circuitpython-ulab/code/scipy/optimize/optimize.c
Jeff Epler 308627c9aa
Fix several build errors in CircuitPython (#533)
* Properly register submodules of ulab

This is related to
 * https://github.com/adafruit/circuitpython/issues/6066

in which, after the merge of 1.18 into CircuitPython, we lost the ability
to import submodules of built-in modules.

While reconstructing the changes we had made locally to enable this,
I discovered that there was an easier way: simply register the dotted
module names via MP_REGISTER_MODULE.

* Fix finding processor count when no `python` executable is installed

debian likes to install only `python3`, and not `python` (which was,
for many decades, python2).

This was previously done for `build.sh` but not for `build-cp.sh`.

* Only use this submodule feature in CircuitPython

.. as it does not work properly in MicroPython.

Also, modules to be const. This saves a small amount of RAM

* Fix -Werror=undef diagnostic

Most CircuitPython ports build with -Werror=undef, so that use of an
undefined preprocessor flag is an error. Also, CircuitPython's micropython
version is old enough that MICROPY_VERSION is not (ever) defined.

Defensively check for this macro being defined, and use the older style
of MP_REGISTER_MODULE when it is not.

* Fix -Werror=discarded-qualifiers diagnostics

Most CircuitPython ports build with -Werror=discarded-qualifiers.
This detected a problem where string constants were passed to functions
with non-constant parameter types.

* bump version number

* Use MicroPython-compatible registration of submodules

* straggler

* Remove spurious casts

these were build errors for micropython

* Run tests for both nanbox and regular variant during CI
2022-07-07 20:17:49 +02:00

