circuitpython-ulab/code/ulab_create.c
Jeff Epler 7032a92339 Fix documentation build
* Move most documentation out of the ulab base module.
 * float -> _float
 * ulab.ndarray -> ulab.numpy.ndarray

This still does not build unless it is taken together with a modification
to CircuitPython that _also_ moves references to ulab.numpy.
Because of this, this PR will continue to show red.  The suitability of
the changes can be gaged by looking at the related CircuitPython PR build
or by running locally the build-cp.sh script with the right ref checked
out in circuitpython/
2021-07-20 17:26:43 -05:00

568 lines
22 KiB
C

/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2019-2021 Zoltán Vörös
* 2020 Taku Fukada
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "ulab.h"
#include "ulab_create.h"
#if ULAB_NUMPY_HAS_ONES | ULAB_NUMPY_HAS_ZEROS | ULAB_NUMPY_HAS_FULL | ULAB_NUMPY_HAS_EMPTY
static mp_obj_t create_zeros_ones_full(mp_obj_t oshape, uint8_t dtype, mp_obj_t value) {
if(!mp_obj_is_int(oshape) && !mp_obj_is_type(oshape, &mp_type_tuple) && !mp_obj_is_type(oshape, &mp_type_list)) {
mp_raise_TypeError(translate("input argument must be an integer, a tuple, or a list"));
}
ndarray_obj_t *ndarray = NULL;
if(mp_obj_is_int(oshape)) {
size_t n = mp_obj_get_int(oshape);
ndarray = ndarray_new_linear_array(n, dtype);
} else if(mp_obj_is_type(oshape, &mp_type_tuple) || mp_obj_is_type(oshape, &mp_type_list)) {
uint8_t len = (uint8_t)mp_obj_get_int(mp_obj_len_maybe(oshape));
if(len > ULAB_MAX_DIMS) {
mp_raise_TypeError(translate("too many dimensions"));
}
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
memset(shape, 0, ULAB_MAX_DIMS * sizeof(size_t));
size_t i = 0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(oshape, &iter_buf);
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION){
shape[ULAB_MAX_DIMS - len + i] = (size_t)mp_obj_get_int(item);
i++;
}
ndarray = ndarray_new_dense_ndarray(len, shape, dtype);
}
if(value != mp_const_none) {
if(dtype == NDARRAY_BOOL) {
dtype = NDARRAY_UINT8;
if(mp_obj_is_true(value)) {
value = mp_obj_new_int(1);
} else {
value = mp_obj_new_int(0);
}
}
for(size_t i=0; i < ndarray->len; i++) {
ndarray_set_value(dtype, ndarray->array, i, value);
}
}
// if zeros calls the function, we don't have to do anything
return MP_OBJ_FROM_PTR(ndarray);
}
#endif
#if ULAB_NUMPY_HAS_ARANGE | ULAB_NUMPY_HAS_LINSPACE
static ndarray_obj_t *create_linspace_arange(mp_float_t start, mp_float_t step, size_t len, uint8_t dtype) {
mp_float_t value = start;
ndarray_obj_t *ndarray = ndarray_new_linear_array(len, dtype);
if(ndarray->boolean == NDARRAY_BOOLEAN) {
uint8_t *array = (uint8_t *)ndarray->array;
for(size_t i=0; i < len; i++, value += step) {
*array++ = value == MICROPY_FLOAT_CONST(0.0) ? 0 : 1;
}
} else if(dtype == NDARRAY_UINT8) {
ARANGE_LOOP(uint8_t, ndarray, len, step);
} else if(dtype == NDARRAY_INT8) {
ARANGE_LOOP(int8_t, ndarray, len, step);
} else if(dtype == NDARRAY_UINT16) {
ARANGE_LOOP(uint16_t, ndarray, len, step);
} else if(dtype == NDARRAY_INT16) {
ARANGE_LOOP(int16_t, ndarray, len, step);
} else {
ARANGE_LOOP(mp_float_t, ndarray, len, step);
}
return ndarray;
}
#endif
#if ULAB_NUMPY_HAS_ARANGE
mp_obj_t create_arange(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = NDARRAY_FLOAT;
mp_float_t start, stop, step;
if(n_args == 1) {
start = 0.0;
stop = mp_obj_get_float(args[0].u_obj);
step = 1.0;
if(mp_obj_is_int(args[0].u_obj)) dtype = NDARRAY_INT16;
} else if(n_args == 2) {
start = mp_obj_get_float(args[0].u_obj);
stop = mp_obj_get_float(args[1].u_obj);
step = 1.0;
if(mp_obj_is_int(args[0].u_obj) && mp_obj_is_int(args[1].u_obj)) dtype = NDARRAY_INT16;
} else if(n_args == 3) {
start = mp_obj_get_float(args[0].u_obj);
stop = mp_obj_get_float(args[1].u_obj);
step = mp_obj_get_float(args[2].u_obj);
if(mp_obj_is_int(args[0].u_obj) && mp_obj_is_int(args[1].u_obj) && mp_obj_is_int(args[2].u_obj)) dtype = NDARRAY_INT16;
} else {
