912 lines
40 KiB
C
912 lines
40 KiB
C
|
|
/*
|
|
* This file is part of the micropython-ulab project,
|
|
*
|
|
* https://github.com/v923z/micropython-ulab
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2019-2020 Zoltán Vörös
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "py/runtime.h"
|
|
#include "py/binary.h"
|
|
#include "py/obj.h"
|
|
#include "py/objtuple.h"
|
|
#include "ndarray.h"
|
|
|
|
// This function is copied verbatim from objarray.c
|
|
STATIC mp_obj_array_t *array_new(char typecode, size_t n) {
|
|
int typecode_size = mp_binary_get_size('@', typecode, NULL);
|
|
mp_obj_array_t *o = m_new_obj(mp_obj_array_t);
|
|
// this step could probably be skipped: we are never going to store a bytearray per se
|
|
#if MICROPY_PY_BUILTINS_BYTEARRAY && MICROPY_PY_ARRAY
|
|
o->base.type = (typecode == BYTEARRAY_TYPECODE) ? &mp_type_bytearray : &mp_type_array;
|
|
#elif MICROPY_PY_BUILTINS_BYTEARRAY
|
|
o->base.type = &mp_type_bytearray;
|
|
#else
|
|
o->base.type = &mp_type_array;
|
|
#endif
|
|
o->typecode = typecode;
|
|
o->free = 0;
|
|
o->len = n;
|
|
o->items = m_new(byte, typecode_size * o->len);
|
|
return o;
|
|
}
|
|
|
|
mp_float_t ndarray_get_float_value(void *data, uint8_t typecode, size_t index) {
|
|
if(typecode == NDARRAY_UINT8) {
|
|
return (mp_float_t)((uint8_t *)data)[index];
|
|
} else if(typecode == NDARRAY_INT8) {
|
|
return (mp_float_t)((int8_t *)data)[index];
|
|
} else if(typecode == NDARRAY_UINT16) {
|
|
return (mp_float_t)((uint16_t *)data)[index];
|
|
} else if(typecode == NDARRAY_INT16) {
|
|
return (mp_float_t)((int16_t *)data)[index];
|
|
} else {
|
|
return (mp_float_t)((mp_float_t *)data)[index];
|
|
}
|
|
}
|
|
|
|
void fill_array_iterable(mp_float_t *array, mp_obj_t iterable) {
|
|
mp_obj_iter_buf_t x_buf;
|
|
mp_obj_t x_item, x_iterable = mp_getiter(iterable, &x_buf);
|
|
size_t i=0;
|
|
while ((x_item = mp_iternext(x_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
array[i] = (mp_float_t)mp_obj_get_float(x_item);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
void ndarray_print_row(const mp_print_t *print, mp_obj_array_t *data, size_t n0, size_t n) {
|
|
mp_print_str(print, "[");
|
|
size_t i;
|
|
if(n < PRINT_MAX) { // if the array is short, print everything
|
|
mp_obj_print_helper(print, mp_binary_get_val_array(data->typecode, data->items, n0), PRINT_REPR);
|
|
for(i=1; i<n; i++) {
|
|
mp_print_str(print, ", ");
|
|
mp_obj_print_helper(print, mp_binary_get_val_array(data->typecode, data->items, n0+i), PRINT_REPR);
|
|
}
|
|
} else {
|
|
mp_obj_print_helper(print, mp_binary_get_val_array(data->typecode, data->items, n0), PRINT_REPR);
|
|
for(i=1; i<3; i++) {
|
|
mp_print_str(print, ", ");
|
|
mp_obj_print_helper(print, mp_binary_get_val_array(data->typecode, data->items, n0+i), PRINT_REPR);
|
|
}
|
|
mp_printf(print, ", ..., ");
|
|
mp_obj_print_helper(print, mp_binary_get_val_array(data->typecode, data->items, n0+n-3), PRINT_REPR);
|
|
for(size_t i=1; i<3; i++) {
|
|
mp_print_str(print, ", ");
|
|
mp_obj_print_helper(print, mp_binary_get_val_array(data->typecode, data->items, n0+n-3+i), PRINT_REPR);
|
|
}
|
|
}
|
|
mp_print_str(print, "]");
|
|
}
|
|
|
|
void ndarray_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
(void)kind;
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_print_str(print, "array(");
|
|
|
|
if(self->array->len == 0) {
|
|
mp_print_str(print, "[]");
