0.0, 1.0, -4.0, 24.0, -104.0, 440.0, -1728.0, 6532.000000000001, -23848.0, 84864.0], dtype=float)
.. code::
# code to be run in micropython
from ulab import numpy as np
from ulab import scipy as spy
x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
sos = [[1, 2, 3, 1, 5, 6], [1, 2, 3, 1, 5, 6]]
# initial conditions of the filter
zi = np.array([[1, 2], [3, 4]])
y, zf = spy.signal.sosfilt(sos, x, zi=zi)
print('y: ', y)
print('\n' + '='*40 + '\nzf: ', zf)
.. parsed-literal::
y: array([4.0, -16.0, 63.00000000000001, -227.0, 802.9999999999999, -2751.0, 9271.000000000001, -30775.0, 101067.0, -328991.0000000001], dtype=float)
========================================
zf: array([[37242.0, 74835.0],
[1026187.0, 1936542.0]], dtype=float)

View file

@ -1,44 +0,0 @@
scipy.special
=============
``scipy``\ s ``special`` module defines several functions that behave
as do the standard mathematical functions of the ``numpy``, i.e., they
can be called on any scalar, scalar-valued iterable (ranges, lists,
tuples containing numbers), and on ``ndarray``\ s without having to
change the call signature. In all cases the functions return a new
``ndarray`` of typecode ``float`` (since these functions usually
generate float values, anyway).
At present, ``ulab``\ s ``special`` module contains the following
functions:
``erf``, ``erfc``, ``gamma``, and ``gammaln``, and they can be called by
prepending them by ``scipy.special.``.
.. code::
# code to be run in micropython
from ulab import numpy as np
from ulab import scipy as spy
a = range(9)
b = np.array(a)
print('a: ', a)
print(spy.special.erf(a))
print('\nb: ', b)
print(spy.special.erfc(b))
.. parsed-literal::
a: range(0, 9)
array([0.0, 0.8427007929497149, 0.9953222650189527, 0.9999779095030014, 0.9999999845827421, 1.0, 1.0, 1.0, 1.0], dtype=float64)
b: array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64)
array([1.0, 0.1572992070502851, 0.004677734981047265, 2.209049699858544e-05, 1.541725790028002e-08, 1.537459794428035e-12, 2.151973671249892e-17, 4.183825607779414e-23, 1.122429717298293e-29], dtype=float64)

View file

@ -1,624 +0,0 @@
Introduction
============
Enter ulab
----------
``ulab`` is a ``numpy``-like module for ``micropython`` and its
derivatives, meant to simplify and speed up common mathematical
operations on arrays. ``ulab`` implements a small subset of ``numpy``
and ``scipy``. The functions were chosen such that they might be useful
in the context of a microcontroller. However, the project is a living
one, and suggestions for new features are always welcome.
This document discusses how you can use the library, starting from
building your own firmware, through questions like what affects the
firmware size, what are the trade-offs, and what are the most important
differences to ``numpy`` and ``scipy``, respectively. The document is
organised as follows:
The chapter after this one helps you with firmware customisation.
The third chapter gives a very concise summary of the ``ulab`` functions
and array methods. This chapter can be used as a quick reference.
The chapters after that are an in-depth review of most functions. Here
you can find usage examples, benchmarks, as well as a thorough
discussion of such concepts as broadcasting, and views versus copies.
The final chapter of this book can be regarded as the programming
manual. The inner working of ``ulab`` is dissected here, and you will
also find hints as to how to implement your own ``numpy``-compatible
functions.
Purpose
-------
Of course, the first question that one has to answer is, why on Earth
one would need a fast math library on a microcontroller. After all, it
is not expected that heavy number crunching is going to take place on
bare metal. It is not meant to. On a PC, the main reason for writing
fast code is the sheer amount of data that one wants to process. On a
microcontroller, the data volume is probably small, but it might lead to
catastrophic system failure, if these data are not processed in time,
because the microcontroller is supposed to interact with the outside
world in a timely fashion. In fact, this latter objective was the
initiator of this project: I needed the Fourier transform of a signal
coming from the ADC of the ``pyboard``, and all available options were
simply too slow.
In addition to speed, another issue that one has to keep in mind when
working with embedded systems is the amount of available RAM: I believe,
everything here could be implemented in pure ``python`` with relatively
little effort (in fact, there are a couple of ``python``-only
implementations of ``numpy`` functions out there), but the price we
would have to pay for that is not only speed, but RAM, too. ``python``
code, if is not frozen, and compiled into the firmware, has to be
compiled at runtime, which is not exactly a cheap process. On top of
that, if numbers are stored in a list or tuple, which would be the
high-level container, then they occupy 8 bytes, no matter, whether they
are all smaller than 100, or larger than one hundred million. This is
obviously a waste of resources in an environment, where resources are
scarce.
