This was flagged as an error in building circuitpython, since ulab.array doesn't name a type object. # Conflicts: # code/numpy/linalg/linalg.c
82 lines
2.8 KiB
C
82 lines
2.8 KiB
C
/*
|
|
* This file is part of the micropython-ulab project,
|
|
*
|
|
* https://github.com/v923z/micropython-ulab
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2019-2021 Zoltán Vörös
|
|
* 2020 Scott Shawcroft for Adafruit Industries
|
|
* 2020 Taku Fukada
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "py/runtime.h"
|
|
#include "py/builtin.h"
|
|
#include "py/binary.h"
|
|
#include "py/obj.h"
|
|
#include "py/objarray.h"
|
|
|
|
#include "fft.h"
|
|
|
|
//| """Frequency-domain functions"""
|
|
//|
|
|
|
|
|
|
//| def fft(r: ulab.ndarray, c: Optional[ulab.ndarray] = None) -> Tuple[ulab.ndarray, ulab.ndarray]:
|
|
//| """
|
|
//| :param ulab.ndarray r: A 1-dimension array of values whose size is a power of 2
|
|
//| :param ulab.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
|
|
//| :return tuple (r, c): The real and complex parts of the FFT
|
|
//|
|
|
//| Perform a Fast Fourier Transform from the time domain into the frequency domain
|
|
//|
|
|
//| See also ~ulab.extras.spectrum, which computes the magnitude of the fft,
|
|
//| rather than separately returning its real and imaginary parts."""
|
|
//| ...
|
|
//|
|
|
static mp_obj_t fft_fft(size_t n_args, const mp_obj_t *args) {
|
|
if(n_args == 2) {
|
|
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_FFT);
|
|
} else {
|
|
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_FFT);
|
|
}
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj, 1, 2, fft_fft);
|
|
|
|
//| def ifft(r: ulab.ndarray, c: Optional[ulab.ndarray] = None) -> Tuple[ulab.ndarray, ulab.ndarray]:
|
|
//| """
|
|
//| :param ulab.ndarray r: A 1-dimension array of values whose size is a power of 2
|
|
//| :param ulab.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
|
|
//| :return tuple (r, c): The real and complex parts of the inverse FFT
|
|
//|
|
|
//| Perform an Inverse Fast Fourier Transform from the frequeny domain into the time domain"""
|
|
//| ...
|
|
//|
|
|
|
|
static mp_obj_t fft_ifft(size_t n_args, const mp_obj_t *args) {
|
|
if(n_args == 2) {
|
|
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_IFFT);
|
|
} else {
|
|
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_IFFT);
|
|
}
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj, 1, 2, fft_ifft);
|
|
|
|
STATIC const mp_rom_map_elem_t ulab_fft_globals_table[] = {
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_fft) },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_fft), (mp_obj_t)&fft_fft_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_ifft), (mp_obj_t)&fft_ifft_obj },
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_fft_globals, ulab_fft_globals_table);
|
|
|
|
mp_obj_module_t ulab_fft_module = {
|
|
.base = { &mp_type_module },
|
|
.globals = (mp_obj_dict_t*)&mp_module_ulab_fft_globals,
|
|
};
|