421 lines
17 KiB
C

/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2020 Scott Shawcroft for Adafruit Industries
* 2020-2021 Zoltán Vörös
* 2020 Taku Fukada
*/
#include <math.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../../ndarray.h"
#include "../../ulab.h"
#include "../../ulab_tools.h"
#include "optimize.h"
ULAB_DEFINE_FLOAT_CONST(xtolerance, 2.4e-7, 0x3480d959UL, 0x3e901b2b29a4692bULL);
ULAB_DEFINE_FLOAT_CONST(rtolerance, 0.0, 0UL, 0ULL);
static mp_float_t optimize_python_call(const mp_obj_type_t *type, mp_obj_t fun, mp_float_t x, mp_obj_t *fargs, uint8_t nparams) {
// Helper function for calculating the value of f(x, a, b, c, ...),
// where f is defined in python. Takes a float, returns a float.
// The array of mp_obj_t type must be supplied, as must the number of parameters (a, b, c...) in nparams
fargs[0] = mp_obj_new_float(x);
return mp_obj_get_float(type->MP_TYPE_CALL(fun, nparams+1, 0, fargs));
}
#if ULAB_SCIPY_OPTIMIZE_HAS_BISECT
//| def bisect(
//| fun: Callable[[float], float],
//| a: float,
//| b: float,
//| *,
//| xtol: float = 2.4e-7,
//| maxiter: int = 100
//| ) -> float:
//| """
//| :param callable f: The function to bisect
//| :param float a: The left side of the interval
//| :param float b: The right side of the interval
//| :param float xtol: The tolerance value
//| :param float maxiter: The maximum number of iterations to perform
//|
//| Find a solution (zero) of the function ``f(x)`` on the interval
//| (``a``..``b``) using the bisection method. The result is accurate to within
//| ``xtol`` unless more than ``maxiter`` steps are required."""
//| ...
//|
STATIC mp_obj_t optimize_bisect(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// Simple bisection routine
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_xtol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(xtolerance)} },
{ MP_QSTR_maxiter, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 100} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t fun = args[0].u_obj;
const mp_obj_type_t *type = mp_obj_get_type(fun);
if(mp_type_get_call_slot(type) == NULL) {
mp_raise_TypeError(translate("first argument must be a function"));
}
mp_float_t xtol = mp_obj_get_float(args[3].u_obj);
mp_obj_t *fargs = m_new(mp_obj_t, 1);
mp_float_t left, right;
mp_float_t x_mid;
mp_float_t a = mp_obj_get_float(args[1].u_obj);
mp_float_t b = mp_obj_get_float(args[2].u_obj);
left = optimize_python_call(type, fun, a, fargs, 0);
right = optimize_python_call(type, fun, b, fargs, 0);
if(left * right > 0) {
mp_raise_ValueError(translate("function has the same sign at the ends of interval"));
}
mp_float_t rtb = left < MICROPY_FLOAT_CONST(0.0) ? a : b;
mp_float_t dx = left < MICROPY_FLOAT_CONST(0.0) ? b - a : a - b;
if(args[4].u_int < 0) {
mp_raise_ValueError(translate("maxiter should be > 0"));
}
for(uint16_t i=0; i < args[4].u_int; i++) {
dx *= MICROPY_FLOAT_CONST(0.5);
x_mid = rtb + dx;
if(optimize_python_call(type, fun, x_mid, fargs, 0) < MICROPY_FLOAT_CONST(0.0)) {
rtb = x_mid;
}
if(MICROPY_FLOAT_C_FUN(fabs)(dx) < xtol) break;
}
return mp_obj_new_float(rtb);
}
MP_DEFINE_CONST_FUN_OBJ_KW(optimize_bisect_obj, 3, optimize_bisect);
#endif
#if ULAB_SCIPY_OPTIMIZE_HAS_FMIN
//| def fmin(
//| fun: Callable[[float], float],
//| x0: float,
//| *,
//| xatol: float = 2.4e-7,
//| fatol: float = 2.4e-7,
//| maxiter: int = 200
//| ) -> float:
//| """
//| :param callable f: The function to bisect
//| :param float x0: The initial x value
//| :param float xatol: The absolute tolerance value
//| :param float fatol: The relative tolerance value
//|
//| Find a minimum of the function ``f(x)`` using the downhill simplex method.
//| The located ``x`` is within ``fxtol`` of the actual minimum, and ``f(x)``
//| is within ``fatol`` of the actual minimum unless more than ``maxiter``
//| steps are requried."""
//| ...
//|
STATIC mp_obj_t optimize_fmin(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// downhill simplex method in 1D
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_xatol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(xtolerance)} },
{ MP_QSTR_fatol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(xtolerance)} },
{ MP_QSTR_maxiter, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 200} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t fun = args[0].u_obj;
const mp_obj_type_t *type = mp_obj_get_type(fun);
if(mp_type_get_call_slot(type) == NULL) {
mp_raise_TypeError(translate("first argument must be a function"));
}
// parameters controlling convergence conditions