Finally, there is a reason for using ``micropython`` in the first place.
Namely, that a microcontroller can be programmed in a very elegant, and
*pythonic* way. But if it is so, why should we not extend this idea to
other tasks and concepts that might come up in this context? If there
was no other reason than this *elegance*, I would find that convincing
enough.
Based on the above-mentioned considerations, all functions in ``ulab``
are implemented in a way that
1. conforms to ``numpy`` as much as possible
2. is so frugal with RAM as possible,
3. and yet, fast. Much faster than pure python. Think of speed-ups of
30-50!
The main points of ``ulab`` are
- compact, iterable and slicable containers of numerical data in one to
four dimensions. These containers support all the relevant unary and
binary operators (e.g., ``len``, ==, +, \*, etc.)
- vectorised computations on ``micropython`` iterables and numerical
arrays (in ``numpy``-speak, universal functions)
- computing statistical properties (mean, standard deviation etc.) on
arrays
- basic linear algebra routines (matrix inversion, multiplication,
reshaping, transposition, determinant, and eigenvalues, Cholesky
decomposition and so on)
- polynomial fits to numerical data, and evaluation of polynomials
- fast Fourier transforms
- filtering of data (convolution and second-order filters)
- function minimisation, fitting, and numerical approximation routines
- interfacing between numerical data and peripheral hardware devices
``ulab`` implements close to a hundred functions and array methods. At
the time of writing this manual (for version 4.0.0), the library adds
approximately 120 kB of extra compiled code to the ``micropython``
(pyboard.v.1.17) firmware. However, if you are tight with flash space,
you can easily shave tens of kB off the firmware. In fact, if only a
small sub-set of functions are needed, you can get away with less than
10 kB of flash space. See the section on `customising
ulab <#Customising-the-firmware>`__.
Resources and legal matters
---------------------------
The source code of the module can be found under
https://github.com/v923z/micropython-ulab/tree/master/code. while the
source of this user manual is under
https://github.com/v923z/micropython-ulab/tree/master/docs.
The MIT licence applies to all material.
Friendly request
----------------
If you use ``ulab``, and bump into a bug, or think that a particular
function is missing, or its behaviour does not conform to ``numpy``,
please, raise a `ulab
issue <#https://github.com/v923z/micropython-ulab/issues>`__ on github,
so that the community can profit from your experiences.
Even better, if you find the project to be useful, and think that it
could be made better, faster, tighter, and shinier, please, consider
contributing, and issue a pull request with the implementation of your
improvements and new features. ``ulab`` can only become successful, if
it offers what the community needs.
These last comments apply to the documentation, too. If, in your
opinion, the documentation is obscure, misleading, or not detailed
enough, please, let us know, so that *we* can fix it.
Differences between micropython-ulab and circuitpython-ulab
-----------------------------------------------------------
``ulab`` has originally been developed for ``micropython``, but has
since been integrated into a number of its flavours. Most of these are
simply forks of ``micropython`` itself, with some additional
functionality. One of the notable exceptions is ``circuitpython``, which
has slightly diverged at the core level, and this has some minor
consequences. Some of these concern the C implementation details only,
which all have been sorted out with the generous and enthusiastic
support of Jeff Epler from `Adafruit
Industries <http://www.adafruit.com>`__.
There are, however, a couple of instances, where the two environments
differ at the python level in how the class properties can be accessed.
We will point out the differences and possible workarounds at the
relevant places in this document.
Customising the firmware
========================
As mentioned above, ``ulab`` has considerably grown since its
conception, which also means that it might no longer fit on the
microcontroller of your choice. There are, however, a couple of ways of
customising the firmware, and thereby reducing its size.
All ``ulab`` options are listed in a single header file,
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__,
which contains pre-processor flags for each feature that can be
fine-tuned. The first couple of lines of the file look like this
.. code:: c
// The pre-processor constants in this file determine how ulab behaves:
//
// - how many dimensions ulab can handle
// - which functions are included in the compiled firmware
// - whether the python syntax is numpy-like, or modular
// - whether arrays can be sliced and iterated over
// - which binary/unary operators are supported
//
// A considerable amount of flash space can be saved by removing (setting
// the corresponding constants to 0) the unnecessary functions and features.
