482 lines
14 KiB
Text
482 lines
14 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2021-01-12T16:11:12.111639Z",
|
|
"start_time": "2021-01-12T16:11:11.914041Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Populating the interactive namespace from numpy and matplotlib\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%pylab inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Notebook magic"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-01-07T19:20:19.755153Z",
|
|
"start_time": "2022-01-07T19:20:19.745524Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from IPython.core.magic import Magics, magics_class, line_cell_magic\n",
|
|
"from IPython.core.magic import cell_magic, register_cell_magic, register_line_magic\n",
|
|
"from IPython.core.magic_arguments import argument, magic_arguments, parse_argstring\n",
|
|
"import subprocess\n",
|
|
"import os"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-01-07T19:20:27.595871Z",
|
|
"start_time": "2022-01-07T19:20:27.565514Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"@magics_class\n",
|
|
"class PyboardMagic(Magics):\n",
|
|
" @cell_magic\n",
|
|
" @magic_arguments()\n",
|
|
" @argument('-skip')\n",
|
|
" @argument('-unix')\n",
|
|
" @argument('-pyboard')\n",
|
|
" @argument('-file')\n",
|
|
" @argument('-data')\n",
|
|
" @argument('-time')\n",
|
|
" @argument('-memory')\n",
|
|
" def micropython(self, line='', cell=None):\n",
|
|
" args = parse_argstring(self.micropython, line)\n",
|
|
" if args.skip: # doesn't care about the cell's content\n",
|
|
" print('skipped execution')\n",
|
|
" return None # do not parse the rest\n",
|
|
" if args.unix: # tests the code on the unix port. Note that this works on unix only\n",
|
|
" with open('/dev/shm/micropython.py', 'w') as fout:\n",
|
|
" fout.write(cell)\n",
|
|
" proc = subprocess.Popen([\"../micropython/ports/unix/micropython-2\", \"/dev/shm/micropython.py\"], \n",
|
|
" stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n",
|
|
" print(proc.stdout.read().decode(\"utf-8\"))\n",
|
|
" print(proc.stderr.read().decode(\"utf-8\"))\n",
|
|
" return None\n",
|
|
" if args.file: # can be used to copy the cell content onto the pyboard's flash\n",
|
|
" spaces = \" \"\n",
|
|
" try:\n",
|
|
" with open(args.file, 'w') as fout:\n",
|
|
" fout.write(cell.replace('\\t', spaces))\n",
|
|
" printf('written cell to {}'.format(args.file))\n",
|
|
" except:\n",
|
|
" print('Failed to write to disc!')\n",
|
|
" return None # do not parse the rest\n",
|
|
" if args.data: # can be used to load data from the pyboard directly into kernel space\n",
|
|
" message = pyb.exec(cell)\n",
|
|
" if len(message) == 0:\n",
|
|
" print('pyboard >>>')\n",
|
|
" else:\n",
|
|
" print(message.decode('utf-8'))\n",
|
|
" # register new variable in user namespace\n",
|
|
" self.shell.user_ns[args.data] = string_to_matrix(message.decode(\"utf-8\"))\n",
|
|
" \n",
|
|
" if args.time: # measures the time of executions\n",
|
|
" pyb.exec('import utime')\n",
|
|
" message = pyb.exec('t = utime.ticks_us()\\n' + cell + '\\ndelta = utime.ticks_diff(utime.ticks_us(), t)' + \n",
|
|
" \"\\nprint('execution time: {:d} us'.format(delta))\")\n",
|
|
" print(message.decode('utf-8'))\n",
|
|
" \n",
|
|
" if args.memory: # prints out memory information \n",
|
|
" message = pyb.exec('from micropython import mem_info\\nprint(mem_info())\\n')\n",
|
|
" print(\"memory before execution:\\n========================\\n\", message.decode('utf-8'))\n",
|
|
" message = pyb.exec(cell)\n",
|
|
" print(\">>> \", message.decode('utf-8'))\n",
|
|
" message = pyb.exec('print(mem_info())')\n",
|
|
" print(\"memory after execution:\\n========================\\n\", message.decode('utf-8'))\n",
|
|
"\n",
|
|
" if args.pyboard:\n",
|
|
" message = pyb.exec(cell)\n",
|
|
" print(message.decode('utf-8'))\n",
|
|
"\n",
|
|
"ip = get_ipython()\n",
|
|
"ip.register_magics(PyboardMagic)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## pyboard"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 57,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2020-05-07T07:35:35.126401Z",