mp_float_t xatol = mp_obj_get_float(args[2].u_obj);
mp_float_t fatol = mp_obj_get_float(args[3].u_obj);
if(args[4].u_int <= 0) {
mp_raise_ValueError(translate("maxiter must be > 0"));
}
uint16_t maxiter = (uint16_t)args[4].u_int;
mp_float_t x0 = mp_obj_get_float(args[1].u_obj);
mp_float_t x1 = MICROPY_FLOAT_C_FUN(fabs)(x0) > OPTIMIZE_EPSILON ? (MICROPY_FLOAT_CONST(1.0) + OPTIMIZE_NONZDELTA) * x0 : OPTIMIZE_ZDELTA;
mp_obj_t *fargs = m_new(mp_obj_t, 1);
mp_float_t f0 = optimize_python_call(type, fun, x0, fargs, 0);
mp_float_t f1 = optimize_python_call(type, fun, x1, fargs, 0);
if(f1 < f0) {
SWAP(mp_float_t, x0, x1);
SWAP(mp_float_t, f0, f1);
}
for(uint16_t i=0; i < maxiter; i++) {
uint8_t shrink = 0;
f0 = optimize_python_call(type, fun, x0, fargs, 0);
f1 = optimize_python_call(type, fun, x1, fargs, 0);
// reflection
mp_float_t xr = (MICROPY_FLOAT_CONST(1.0) + OPTIMIZE_ALPHA) * x0 - OPTIMIZE_ALPHA * x1;
mp_float_t fr = optimize_python_call(type, fun, xr, fargs, 0);
if(fr < f0) { // expansion
mp_float_t xe = (1 + OPTIMIZE_ALPHA * OPTIMIZE_BETA) * x0 - OPTIMIZE_ALPHA * OPTIMIZE_BETA * x1;
mp_float_t fe = optimize_python_call(type, fun, xe, fargs, 0);
if(fe < fr) {
x1 = xe;
f1 = fe;
} else {
x1 = xr;
f1 = fr;
}
} else {
if(fr < f1) { // contraction
mp_float_t xc = (1 + OPTIMIZE_GAMMA * OPTIMIZE_ALPHA) * x0 - OPTIMIZE_GAMMA * OPTIMIZE_ALPHA * x1;
mp_float_t fc = optimize_python_call(type, fun, xc, fargs, 0);
if(fc < fr) {
x1 = xc;
f1 = fc;
} else {
shrink = 1;
}
} else { // inside contraction
mp_float_t xc = (MICROPY_FLOAT_CONST(1.0) - OPTIMIZE_GAMMA) * x0 + OPTIMIZE_GAMMA * x1;
mp_float_t fc = optimize_python_call(type, fun, xc, fargs, 0);
if(fc < f1) {
x1 = xc;
f1 = fc;
} else {
shrink = 1;
}
}
if(shrink == 1) {
x1 = x0 + OPTIMIZE_DELTA * (x1 - x0);
f1 = optimize_python_call(type, fun, x1, fargs, 0);
}
if((MICROPY_FLOAT_C_FUN(fabs)(f1 - f0) < fatol) ||
(MICROPY_FLOAT_C_FUN(fabs)(x1 - x0) < xatol)) {
break;
}
if(f1 < f0) {
SWAP(mp_float_t, x0, x1);
SWAP(mp_float_t, f0, f1);
}
}
}
return mp_obj_new_float(x0);
}
MP_DEFINE_CONST_FUN_OBJ_KW(optimize_fmin_obj, 2, optimize_fmin);
#endif
#if ULAB_SCIPY_OPTIMIZE_HAS_CURVE_FIT
static void optimize_jacobi(const mp_obj_type_t *type, mp_obj_t fun, mp_float_t *x, mp_float_t *y, uint16_t len, mp_float_t *params, uint8_t nparams, mp_float_t *jacobi, mp_float_t *grad) {
/* Calculates the Jacobian and the gradient of the cost function
*
* The entries in the Jacobian are
* J(m, n) = de_m/da_n,
*
* where
*
* e_m = (f(x_m, a1, a2, ...) - y_m)/sigma_m is the error at x_m,
*
* and
*
* a1, a2, ..., a_n are the free parameters
*/
mp_obj_t *fargs0 = m_new(mp_obj_t, lenp+1);
mp_obj_t *fargs1 = m_new(mp_obj_t, lenp+1);
for(uint8_t p=0; p < nparams; p++) {
fargs0[p+1] = mp_obj_new_float(params[p]);
fargs1[p+1] = mp_obj_new_float(params[p]);
}
for(uint8_t p=0; p < nparams; p++) {
mp_float_t da = params[p] != MICROPY_FLOAT_CONST(0.0) ? (MICROPY_FLOAT_CONST(1.0) + APPROX_NONZDELTA) * params[p] : APPROX_ZDELTA;
fargs1[p+1] = mp_obj_new_float(params[p] + da);
grad[p] = MICROPY_FLOAT_CONST(0.0);
for(uint16_t i=0; i < len; i++) {
mp_float_t f0 = optimize_python_call(type, fun, x[i], fargs0, nparams);
mp_float_t f1 = optimize_python_call(type, fun, x[i], fargs1, nparams);
jacobi[i*nparamp+p] = (f1 - f0) / da;
grad[p] += (f0 - y[i]) * jacobi[i*nparamp+p];
}
fargs1[p+1] = fargs0[p+1]; // set back to the original value
}
}
static void optimize_delta(mp_float_t *jacobi, mp_float_t *grad, uint16_t len, uint8_t nparams, mp_float_t lambda) {
//
}
mp_obj_t optimize_curve_fit(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// Levenberg-Marquardt non-linear fit
// The implementation follows the introductory discussion in Mark Tanstrum's paper, https://arxiv.org/abs/1201.5885
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_p0, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_xatol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&xtolerance)} },
{ MP_QSTR_fatol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&xtolerance)} },
{ MP_QSTR_maxiter, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t fun = args[0].u_obj;
const mp_obj_type_t *type = mp_obj_get_type(fun);
if(mp_type_get_call_slot(type) == NULL) {
mp_raise_TypeError(translate("first argument must be a function"));
}
mp_obj_t x_obj = args[1].u_obj;
mp_obj_t y_obj = args[2].u_obj;
mp_obj_t p0_obj = args[3].u_obj;
if(!ndarray_object_is_array_like(x_obj) || !ndarray_object_is_array_like(y_obj)) {
mp_raise_TypeError(translate("data must be iterable"));