// Values defined here can be overridden by your own config file as
// make -DULAB_CONFIG_FILE="my_ulab_config.h"
#if defined(ULAB_CONFIG_FILE)
#include ULAB_CONFIG_FILE
#endif
// Adds support for complex ndarrays
#ifndef ULAB_SUPPORTS_COMPLEX
#define ULAB_SUPPORTS_COMPLEX (1)
#endif
// Determines, whether scipy is defined in ulab. The sub-modules and functions
// of scipy have to be defined separately
#define ULAB_HAS_SCIPY (1)
// The maximum number of dimensions the firmware should be able to support
// Possible values lie between 1, and 4, inclusive
#define ULAB_MAX_DIMS 2
// By setting this constant to 1, iteration over array dimensions will be implemented
// as a function (ndarray_rewind_array), instead of writing out the loops in macros
// This reduces firmware size at the expense of speed
#define ULAB_HAS_FUNCTION_ITERATOR (0)
// If NDARRAY_IS_ITERABLE is 1, the ndarray object defines its own iterator function
// This option saves approx. 250 bytes of flash space
#define NDARRAY_IS_ITERABLE (1)
// Slicing can be switched off by setting this variable to 0
#define NDARRAY_IS_SLICEABLE (1)
// The default threshold for pretty printing. These variables can be overwritten
// at run-time via the set_printoptions() function
#define ULAB_HAS_PRINTOPTIONS (1)
#define NDARRAY_PRINT_THRESHOLD 10
#define NDARRAY_PRINT_EDGEITEMS 3
// determines, whether the dtype is an object, or simply a character
// the object implementation is numpythonic, but requires more space
#define ULAB_HAS_DTYPE_OBJECT (0)
// the ndarray binary operators
#define NDARRAY_HAS_BINARY_OPS (1)
// Firmware size can be reduced at the expense of speed by using function
// pointers in iterations. For each operator, he function pointer saves around
// 2 kB in the two-dimensional case, and around 4 kB in the four-dimensional case.
#define NDARRAY_BINARY_USES_FUN_POINTER (0)
#define NDARRAY_HAS_BINARY_OP_ADD (1)
#define NDARRAY_HAS_BINARY_OP_EQUAL (1)
#define NDARRAY_HAS_BINARY_OP_LESS (1)
#define NDARRAY_HAS_BINARY_OP_LESS_EQUAL (1)
#define NDARRAY_HAS_BINARY_OP_MORE (1)
#define NDARRAY_HAS_BINARY_OP_MORE_EQUAL (1)
#define NDARRAY_HAS_BINARY_OP_MULTIPLY (1)
#define NDARRAY_HAS_BINARY_OP_NOT_EQUAL (1)
#define NDARRAY_HAS_BINARY_OP_POWER (1)
#define NDARRAY_HAS_BINARY_OP_SUBTRACT (1)
#define NDARRAY_HAS_BINARY_OP_TRUE_DIVIDE (1)
...
The meaning of flags with names ``_HAS_`` should be obvious, so we will
just explain the other options.
To see how much you can gain by un-setting the functions that you do not
need, here are some pointers. In four dimensions, including all
functions adds around 120 kB to the ``micropython`` firmware. On the
other hand, if you are interested in Fourier transforms only, and strip
everything else, you get away with less than 5 kB extra.
Compatibility with numpy
------------------------
The functions implemented in ``ulab`` are organised in four sub-modules
at the C level, namely, ``numpy``, ``scipy``, ``utils``, and ``user``.
This modularity is elevated to ``python``, meaning that in order to use
functions that are part of ``numpy``, you have to import ``numpy`` as
.. code:: python
from ulab import numpy as np
x = np.array([4, 5, 6])
p = np.array([1, 2, 3])
np.polyval(p, x)
There are a couple of exceptions to this rule, namely ``fft``, and
``linalg``, which are sub-modules even in ``numpy``, thus you have to
write them out as
.. code:: python
from ulab import numpy as np
A = np.array([1, 2, 3, 4]).reshape()
np.linalg.trace(A)
Some of the functions in ``ulab`` are re-implementations of ``scipy``
functions, and they are to be imported as
.. code:: python
from ulab import numpy as np
from ulab import scipy as spy
x = np.array([1, 2, 3])
spy.special.erf(x)
``numpy``-compatibility has an enormous benefit : namely, by
``try``\ ing to ``import``, we can guarantee that the same, unmodified
code runs in ``CPython``, as in ``micropython``. The following snippet
is platform-independent, thus, the ``python`` code can be tested and
debugged on a computer before loading it onto the microcontroller.
