99 lines
3.4 KiB
C
99 lines
3.4 KiB
C
|
|
/*
|
|
* This file is part of the micropython-ulab project,
|
|
*
|
|
* https://github.com/v923z/micropython-ulab
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "py/obj.h"
|
|
#include "py/runtime.h"
|
|
#include "py/misc.h"
|
|
#include "filter.h"
|
|
|
|
#if ULAB_FILTER_MODULE
|
|
mp_obj_t filter_convolve(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_a, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
|
|
{ MP_QSTR_v, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(2, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
if(!MP_OBJ_IS_TYPE(args[0].u_obj, &ulab_ndarray_type) || !MP_OBJ_IS_TYPE(args[1].u_obj, &ulab_ndarray_type)) {
|
|
mp_raise_TypeError(translate("convolve arguments must be ndarrays"));
|
|
}
|
|
|
|
ndarray_obj_t *a = MP_OBJ_TO_PTR(args[0].u_obj);
|
|
ndarray_obj_t *c = MP_OBJ_TO_PTR(args[1].u_obj);
|
|
int len_a = a->array->len;
|
|
int len_c = c->array->len;
|
|
// deal with linear arrays only
|
|
if(a->m*a->n != len_a || c->m*c->n != len_c) {
|
|
mp_raise_TypeError(translate("convolve arguments must be linear arrays"));
|
|
}
|
|
if(len_a == 0 || len_c == 0) {
|
|
mp_raise_TypeError(translate("convolve arguments must not be empty"));
|
|
}
|
|
|
|
int len = len_a + len_c - 1; // convolve mode "full"
|
|
ndarray_obj_t *out = create_new_ndarray(1, len, NDARRAY_FLOAT);
|
|
mp_float_t *outptr = out->array->items;
|
|
int off = len_c-1;
|
|
|
|
if(a->array->typecode == NDARRAY_FLOAT && c->array->typecode == NDARRAY_FLOAT) {
|
|
mp_float_t* a_items = (mp_float_t*)a->array->items;
|
|
mp_float_t* c_items = (mp_float_t*)c->array->items;
|
|
for(int k=-off; k<len-off; k++) {
|
|
mp_float_t accum = (mp_float_t)0;
|
|
int top_n = MIN(len_c, len_a - k);
|
|
int bot_n = MAX(-k, 0);
|
|
mp_float_t* a_ptr = a_items + bot_n + k;
|
|
mp_float_t* a_end = a_ptr + (top_n - bot_n);
|
|
mp_float_t* c_ptr = c_items + len_c - bot_n - 1;
|
|
for(; a_ptr != a_end;) {
|
|
accum += *a_ptr++ * *c_ptr--;
|
|
}
|
|
*outptr++ = accum;
|
|
}
|
|
} else {
|
|
for(int k=-off; k<len-off; k++) {
|
|
mp_float_t accum = (mp_float_t)0;
|
|
int top_n = MIN(len_c, len_a - k);
|
|
int bot_n = MAX(-k, 0);
|
|
for(int n=bot_n; n<top_n; n++) {
|
|
int idx_c = len_c - n - 1;
|
|
int idx_a = n+k;
|
|
mp_float_t ai = ndarray_get_float_value(a->array->items, a->array->typecode, idx_a);
|
|
mp_float_t ci = ndarray_get_float_value(c->array->items, c->array->typecode, idx_c);
|
|
accum += ai * ci;
|
|
}
|
|
*outptr++ = accum;
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(filter_convolve_obj, 2, filter_convolve);
|
|
|
|
STATIC const mp_rom_map_elem_t ulab_filter_globals_table[] = {
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_filter) },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_convolve), (mp_obj_t)&filter_convolve_obj },
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_filter_globals, ulab_filter_globals_table);
|
|
|
|
mp_obj_module_t ulab_filter_module = {
|
|
.base = { &mp_type_module },
|
|
.globals = (mp_obj_dict_t*)&mp_module_ulab_filter_globals,
|
|
};
|
|
|
|
#endif
|