/* * This file is part of the micropython-ulab project, * * https://github.com/v923z/micropython-ulab * * The MIT License (MIT) * * Copyright (c) 2019-2021 Zoltán Vörös * */ #include #include #include #include "py/obj.h" #include "py/runtime.h" #include "py/misc.h" #include "../../ulab.h" #include "../../ulab_tools.h" #include "transform.h" #if ULAB_NUMPY_HAS_DOT //| def dot(m1: ulab.numpy.ndarray, m2: ulab.numpy.ndarray) -> Union[ulab.numpy.ndarray, float]: //| """ //| :param ~ulab.numpy.ndarray m1: a matrix, or a vector //| :param ~ulab.numpy.ndarray m2: a matrix, or a vector //| //| Computes the product of two matrices, or two vectors. In the letter case, the inner product is returned.""" //| ... //| mp_obj_t transform_dot(mp_obj_t _m1, mp_obj_t _m2) { // TODO: should the results be upcast? // This implements 2D operations only! if(!MP_OBJ_IS_TYPE(_m1, &ulab_ndarray_type) || !MP_OBJ_IS_TYPE(_m2, &ulab_ndarray_type)) { mp_raise_TypeError(translate("arguments must be ndarrays")); } ndarray_obj_t *m1 = MP_OBJ_TO_PTR(_m1); ndarray_obj_t *m2 = MP_OBJ_TO_PTR(_m2); uint8_t *array1 = (uint8_t *)m1->array; uint8_t *array2 = (uint8_t *)m2->array; mp_float_t (*func1)(void *) = ndarray_get_float_function(m1->dtype); mp_float_t (*func2)(void *) = ndarray_get_float_function(m2->dtype); if(m1->shape[ULAB_MAX_DIMS - 1] != m2->shape[ULAB_MAX_DIMS - m2->ndim]) { mp_raise_ValueError(translate("dimensions do not match")); } uint8_t ndim = MIN(m1->ndim, m2->ndim); size_t shape1 = m1->ndim == 2 ? m1->shape[ULAB_MAX_DIMS - m1->ndim] : 1; size_t shape2 = m2->ndim == 2 ? m2->shape[ULAB_MAX_DIMS - 1] : 1; size_t *shape = NULL; if(ndim == 2) { // matrix times matrix -> matrix shape = ndarray_shape_vector(0, 0, shape1, shape2); } else { // matrix times vector -> vector, vector times vector -> vector (size 1) shape = ndarray_shape_vector(0, 0, 0, shape1); } ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT); mp_float_t *rarray = (mp_float_t *)results->array; for(size_t i=0; i < shape1; i++) { // rows of m1 for(size_t j=0; j < shape2; j++) { // columns of m2 mp_float_t dot = 0.0; for(size_t k=0; k < m1->shape[ULAB_MAX_DIMS - 1]; k++) { // (i, k) * (k, j) dot += func1(array1) * func2(array2); array1 += m1->strides[ULAB_MAX_DIMS - 1]; array2 += m2->strides[ULAB_MAX_DIMS - m2->ndim]; } *rarray++ = dot; array1 -= m1->strides[ULAB_MAX_DIMS - 1] * m1->shape[ULAB_MAX_DIMS - 1]; array2 -= m2->strides[ULAB_MAX_DIMS - m2->ndim] * m2->shape[ULAB_MAX_DIMS - m2->ndim]; array2 += m2->strides[ULAB_MAX_DIMS - 1]; } array1 += m1->strides[ULAB_MAX_DIMS - m1->ndim]; array2 = m2->array; } if((m1->ndim * m2->ndim) == 1) { // return a scalar, if product of two vectors return mp_obj_new_float(*(--rarray)); } else { return MP_OBJ_FROM_PTR(results); } } MP_DEFINE_CONST_FUN_OBJ_2(transform_dot_obj, transform_dot); #endif