.. code:: python
try:
from ulab import numpy as np
from ulab import scipy as spy
except ImportError:
import numpy as np
import scipy as spy
x = np.array([1, 2, 3])
spy.special.erf(x)
The impact of dimensionality
----------------------------
Reducing the number of dimensions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``ulab`` supports tensors of rank four, but this is expensive in terms
of flash: with all available functions and options, the library adds
around 100 kB to the firmware. However, if such high dimensions are not
required, significant reductions in size can be gotten by changing the
value of
.. code:: c
#define ULAB_MAX_DIMS 2
Two dimensions cost a bit more than half of four, while you can get away
with around 20 kB of flash in one dimension, because all those functions
that dont make sense (e.g., matrix inversion, eigenvalues etc.) are
automatically stripped from the firmware.
Using the function iterator
~~~~~~~~~~~~~~~~~~~~~~~~~~~
In higher dimensions, the firmware size increases, because each
dimension (axis) adds another level of nested loops. An example of this
is the macro of the binary operator in three dimensions
.. code:: c
#define BINARY_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)
type_out *array = (type_out *)results->array;
size_t j = 0;
do {
size_t k = 0;
do {
size_t l = 0;
do {
*array++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray));
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];
l++;
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS-1];
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];
k++;
} while(k < (results)->shape[ULAB_MAX_DIMS - 2]);
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];
j++;
} while(j < (results)->shape[ULAB_MAX_DIMS - 3]);
In order to reduce firmware size, it *might* make sense in higher
dimensions to make use of the function iterator by setting the
.. code:: c
#define ULAB_HAS_FUNCTION_ITERATOR (1)
constant to 1. This allows the compiler to call the
``ndarray_rewind_array`` function, so that it doesnt have to unwrap the
loops for ``k``, and ``j``. Instead of the macro above, we now have
.. code:: c
#define BINARY_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides, OPERATOR)
type_out *array = (type_out *)(results)->array;
size_t *lcoords = ndarray_new_coords((results)->ndim);
size_t *rcoords = ndarray_new_coords((results)->ndim);
for(size_t i=0; i < (results)->len/(results)->shape[ULAB_MAX_DIMS -1]; i++) {
size_t l = 0;
do {
*array++ = *((type_left *)(larray)) OPERATOR *((type_right *)(rarray));
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];
l++;
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);
ndarray_rewind_array((results)->ndim, larray, (results)->shape, lstrides, lcoords);
ndarray_rewind_array((results)->ndim, rarray, (results)->shape, rstrides, rcoords);
} while(0)
Since the ``ndarray_rewind_array`` function is implemented only once, a
lot of space can be saved. Obviously, function calls cost time, thus
such trade-offs must be evaluated for each application. The gain also
depends on which functions and features you include. Operators and
functions that involve two arrays are expensive, because at the C level,
the number of cases that must be handled scales with the squares of the
number of data types. As an example, the innocent-looking expression
.. code:: python
from ulab import numpy as np
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
c = a + b
requires 25 loops in C, because the ``dtypes`` of both ``a``, and ``b``
can assume 5 different values, and the addition has to be resolved for
all possible cases. Hint: each binary operator costs between 3 and 4 kB
in two dimensions.
The ulab version string
-----------------------
As is customary with ``python`` packages, information on the package
version can be found be querying the ``__version__`` string.
.. code::
# code to be run in micropython
import ulab
print('you are running ulab version', ulab.__version__)
.. parsed-literal::
you are running ulab version 2.1.0-2D
The first three numbers indicate the major, minor, and sub-minor
versions of ``ulab`` (defined by the ``ULAB_VERSION`` constant in
`ulab.c <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.c>`__).
We usually change the minor version, whenever a new function is added to
the code, and the sub-minor version will be incremented, if a bug fix is
implemented.
``2D`` tells us that the particular firmware supports tensors of rank 2
(defined by ``ULAB_MAX_DIMS`` in
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__).
If you find a bug, please, include the version string in your report!
Should you need the numerical value of ``ULAB_MAX_DIMS``, you can get it
from the version string in the following way:
.. code::
# code to be run in micropython
import ulab
version = ulab.__version__
version_dims = version.split('-')[1]
version_num = int(version_dims.replace('D', ''))
print('version string: ', version)
print('version dimensions: ', version_dims)
print('numerical value of dimensions: ', version_num)
.. parsed-literal::
version string: 2.1.0-2D
version dimensions: 2D
numerical value of dimensions: 2
ulab with complex arrays
~~~~~~~~~~~~~~~~~~~~~~~~
If the firmware supports complex arrays, ``-c`` is appended to the
version string as can be seen below.