mp_raise_TypeError(translate("wrong number of arguments"));
}
if((MICROPY_FLOAT_C_FUN(fabs)(stop) > 32768) || (MICROPY_FLOAT_C_FUN(fabs)(start) > 32768) || (MICROPY_FLOAT_C_FUN(fabs)(step) > 32768)) {
dtype = NDARRAY_FLOAT;
}
if(args[3].u_obj != mp_const_none) {
dtype = (uint8_t)mp_obj_get_int(args[3].u_obj);
}
ndarray_obj_t *ndarray;
if((stop - start)/step < 0) {
ndarray = ndarray_new_linear_array(0, dtype);
} else {
size_t len = (size_t)(MICROPY_FLOAT_C_FUN(ceil)((stop - start)/step));
ndarray = create_linspace_arange(start, step, len, dtype);
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_arange_obj, 1, create_arange);
#endif
#if ULAB_NUMPY_HAS_CONCATENATE
mp_obj_t create_concatenate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &mp_type_tuple)) {
mp_raise_TypeError(translate("first argument must be a tuple of ndarrays"));
}
int8_t axis = (int8_t)args[1].u_int;
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
mp_obj_tuple_t *ndarrays = MP_OBJ_TO_PTR(args[0].u_obj);
// first check, whether the arrays are compatible
ndarray_obj_t *_ndarray = MP_OBJ_TO_PTR(ndarrays->items[0]);
uint8_t dtype = _ndarray->dtype;
uint8_t ndim = _ndarray->ndim;
if(axis < 0) {
axis += ndim;
}
if((axis < 0) || (axis >= ndim)) {
mp_raise_ValueError(translate("wrong axis specified"));
}
// shift axis
axis = ULAB_MAX_DIMS - ndim + axis;
for(uint8_t j=0; j < ULAB_MAX_DIMS; j++) {
shape[j] = _ndarray->shape[j];
}
for(uint8_t i=1; i < ndarrays->len; i++) {
_ndarray = MP_OBJ_TO_PTR(ndarrays->items[i]);
// check, whether the arrays are compatible
if((dtype != _ndarray->dtype) || (ndim != _ndarray->ndim)) {
mp_raise_ValueError(translate("input arrays are not compatible"));
}
for(uint8_t j=0; j < ULAB_MAX_DIMS; j++) {
if(j == axis) {
shape[j] += _ndarray->shape[j];
} else {
if(shape[j] != _ndarray->shape[j]) {
mp_raise_ValueError(translate("input arrays are not compatible"));
}
}
}
}
ndarray_obj_t *target = ndarray_new_dense_ndarray(ndim, shape, dtype);
uint8_t *tpos = (uint8_t *)target->array;
uint8_t *tarray;
for(uint8_t p=0; p < ndarrays->len; p++) {
// reset the pointer along the axis
ndarray_obj_t *source = MP_OBJ_TO_PTR(ndarrays->items[p]);
uint8_t *sarray = (uint8_t *)source->array;
tarray = tpos;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(tarray, sarray, source->itemsize);
tarray += target->strides[ULAB_MAX_DIMS - 1];
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
tarray -= target->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
tarray += target->strides[ULAB_MAX_DIMS - 2];
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
tarray -= target->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
tarray += target->strides[ULAB_MAX_DIMS - 3];
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
tarray -= target->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
tarray += target->strides[ULAB_MAX_DIMS - 4];
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
if(p < ndarrays->len - 1) {
tpos += target->strides[axis] * source->shape[axis];
}
}
return MP_OBJ_FROM_PTR(target);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_concatenate_obj, 1, create_concatenate);
#endif
#if ULAB_NUMPY_HAS_DIAG
mp_obj_t create_diag(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_k, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("input must be an ndarray"));
}
ndarray_obj_t *source = MP_OBJ_TO_PTR(args[0].u_obj);
if(source->ndim == 1) { // return a rank-2 tensor with the prescribed diagonal
ndarray_obj_t *target = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, source->len, source->len), source->dtype);
uint8_t *sarray = (uint8_t *)source->array;
uint8_t *tarray = (uint8_t *)target->array;
for(size_t i=0; i < source->len; i++) {
memcpy(tarray, sarray, source->itemsize);
sarray += source->strides[ULAB_MAX_DIMS - 1];
tarray += (source->len + 1) * target->itemsize;
}
return MP_OBJ_FROM_PTR(target);
}
if(source->ndim > 2) {