}
if(!ndarray_object_is_nditerable(p0_obj)) {
mp_raise_TypeError(translate("initial values must be iterable"));
}
size_t len = (size_t)mp_obj_get_int(mp_obj_len_maybe(x_obj));
uint8_t lenp = (uint8_t)mp_obj_get_int(mp_obj_len_maybe(p0_obj));
if(len != (uint16_t)mp_obj_get_int(mp_obj_len_maybe(y_obj))) {
mp_raise_ValueError(translate("data must be of equal length"));
}
mp_float_t *x = m_new(mp_float_t, len);
fill_array_iterable(x, x_obj);
mp_float_t *y = m_new(mp_float_t, len);
fill_array_iterable(y, y_obj);
mp_float_t *p0 = m_new(mp_float_t, lenp);
fill_array_iterable(p0, p0_obj);
mp_float_t *grad = m_new(mp_float_t, len);
mp_float_t *jacobi = m_new(mp_float_t, len*len);
mp_obj_t *fargs = m_new(mp_obj_t, lenp+1);
m_del(mp_float_t, p0, lenp);
// parameters controlling convergence conditions
//mp_float_t xatol = mp_obj_get_float(args[2].u_obj);
//mp_float_t fatol = mp_obj_get_float(args[3].u_obj);
// this has finite binary representation; we will multiply/divide by 4
//mp_float_t lambda = 0.0078125;
//linalg_invert_matrix(mp_float_t *data, size_t N)
m_del(mp_float_t, x, len);
m_del(mp_float_t, y, len);
m_del(mp_float_t, grad, len);
m_del(mp_float_t, jacobi, len*len);
m_del(mp_obj_t, fargs, lenp+1);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(optimize_curve_fit_obj, 2, optimize_curve_fit);
#endif
#if ULAB_SCIPY_OPTIMIZE_HAS_NEWTON
//| def newton(
//| fun: Callable[[float], float],
//| x0: float,
//| *,
//| xtol: float = 2.4e-7,
//| rtol: float = 0.0,
//| maxiter: int = 50
//| ) -> float:
//| """
//| :param callable f: The function to bisect
//| :param float x0: The initial x value
//| :param float xtol: The absolute tolerance value
//| :param float rtol: The relative tolerance value
//| :param float maxiter: The maximum number of iterations to perform
//|
//| Find a solution (zero) of the function ``f(x)`` using Newton's Method.
//| The result is accurate to within ``xtol * rtol * |f(x)|`` unless more than
//| ``maxiter`` steps are requried."""
//| ...
//|
static mp_obj_t optimize_newton(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// this is actually the secant method, as the first derivative of the function
// is not accepted as an argument. The function whose root we want to solve for
// must depend on a single variable without parameters, i.e., f(x)
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(xtolerance) } },
{ MP_QSTR_rtol, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(rtolerance) } },
{ MP_QSTR_maxiter, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 50 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t fun = args[0].u_obj;
const mp_obj_type_t *type = mp_obj_get_type(fun);
if(mp_type_get_call_slot(type) == NULL) {
mp_raise_TypeError(translate("first argument must be a function"));
}
mp_float_t x = mp_obj_get_float(args[1].u_obj);
mp_float_t tol = mp_obj_get_float(args[2].u_obj);
mp_float_t rtol = mp_obj_get_float(args[3].u_obj);
mp_float_t dx, df, fx;
dx = x > MICROPY_FLOAT_CONST(0.0) ? OPTIMIZE_EPS * x : -OPTIMIZE_EPS * x;
mp_obj_t *fargs = m_new(mp_obj_t, 1);
if(args[4].u_int <= 0) {
mp_raise_ValueError(translate("maxiter must be > 0"));
}
for(uint16_t i=0; i < args[4].u_int; i++) {
fx = optimize_python_call(type, fun, x, fargs, 0);
df = (optimize_python_call(type, fun, x + dx, fargs, 0) - fx) / dx;
dx = fx / df;
x -= dx;
if(MICROPY_FLOAT_C_FUN(fabs)(dx) < (tol + rtol * MICROPY_FLOAT_C_FUN(fabs)(x))) break;
}
return mp_obj_new_float(x);
}
MP_DEFINE_CONST_FUN_OBJ_KW(optimize_newton_obj, 2, optimize_newton);
#endif
static const mp_rom_map_elem_t ulab_scipy_optimize_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_optimize) },
#if ULAB_SCIPY_OPTIMIZE_HAS_BISECT
{ MP_ROM_QSTR(MP_QSTR_bisect), MP_ROM_PTR(&optimize_bisect_obj) },
#endif
#if ULAB_SCIPY_OPTIMIZE_HAS_CURVE_FIT
{ MP_ROM_QSTR(MP_QSTR_curve_fit), MP_ROM_PTR(&optimize_curve_fit_obj) },
#endif
#if ULAB_SCIPY_OPTIMIZE_HAS_FMIN
{ MP_ROM_QSTR(MP_QSTR_fmin), MP_ROM_PTR(&optimize_fmin_obj) },
#endif
#if ULAB_SCIPY_OPTIMIZE_HAS_NEWTON
{ MP_ROM_QSTR(MP_QSTR_newton), MP_ROM_PTR(&optimize_newton_obj) },
#endif
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_scipy_optimize_globals, ulab_scipy_optimize_globals_table);
const mp_obj_module_t ulab_scipy_optimize_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_optimize_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_optimize, ulab_scipy_optimize_module, MODULE_ULAB_ENABLED);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_optimize, ulab_scipy_optimize_module);
#endif
#endif