|
|
} else {
|
|
if((self->m == 1) || (self->n == 1)) {
|
|
ndarray_print_row(print, self->array, 0, self->array->len);
|
|
} else {
|
|
// TODO: add vertical ellipses for the case, when self->m > PRINT_MAX
|
|
mp_print_str(print, "[");
|
|
ndarray_print_row(print, self->array, 0, self->n);
|
|
for(size_t i=1; i < self->m; i++) {
|
|
mp_print_str(print, ",\n\t ");
|
|
ndarray_print_row(print, self->array, i*self->n, self->n);
|
|
}
|
|
mp_print_str(print, "]");
|
|
}
|
|
}
|
|
if(self->array->typecode == NDARRAY_UINT8) {
|
|
mp_print_str(print, ", dtype=uint8)");
|
|
} else if(self->array->typecode == NDARRAY_INT8) {
|
|
mp_print_str(print, ", dtype=int8)");
|
|
} else if(self->array->typecode == NDARRAY_UINT16) {
|
|
mp_print_str(print, ", dtype=uint16)");
|
|
} else if(self->array->typecode == NDARRAY_INT16) {
|
|
mp_print_str(print, ", dtype=int16)");
|
|
} else if(self->array->typecode == NDARRAY_FLOAT) {
|
|
mp_print_str(print, ", dtype=float)");
|
|
}
|
|
}
|
|
|
|
void ndarray_assign_elements(mp_obj_array_t *data, mp_obj_t iterable, uint8_t typecode, size_t *idx) {
|
|
// assigns a single row in the matrix
|
|
mp_obj_t item;
|
|
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
mp_binary_set_val_array(typecode, data->items, (*idx)++, item);
|
|
}
|
|
}
|
|
|
|
ndarray_obj_t *create_new_ndarray(size_t m, size_t n, uint8_t typecode) {
|
|
// Creates the base ndarray with shape (m, n), and initialises the values to straight 0s
|
|
ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
|
|
ndarray->base.type = &ulab_ndarray_type;
|
|
ndarray->m = m;
|
|
ndarray->n = n;
|
|
mp_obj_array_t *array = array_new(typecode, m*n);
|
|
ndarray->bytes = m * n * mp_binary_get_size('@', typecode, NULL);
|
|
// this should set all elements to 0, irrespective of the of the typecode (all bits are zero)
|
|
// we could, perhaps, leave this step out, and initialise the array only, when needed
|
|
memset(array->items, 0, ndarray->bytes);
|
|
ndarray->array = array;
|
|
return ndarray;
|
|
}
|
|
|
|
mp_obj_t ndarray_copy(mp_obj_t self_in) {
|
|
// returns a verbatim (shape and typecode) copy of self_in
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
ndarray_obj_t *out = create_new_ndarray(self->m, self->n, self->array->typecode);
|
|
memcpy(out->array->items, self->array->items, self->bytes);
|
|
return MP_OBJ_FROM_PTR(out);
|
|
}
|
|
|
|
STATIC uint8_t ndarray_init_helper(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
|
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = NDARRAY_FLOAT } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
uint8_t dtype = args[1].u_int;
|
|
return dtype;
|
|
}
|
|
|
|
mp_obj_t ndarray_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
mp_arg_check_num(n_args, n_kw, 1, 2, true);
|
|
mp_map_t kw_args;
|
|
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
|
|
uint8_t dtype = ndarray_init_helper(n_args, args, &kw_args);
|
|
|
|
size_t len1, len2=0, i=0;
|
|
mp_obj_t len_in = mp_obj_len_maybe(args[0]);
|
|
if (len_in == MP_OBJ_NULL) {
|
|
mp_raise_ValueError(translate("first argument must be an iterable"));
|
|
} else {
|
|
// len1 is either the number of rows (for matrices), or the number of elements (row vectors)
|
|
len1 = MP_OBJ_SMALL_INT_VALUE(len_in);
|
|
}
|
|
|
|
// We have to figure out, whether the first element of the iterable is an iterable itself
|
|