mp_raise_TypeError(translate("input must be a tensor of rank 2"));
}
int32_t k = args[1].u_int;
size_t len = 0;
uint8_t *sarray = (uint8_t *)source->array;
if(k < 0) { // move the pointer "vertically"
if(-k < (int32_t)source->shape[ULAB_MAX_DIMS - 2]) {
sarray -= k * source->strides[ULAB_MAX_DIMS - 2];
len = MIN(source->shape[ULAB_MAX_DIMS - 2] + k, source->shape[ULAB_MAX_DIMS - 1]);
}
} else { // move the pointer "horizontally"
if(k < (int32_t)source->shape[ULAB_MAX_DIMS - 1]) {
sarray += k * source->strides[ULAB_MAX_DIMS - 1];
len = MIN(source->shape[ULAB_MAX_DIMS - 1] - k, source->shape[ULAB_MAX_DIMS - 2]);
}
}
if(len == 0) {
mp_raise_ValueError(translate("offset is too large"));
}
ndarray_obj_t *target = ndarray_new_linear_array(len, source->dtype);
uint8_t *tarray = (uint8_t *)target->array;
for(size_t i=0; i < len; i++) {
memcpy(tarray, sarray, source->itemsize);
sarray += source->strides[ULAB_MAX_DIMS - 2];
sarray += source->strides[ULAB_MAX_DIMS - 1];
tarray += source->itemsize;
}
return MP_OBJ_FROM_PTR(target);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_diag_obj, 1, create_diag);
#endif /* ULAB_NUMPY_HAS_DIAG */
#if ULAB_MAX_DIMS > 1
#if ULAB_NUMPY_HAS_EYE
mp_obj_t create_eye(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_INT, { .u_int = 0 } },
{ MP_QSTR_M, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_k, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
size_t n = args[0].u_int, m;
size_t k = args[2].u_int > 0 ? (size_t)args[2].u_int : (size_t)(-args[2].u_int);
uint8_t dtype = args[3].u_int;
if(args[1].u_rom_obj == mp_const_none) {
m = n;
} else {
m = mp_obj_get_int(args[1].u_rom_obj);
}
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, n, m), dtype);
if(dtype == NDARRAY_BOOL) {
dtype = NDARRAY_UINT8;
}
mp_obj_t one = mp_obj_new_int(1);
size_t i = 0;
if((args[2].u_int >= 0)) {
while(k < m) {
ndarray_set_value(dtype, ndarray->array, i*m+k, one);
k++;
i++;
}
} else {
while(k < n) {
ndarray_set_value(dtype, ndarray->array, k*m+i, one);
k++;
i++;
}
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_eye_obj, 1, create_eye);
#endif /* ULAB_NUMPY_HAS_EYE */
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_NUMPY_HAS_FULL
mp_obj_t create_full(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = args[2].u_int;
return create_zeros_ones_full(args[0].u_obj, dtype, args[1].u_obj);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_full_obj, 0, create_full);
#endif
#if ULAB_NUMPY_HAS_LINSPACE
mp_obj_t create_linspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_num, MP_ARG_INT, { .u_int = 50 } },
{ MP_QSTR_endpoint, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_true } },
{ MP_QSTR_retstep, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_false } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(args[2].u_int < 2) {
mp_raise_ValueError(translate("number of points must be at least 2"));
}
size_t len = (size_t)args[2].u_int;
mp_float_t start, step;
start = mp_obj_get_float(args[0].u_obj);
uint8_t typecode = args[5].u_int;
if(args[3].u_obj == mp_const_true) step = (mp_obj_get_float(args[1].u_obj)-start)/(len-1);
else step = (mp_obj_get_float(args[1].u_obj)-start)/len;
ndarray_obj_t *ndarray = create_linspace_arange(start, step, len, typecode);
if(args[4].u_obj == mp_const_false) {
return MP_OBJ_FROM_PTR(ndarray);
} else {
mp_obj_t tuple[2];
tuple[0] = ndarray;
tuple[1] = mp_obj_new_float(step);
return mp_obj_new_tuple(2, tuple);
}
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_linspace_obj, 2, create_linspace);
#endif
#if ULAB_NUMPY_HAS_LOGSPACE
const mp_obj_float_t create_float_const_ten = {{&mp_type_float}, MICROPY_FLOAT_CONST(10.0)};
mp_obj_t create_logspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_num, MP_ARG_INT, { .u_int = 50 } },
{ MP_QSTR_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_PTR(&create_float_const_ten) } },
