circuitpython-ulab/code/fft/fft.c
2020-11-12 08:52:39 +01:00

187 lines
6.4 KiB
C

/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Zoltán Vörös
* 2020 Scott Shawcroft for Adafruit Industries
* 2020 Taku Fukada
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/runtime.h"
#include "py/builtin.h"
#include "py/binary.h"
#include "py/obj.h"
#include "py/objarray.h"
#include "fft.h"
#if ULAB_FFT_MODULE
//| """Frequency-domain functions"""
//|
mp_obj_t fft_fft_ifft_spectrum(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im, uint8_t type) {
if(!MP_OBJ_IS_TYPE(arg_re, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only"));
}
if(n_args == 2) {
if(!MP_OBJ_IS_TYPE(arg_im, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only"));
}
}
// Check if input is of length of power of 2
ndarray_obj_t *re = MP_OBJ_TO_PTR(arg_re);
#if ULAB_MAX_DIMS > 1
if(re->ndim != 1) {
mp_raise_TypeError(translate("FFT is implemented for linear arrays only"));
}
#endif
size_t len = re->len;
if((len & (len-1)) != 0) {
mp_raise_ValueError(translate("input array length must be power of 2"));
}
ndarray_obj_t *out_re = ndarray_new_linear_array(len, NDARRAY_FLOAT);
mp_float_t *data_re = (mp_float_t *)out_re->array;
uint8_t *array = (uint8_t *)re->array;
mp_float_t (*func)(void *) = ndarray_get_float_function(re->dtype);
for(size_t i=0; i < len; i++) {
*data_re++ = func(array);
array += re->strides[ULAB_MAX_DIMS - 1];
}
data_re -= len;
ndarray_obj_t *out_im = ndarray_new_linear_array(len, NDARRAY_FLOAT);
mp_float_t *data_im = (mp_float_t *)out_im->array;
if(n_args == 2) {
ndarray_obj_t *im = MP_OBJ_TO_PTR(arg_im);
#if ULAB_MAX_DIMS > 1
if(im->ndim != 1) {
mp_raise_TypeError(translate("FFT is implemented for linear arrays only"));
}
#endif
if (re->len != im->len) {
mp_raise_ValueError(translate("real and imaginary parts must be of equal length"));
}
array = (uint8_t *)im->array;
func = ndarray_get_float_function(im->dtype);
for(size_t i=0; i < len; i++) {
*data_im++ = func(array);
array += im->strides[ULAB_MAX_DIMS - 1];
}
data_im -= len;
}
if((type == FFT_FFT) || (type == FFT_SPECTROGRAM)) {
fft_kernel(data_re, data_im, len, 1);
if(type == FFT_SPECTROGRAM) {
for(size_t i=0; i < len; i++) {
*data_re = MICROPY_FLOAT_C_FUN(sqrt)(*data_re * *data_re + *data_im * *data_im);
data_re++;
data_im++;
}
}
} else { // inverse transform
fft_kernel(data_re, data_im, len, -1);
// TODO: numpy accepts the norm keyword argument
for(size_t i=0; i < len; i++) {
*data_re++ /= len;
*data_im++ /= len;
}
}
if(type == FFT_SPECTROGRAM) {
return MP_OBJ_TO_PTR(out_re);
} else {
mp_obj_t tuple[2];
tuple[0] = out_re;
tuple[1] = out_im;
return mp_obj_new_tuple(2, tuple);
}
}
//| def fft(r: ulab.array, c: Optional[ulab.array] = None) -> Tuple[ulab.array, ulab.array]:
//| """
//| :param ulab.array r: A 1-dimension array of values whose size is a power of 2
//| :param ulab.array c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
//| :return tuple (r, c): The real and complex parts of the FFT
//|
//| Perform a Fast Fourier Transform from the time domain into the frequency domain
//|
//| See also ~ulab.extras.spectrum, which computes the magnitude of the fft,
//| rather than separately returning its real and imaginary parts."""
//| ...
//|
static mp_obj_t fft_fft(size_t n_args, const mp_obj_t *args) {
if(n_args == 2) {
return fft_fft_ifft_spectrum(n_args, args[0], args[1], FFT_FFT);
} else {
return fft_fft_ifft_spectrum(n_args, args[0], mp_const_none, FFT_FFT);
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj, 1, 2, fft_fft);
//| def ifft(r: ulab.array, c: Optional[ulab.array] = None) -> Tuple[ulab.array, ulab.array]:
//| """
//| :param ulab.array r: A 1-dimension array of values whose size is a power of 2
//| :param ulab.array c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
//| :return tuple (r, c): The real and complex parts of the inverse FFT
//|
//| Perform an Inverse Fast Fourier Transform from the frequeny domain into the time domain"""
//| ...
//|
static mp_obj_t fft_ifft(size_t n_args, const mp_obj_t *args) {
if(n_args == 2) {
return fft_fft_ifft_spectrum(n_args, args[0], args[1], FFT_IFFT);
} else {
return fft_fft_ifft_spectrum(n_args, args[0], mp_const_none, FFT_IFFT);
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj, 1, 2, fft_ifft);
//| def spectrogram(r: ulab.array) -> ulab.array:
//| """
//| :param ulab.array r: A 1-dimension array of values whose size is a power of 2
//|
//| Computes the spectrum of the input signal. This is the absolute value of the (complex-valued) fft of the signal.
//| This function is similar to scipy's ``scipy.signal.spectrogram``."""
//| ...
//|
static mp_obj_t fft_spectrogram(size_t n_args, const mp_obj_t *args) {
if(n_args == 2) {
return fft_fft_ifft_spectrum(n_args, args[0], args[1], FFT_SPECTROGRAM);
} else {
return fft_fft_ifft_spectrum(n_args, args[0], mp_const_none, FFT_SPECTROGRAM);
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_spectrogram_obj, 1, 2, fft_spectrogram);
STATIC const mp_rom_map_elem_t ulab_fft_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_fft) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_fft), (mp_obj_t)&fft_fft_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ifft), (mp_obj_t)&fft_ifft_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_spectrogram), (mp_obj_t)&fft_spectrogram_obj },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_fft_globals, ulab_fft_globals_table);
mp_obj_module_t ulab_fft_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_fft_globals,
};
#endif