// Perhaps, there is a more elegant way of handling this
|
|
mp_obj_iter_buf_t iter_buf1;
|
|
mp_obj_t item1, iterable1 = mp_getiter(args[0], &iter_buf1);
|
|
while ((item1 = mp_iternext(iterable1)) != MP_OBJ_STOP_ITERATION) {
|
|
len_in = mp_obj_len_maybe(item1);
|
|
if(len_in != MP_OBJ_NULL) { // indeed, this seems to be an iterable
|
|
// Next, we have to check, whether all elements in the outer loop have the same length
|
|
if(i > 0) {
|
|
if(len2 != MP_OBJ_SMALL_INT_VALUE(len_in)) {
|
|
mp_raise_ValueError(translate("iterables are not of the same length"));
|
|
}
|
|
}
|
|
len2 = MP_OBJ_SMALL_INT_VALUE(len_in);
|
|
i++;
|
|
}
|
|
}
|
|
// By this time, it should be established, what the shape is, so we can now create the array
|
|
ndarray_obj_t *self = create_new_ndarray((len2 == 0) ? 1 : len1, (len2 == 0) ? len1 : len2, dtype);
|
|
iterable1 = mp_getiter(args[0], &iter_buf1);
|
|
i = 0;
|
|
if(len2 == 0) { // the first argument is a single iterable
|
|
ndarray_assign_elements(self->array, iterable1, dtype, &i);
|
|
} else {
|
|
mp_obj_iter_buf_t iter_buf2;
|
|
mp_obj_t iterable2;
|
|
|
|
while ((item1 = mp_iternext(iterable1)) != MP_OBJ_STOP_ITERATION) {
|
|
iterable2 = mp_getiter(item1, &iter_buf2);
|
|
ndarray_assign_elements(self->array, iterable2, dtype, &i);
|
|
}
|
|
}
|
|
return MP_OBJ_FROM_PTR(self);
|
|
}
|
|
|
|
size_t slice_length(mp_bound_slice_t slice) {
|
|
// TODO: check, whether this is true!
|
|
if(slice.step < 0) {
|
|
slice.step = -slice.step;
|
|
return (slice.start - slice.stop) / slice.step;
|
|
} else {
|
|
return (slice.stop - slice.start) / slice.step;
|
|
}
|
|
}
|
|
|
|
size_t true_length(mp_obj_t bool_list) {
|
|
// returns the number of Trues in a Boolean list
|
|
// I wonder, wouldn't this be faster, if we looped through bool_list->items instead?
|
|
mp_obj_iter_buf_t iter_buf;
|
|
mp_obj_t item, iterable = mp_getiter(bool_list, &iter_buf);
|
|
size_t trues = 0;
|
|
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(!mp_obj_is_type(item, &mp_type_bool)) {
|
|
// numpy seems to be a little bit inconsistent in when an index is considered
|
|
// to be True/False. Bail out immediately, if the items are not True/False
|
|
return 0;
|
|
}
|
|
if(mp_obj_is_true(item)) {
|
|
trues++;
|
|
}
|
|
}
|
|
return trues;
|
|
}
|
|
|
|
mp_bound_slice_t generate_slice(mp_uint_t n, mp_obj_t index) {
|
|
// micropython seems to have difficulties with negative steps
|
|
mp_bound_slice_t slice;
|
|
if(mp_obj_is_type(index, &mp_type_slice)) {
|
|
mp_seq_get_fast_slice_indexes(n, index, &slice);
|
|
} else if(mp_obj_is_int(index)) {
|
|
int32_t _index = mp_obj_get_int(index);
|
|
if(_index < 0) {
|
|
_index += n;
|
|
}
|
|
if((_index >= n) || (_index < 0)) {
|
|
mp_raise_msg(&mp_type_IndexError, translate("index is out of bounds"));
|
|
}
|
|
slice.start = _index;
|
|
slice.stop = _index + 1;
|
|
slice.step = 1;
|
|
} else {
|
|
mp_raise_msg(&mp_type_IndexError, translate("indices must be integers, slices, or Boolean lists"));
|
|
}
|
|
return slice;
|
|
}
|
|
|
|
mp_bound_slice_t simple_slice(int16_t start, int16_t stop, int16_t step) {
|
|
mp_bound_slice_t slice;
|
|
slice.start = start;
|
|
slice.stop = stop;
|
|
slice.step = step;
|
|
return slice;
|
|
}
|
|
|
|
void insert_binary_value(ndarray_obj_t *ndarray, size_t nd_index, ndarray_obj_t *values, size_t value_index) {
|
|
// there is probably a more elegant implementation...