.. code::
# code to be run in micropython
import ulab
version = ulab.__version__
print('version string: ', version)
.. parsed-literal::
version string: 4.0.0-2D-c
Finding out what your firmware supports
---------------------------------------
``ulab`` implements a number of array operators and functions, but this
does not mean that all of these functions and methods are actually
compiled into the firmware. You can fine-tune your firmware by
setting/unsetting any of the ``_HAS_`` constants in
`ulab.h <https://github.com/v923z/micropython-ulab/blob/master/code/ulab.h>`__.
Functions included in the firmware
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The version string will not tell you everything about your firmware,
because the supported functions and sub-modules can still arbitrarily be
included or excluded. One way of finding out what is compiled into the
firmware is calling ``dir`` with ``ulab`` as its argument.
.. code::
# code to be run in micropython
from ulab import numpy as np
from ulab import scipy as spy
print('===== constants, functions, and modules of numpy =====\n\n', dir(np))
# since fft and linalg are sub-modules, print them separately
print('\nfunctions included in the fft module:\n', dir(np.fft))
print('\nfunctions included in the linalg module:\n', dir(np.linalg))
print('\n\n===== modules of scipy =====\n\n', dir(spy))
print('\nfunctions included in the optimize module:\n', dir(spy.optimize))
print('\nfunctions included in the signal module:\n', dir(spy.signal))
print('\nfunctions included in the special module:\n', dir(spy.special))
.. parsed-literal::
===== constants, functions, and modules of numpy =====
['__class__', '__name__', 'bool', 'sort', 'sum', 'acos', 'acosh', 'arange', 'arctan2', 'argmax', 'argmin', 'argsort', 'around', 'array', 'asin', 'asinh', 'atan', 'atanh', 'ceil', 'clip', 'concatenate', 'convolve', 'cos', 'cosh', 'cross', 'degrees', 'diag', 'diff', 'e', 'equal', 'exp', 'expm1', 'eye', 'fft', 'flip', 'float', 'floor', 'frombuffer', 'full', 'get_printoptions', 'inf', 'int16', 'int8', 'interp', 'linalg', 'linspace', 'log', 'log10', 'log2', 'logspace', 'max', 'maximum', 'mean', 'median', 'min', 'minimum', 'nan', 'ndinfo', 'not_equal', 'ones', 'pi', 'polyfit', 'polyval', 'radians', 'roll', 'set_printoptions', 'sin', 'sinh', 'sqrt', 'std', 'tan', 'tanh', 'trapz', 'uint16', 'uint8', 'vectorize', 'zeros']
functions included in the fft module:
['__class__', '__name__', 'fft', 'ifft']
functions included in the linalg module:
['__class__', '__name__', 'cholesky', 'det', 'dot', 'eig', 'inv', 'norm', 'trace']
===== modules of scipy =====
['__class__', '__name__', 'optimize', 'signal', 'special']
functions included in the optimize module:
['__class__', '__name__', 'bisect', 'fmin', 'newton']
functions included in the signal module:
['__class__', '__name__', 'sosfilt', 'spectrogram']
functions included in the special module:
['__class__', '__name__', 'erf', 'erfc', 'gamma', 'gammaln']
Methods included in the firmware
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``dir`` function applied to the module or its sub-modules gives
information on what the module and sub-modules include, but is not
enough to find out which methods the ``ndarray`` class supports. We can
list the methods by calling ``dir`` with the ``array`` object itself:
.. code::
# code to be run in micropython
from ulab import numpy as np
print(dir(np.array))
.. parsed-literal::
['__class__', '__name__', 'copy', 'sort', '__bases__', '__dict__', 'dtype', 'flatten', 'itemsize', 'reshape', 'shape', 'size', 'strides', 'tobytes', 'transpose']
Operators included in the firmware
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A list of operators cannot be generated as shown above. If you really
need to find out, whether, e.g., the ``**`` operator is supported by the
firmware, you have to ``try`` it:
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
try:
print(a ** b)
except Exception as e:
print('operator is not supported: ', e)
.. parsed-literal::
operator is not supported: unsupported types for __pow__: 'ndarray', 'ndarray'
The exception above would be raised, if the firmware was compiled with
the
.. code:: c
#define NDARRAY_HAS_BINARY_OP_POWER (0)
definition.

Some files were not shown because too many files have changed in this diff Show more