|
|
"start_time": "2020-05-07T07:35:35.105824Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pyboard\n",
|
|
"pyb = pyboard.Pyboard('/dev/ttyACM0')\n",
|
|
"pyb.enter_raw_repl()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2020-05-19T19:11:18.145548Z",
|
|
"start_time": "2020-05-19T19:11:18.137468Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"pyb.exit_raw_repl()\n",
|
|
"pyb.close()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 58,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2020-05-07T07:35:38.725924Z",
|
|
"start_time": "2020-05-07T07:35:38.645488Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%%micropython -pyboard 1\n",
|
|
"\n",
|
|
"import utime\n",
|
|
"import ulab as np\n",
|
|
"\n",
|
|
"def timeit(n=1000):\n",
|
|
" def wrapper(f, *args, **kwargs):\n",
|
|
" func_name = str(f).split(' ')[1]\n",
|
|
" def new_func(*args, **kwargs):\n",
|
|
" run_times = np.zeros(n, dtype=np.uint16)\n",
|
|
" for i in range(n):\n",
|
|
" t = utime.ticks_us()\n",
|
|
" result = f(*args, **kwargs)\n",
|
|
" run_times[i] = utime.ticks_diff(utime.ticks_us(), t)\n",
|
|
" print('{}() execution times based on {} cycles'.format(func_name, n, (delta2-delta1)/n))\n",
|
|
" print('\\tbest: %d us'%np.min(run_times))\n",
|
|
" print('\\tworst: %d us'%np.max(run_times))\n",
|
|
" print('\\taverage: %d us'%np.mean(run_times))\n",
|
|
" print('\\tdeviation: +/-%.3f us'%np.std(run_times)) \n",
|
|
" return result\n",
|
|
" return new_func\n",
|
|
" return wrapper\n",
|
|
"\n",
|
|
"def timeit(f, *args, **kwargs):\n",
|
|
" func_name = str(f).split(' ')[1]\n",
|
|
" def new_func(*args, **kwargs):\n",
|
|
" t = utime.ticks_us()\n",
|
|
" result = f(*args, **kwargs)\n",
|
|
" print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')\n",
|
|
" return result\n",
|
|
" return new_func"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"__END_OF_DEFS__"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# scipy.signal\n",
|
|
"\n",
|
|
"Functions in the `signal` module can be called by prepending them by `scipy.signal.`. The module defines the following two functions:\n",
|
|
"\n",
|
|
"1. [scipy.signal.sosfilt](#sosfilt)\n",
|
|
"1. [scipy.signal.spectrogram](#spectrogram)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## sosfilt\n",
|
|
"\n",
|
|
"`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html \n",
|
|
"\n",
|
|
"Filter data along one dimension using cascaded second-order sections.\n",
|
|
"\n",
|
|
"The function takes two positional arguments, `sos`, the filter segments of length 6, and the one-dimensional, uniformly sampled data set to be filtered. Returns the filtered data, or the filtered data and the final filter delays, if the `zi` keyword arguments is supplied. The keyword argument must be a float `ndarray` of shape `(n_sections, 2)`. If `zi` is not passed to the function, the initial values are assumed to be 0."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2020-06-19T20:24:10.529668Z",
|
|
"start_time": "2020-06-19T20:24:10.520389Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"y: array([0.0, 1.0, -4.0, 24.0, -104.0, 440.0, -1728.0, 6532.000000000001, -23848.0, 84864.0], dtype=float)\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%%micropython -unix 1\n",
|
|
"\n",
|
|
"from ulab import numpy as np\n",
|
|
"from ulab import scipy as spy\n",
|
|
"\n",
|
|
"x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n",
|
|
"sos = [[1, 2, 3, 1, 5, 6], [1, 2, 3, 1, 5, 6]]\n",
|
|
"y = spy.signal.sosfilt(sos, x)\n",
|
|
"print('y: ', y)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2020-06-19T20:27:39.508508Z",
|
|
"start_time": "2020-06-19T20:27:39.498256Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"y: array([4.0, -16.0, 63.00000000000001, -227.0, 802.9999999999999, -2751.0, 9271.000000000001, -30775.0, 101067.0, -328991.0000000001], dtype=float)\n",
|
|