|
|
mp_obj_t tmp = mp_binary_get_val_array(values->array->typecode, values->array->items, value_index);
|
|
if((values->array->typecode == NDARRAY_FLOAT) && (ndarray->array->typecode != NDARRAY_FLOAT)) {
|
|
// workaround: rounding seems not to work in the arm compiler
|
|
int32_t x = (int32_t)floorf(mp_obj_get_float(tmp)+0.5);
|
|
tmp = mp_obj_new_int(x);
|
|
}
|
|
mp_binary_set_val_array(ndarray->array->typecode, ndarray->array->items, nd_index, tmp);
|
|
}
|
|
|
|
mp_obj_t insert_slice_list(ndarray_obj_t *ndarray, size_t m, size_t n,
|
|
mp_bound_slice_t row, mp_bound_slice_t column,
|
|
mp_obj_t row_list, mp_obj_t column_list,
|
|
ndarray_obj_t *values) {
|
|
if((m != values->m) && (n != values->n)) {
|
|
if((values->array->len != 1)) { // not a single item
|
|
mp_raise_ValueError(translate("could not broadast input array from shape"));
|
|
}
|
|
}
|
|
size_t cindex, rindex;
|
|
// M, and N are used to manipulate how the source index is incremented in the loop
|
|
uint8_t M = 1, N = 1;
|
|
if(values->m == 1) {
|
|
M = 0;
|
|
}
|
|
if(values->n == 1) {
|
|
N = 0;
|
|
}
|
|
|
|
if(row_list == mp_const_none) { // rows are indexed by a slice
|
|
rindex = row.start;
|
|
if(column_list == mp_const_none) { // columns are indexed by a slice
|
|
for(size_t i=0; i < m; i++) {
|
|
cindex = column.start;
|
|
for(size_t j=0; j < n; j++) {
|
|
insert_binary_value(ndarray, rindex*ndarray->n+cindex, values, i*M*n+j*N);
|
|
cindex += column.step;
|
|
}
|
|
rindex += row.step;
|
|
}
|
|
} else { // columns are indexed by a Boolean list
|
|
mp_obj_iter_buf_t column_iter_buf;
|
|
mp_obj_t column_item, column_iterable;
|
|
for(size_t i=0; i < m; i++) {
|
|
column_iterable = mp_getiter(column_list, &column_iter_buf);
|
|
size_t j = 0;
|
|
cindex = 0;
|
|
while((column_item = mp_iternext(column_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(column_item)) {
|
|
insert_binary_value(ndarray, rindex*ndarray->n+cindex, values, i*M*n+j*N);
|
|
j++;
|
|
}
|
|
cindex++;
|
|
}
|
|
rindex += row.step;
|
|
}
|
|
}
|
|
} else { // rows are indexed by a Boolean list
|
|
mp_obj_iter_buf_t row_iter_buf;
|
|
mp_obj_t row_item, row_iterable;
|
|
row_iterable = mp_getiter(row_list, &row_iter_buf);
|
|
size_t i = 0;
|
|
rindex = 0;
|
|
if(column_list == mp_const_none) { // columns are indexed by a slice
|
|
while((row_item = mp_iternext(row_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(row_item)) {
|
|
cindex = column.start;
|
|
for(size_t j=0; j < n; j++) {
|
|
insert_binary_value(ndarray, rindex*ndarray->n+cindex, values, i*M*n+j*N);
|
|
cindex += column.step;
|
|
}
|
|
i++;
|
|
}
|
|
rindex++;
|
|
}
|
|
} else { // columns are indexed by a list
|
|
mp_obj_iter_buf_t column_iter_buf;
|
|
mp_obj_t column_item, column_iterable;
|
|