{ MP_QSTR_endpoint, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_true } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(args[2].u_int < 2) {
mp_raise_ValueError(translate("number of points must be at least 2"));
}
size_t len = (size_t)args[2].u_int;
mp_float_t start, step, quotient;
start = mp_obj_get_float(args[0].u_obj);
uint8_t dtype = args[5].u_int;
mp_float_t base = mp_obj_get_float(args[3].u_obj);
if(args[4].u_obj == mp_const_true) step = (mp_obj_get_float(args[1].u_obj) - start)/(len - 1);
else step = (mp_obj_get_float(args[1].u_obj) - start) / len;
quotient = MICROPY_FLOAT_C_FUN(pow)(base, step);
ndarray_obj_t *ndarray = ndarray_new_linear_array(len, dtype);
mp_float_t value = MICROPY_FLOAT_C_FUN(pow)(base, start);
if(ndarray->dtype == NDARRAY_UINT8) {
uint8_t *array = (uint8_t *)ndarray->array;
if(ndarray->boolean) {
memset(array, 1, len);
} else {
for(size_t i=0; i < len; i++, value *= quotient) *array++ = (uint8_t)value;
}
} else if(ndarray->dtype == NDARRAY_INT8) {
int8_t *array = (int8_t *)ndarray->array;
for(size_t i=0; i < len; i++, value *= quotient) *array++ = (int8_t)value;
} else if(ndarray->dtype == NDARRAY_UINT16) {
uint16_t *array = (uint16_t *)ndarray->array;
for(size_t i=0; i < len; i++, value *= quotient) *array++ = (uint16_t)value;
} else if(ndarray->dtype == NDARRAY_INT16) {
int16_t *array = (int16_t *)ndarray->array;
for(size_t i=0; i < len; i++, value *= quotient) *array++ = (int16_t)value;
} else {
mp_float_t *array = (mp_float_t *)ndarray->array;
for(size_t i=0; i < len; i++, value *= quotient) *array++ = value;
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_logspace_obj, 2, create_logspace);
#endif
#if ULAB_NUMPY_HAS_ONES
mp_obj_t create_ones(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = args[1].u_int;
mp_obj_t one = mp_obj_new_int(1);
return create_zeros_ones_full(args[0].u_obj, dtype, one);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_ones_obj, 0, create_ones);
#endif
#if ULAB_NUMPY_HAS_ZEROS
mp_obj_t create_zeros(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = args[1].u_int;
return create_zeros_ones_full(args[0].u_obj, dtype, mp_const_none);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_zeros_obj, 0, create_zeros);
#endif
#if ULAB_NUMPY_HAS_FROMBUFFER
mp_obj_t create_frombuffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(NDARRAY_FLOAT) } },
{ MP_QSTR_count, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(-1) } },
{ MP_QSTR_offset, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(0) } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = mp_obj_get_int(args[1].u_obj);
size_t offset = mp_obj_get_int(args[3].u_obj);
mp_buffer_info_t bufinfo;
if(mp_get_buffer(args[0].u_obj, &bufinfo, MP_BUFFER_READ)) {
size_t sz = 1;
if(dtype != NDARRAY_BOOL) { // mp_binary_get_size doesn't work with Booleans
sz = mp_binary_get_size('@', dtype, NULL);
}
if(bufinfo.len < offset) {
mp_raise_ValueError(translate("offset must be non-negative and no greater than buffer length"));
}
size_t len = (bufinfo.len - offset) / sz;
if((len * sz) != (bufinfo.len - offset)) {
mp_raise_ValueError(translate("buffer size must be a multiple of element size"));
}
if(mp_obj_get_int(args[2].u_obj) > 0) {
size_t count = mp_obj_get_int(args[2].u_obj);
if(len < count) {
mp_raise_ValueError(translate("buffer is smaller than requested size"));
} else {
len = count;
}
}
ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
ndarray->base.type = &ulab_ndarray_type;
ndarray->dtype = dtype == NDARRAY_BOOL ? NDARRAY_UINT8 : dtype;
ndarray->boolean = dtype == NDARRAY_BOOL ? NDARRAY_BOOLEAN : NDARRAY_NUMERIC;
ndarray->ndim = 1;
ndarray->len = len;
ndarray->itemsize = sz;
ndarray->shape[ULAB_MAX_DIMS - 1] = len;
ndarray->strides[ULAB_MAX_DIMS - 1] = sz;
uint8_t *buffer = bufinfo.buf;
ndarray->array = buffer + offset;
return MP_OBJ_FROM_PTR(ndarray);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_frombuffer_obj, 1, create_frombuffer);
#endif