"\n",
|
|
"========================================\n",
|
|
"zf: array([[37242.0, 74835.0],\n",
|
|
"\t [1026187.0, 1936542.0]], dtype=float)\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%%micropython -unix 1\n",
|
|
"\n",
|
|
"from ulab import numpy as np\n",
|
|
"from ulab import scipy as spy\n",
|
|
"\n",
|
|
"x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n",
|
|
"sos = [[1, 2, 3, 1, 5, 6], [1, 2, 3, 1, 5, 6]]\n",
|
|
"# initial conditions of the filter\n",
|
|
"zi = np.array([[1, 2], [3, 4]])\n",
|
|
"\n",
|
|
"y, zf = spy.signal.sosfilt(sos, x, zi=zi)\n",
|
|
"print('y: ', y)\n",
|
|
"print('\\n' + '='*40 + '\\nzf: ', zf)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## spectrogram\n",
|
|
"\n",
|
|
"In addition to the Fourier transform and its inverse, `ulab` also sports a function called `spectrogram`, which returns the absolute value of the Fourier transform. This could be used to find the dominant spectral component in a time series. The arguments are treated in the same way as in `fft`, and `ifft`. This means that, if the firmware was compiled with complex support, the input can also be a complex array."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2021-01-12T16:12:06.573408Z",
|
|
"start_time": "2021-01-12T16:12:06.560558Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"original vector:\t array([0.0, 0.009775015390171337, 0.01954909674625918, ..., -0.5275140569487312, -0.5357931822978732, -0.5440211108893639], dtype=float64)\n",
|
|
"\n",
|
|
"spectrum:\t array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%%micropython -unix 1\n",
|
|
"\n",
|
|
"from ulab import numpy as np\n",
|
|
"from ulab import scipy as spy\n",
|
|
"\n",
|
|
"x = np.linspace(0, 10, num=1024)\n",
|
|
"y = np.sin(x)\n",
|
|
"\n",
|
|
"a = spy.signal.spectrogram(y)\n",
|
|
"\n",
|
|
"print('original vector:\\t', y)\n",
|
|
"print('\\nspectrum:\\t', a)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"As such, `spectrogram` is really just a shorthand for `np.sqrt(a*a + b*b)`:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2021-01-12T16:13:36.726662Z",
|
|
"start_time": "2021-01-12T16:13:36.705036Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"spectrum calculated the hard way:\t array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n",
|
|
"\n",
|
|
"spectrum calculated the lazy way:\t array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%%micropython -unix 1\n",
|
|
"\n",
|
|
"from ulab import numpy as np\n",
|
|
"from ulab import scipy as spy\n",
|
|
"\n",
|
|
"x = np.linspace(0, 10, num=1024)\n",
|
|
"y = np.sin(x)\n",
|
|
"\n",
|
|
"a, b = np.fft.fft(y)\n",
|
|
"\n",
|
|
"print('\\nspectrum calculated the hard way:\\t', np.sqrt(a*a + b*b))\n",
|
|
"\n",
|
|
"a = spy.signal.spectrogram(y)\n",
|
|
"\n",
|
|
"print('\\nspectrum calculated the lazy way:\\t', a)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.5"
|
|
},
|
|
"toc": {
|
|
"base_numbering": 1,
|
|
"nav_menu": {},
|
|
"number_sections": true,
|
|
"sideBar": true,
|
|
"skip_h1_title": false,
|
|
"title_cell": "Table of Contents",
|
|
"title_sidebar": "Contents",
|
|
"toc_cell": false,
|
|
"toc_position": {
|
|
"height": "calc(100% - 180px)",
|
|
"left": "10px",
|
|
"top": "150px",
|
|
"width": "382.797px"
|
|
},
|
|
"toc_section_display": true,
|
|
"toc_window_display": true
|
|
},
|
|
"varInspector": {
|
|
"cols": {
|
|
"lenName": 16,
|
|
"lenType": 16,
|
|
"lenVar": 40
|
|
},
|
|
"kernels_config": {
|
|
"python": {
|
|
"delete_cmd_postfix": "",
|
|
"delete_cmd_prefix": "del ",
|
|
"library": "var_list.py",
|
|
"varRefreshCmd": "print(var_dic_list())"
|
|
},
|
|
"r": {
|
|
"delete_cmd_postfix": ") ",
|
|
"delete_cmd_prefix": "rm(",
|
|
"library": "var_list.r",
|
|
"varRefreshCmd": "cat(var_dic_list()) "
|
|
}
|
|
},
|
|
"types_to_exclude": [
|
|
"module",
|
|
"function",
|
|
"builtin_function_or_method",
|
|
"instance",
|
|
"_Feature"
|
|
],
|
|
"window_display": false
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|