size_t j = 0, cindex = 0;
|
|
while((row_item = mp_iternext(row_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(row_item)) {
|
|
column_iterable = mp_getiter(column_list, &column_iter_buf);
|
|
while((column_item = mp_iternext(column_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(column_item)) {
|
|
insert_binary_value(ndarray, rindex*ndarray->n+cindex, values, i*M*n+j*N);
|
|
j++;
|
|
}
|
|
cindex++;
|
|
}
|
|
i++;
|
|
}
|
|
rindex++;
|
|
}
|
|
}
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
|
|
mp_obj_t iterate_slice_list(ndarray_obj_t *ndarray, size_t m, size_t n,
|
|
mp_bound_slice_t row, mp_bound_slice_t column,
|
|
mp_obj_t row_list, mp_obj_t column_list,
|
|
ndarray_obj_t *values) {
|
|
if((m == 0) || (n == 0)) {
|
|
mp_raise_msg(&mp_type_IndexError, translate("empty index range"));
|
|
}
|
|
|
|
if(values != NULL) {
|
|
return insert_slice_list(ndarray, m, n, row, column, row_list, column_list, values);
|
|
}
|
|
uint8_t _sizeof = mp_binary_get_size('@', ndarray->array->typecode, NULL);
|
|
ndarray_obj_t *out = create_new_ndarray(m, n, ndarray->array->typecode);
|
|
uint8_t *target = (uint8_t *)out->array->items;
|
|
uint8_t *source = (uint8_t *)ndarray->array->items;
|
|
size_t cindex, rindex;
|
|
if(row_list == mp_const_none) { // rows are indexed by a slice
|
|
rindex = row.start;
|
|
if(column_list == mp_const_none) { // columns are indexed by a slice
|
|
for(size_t i=0; i < m; i++) {
|
|
cindex = column.start;
|
|
for(size_t j=0; j < n; j++) {
|
|
memcpy(target+(i*n+j)*_sizeof, source+(rindex*ndarray->n+cindex)*_sizeof, _sizeof);
|
|
cindex += column.step;
|
|
}
|
|
rindex += row.step;
|
|
}
|
|
} else { // columns are indexed by a Boolean list
|
|
// TODO: the list must be exactly as long as the axis
|
|
mp_obj_iter_buf_t column_iter_buf;
|
|
mp_obj_t column_item, column_iterable;
|
|
for(size_t i=0; i < m; i++) {
|
|
column_iterable = mp_getiter(column_list, &column_iter_buf);
|
|
size_t j = 0;
|
|
cindex = 0;
|
|
while((column_item = mp_iternext(column_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(column_item)) {
|
|
memcpy(target+(i*n+j)*_sizeof, source+(rindex*ndarray->n+cindex)*_sizeof, _sizeof);
|
|
j++;
|
|
}
|
|
cindex++;
|
|
}
|
|
rindex += row.step;
|
|
}
|
|
}
|
|
} else { // rows are indexed by a Boolean list
|
|
mp_obj_iter_buf_t row_iter_buf;
|
|
mp_obj_t row_item, row_iterable;
|
|
row_iterable = mp_getiter(row_list, &row_iter_buf);
|
|
size_t i = 0;
|
|
rindex = 0;
|
|
if(column_list == mp_const_none) { // columns are indexed by a slice
|
|
while((row_item = mp_iternext(row_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(row_item)) {
|
|
cindex = column.start;
|
|
for(size_t j=0; j < n; j++) {
|
|
memcpy(target+(i*n+j)*_sizeof, source+(rindex*ndarray->n+cindex)*_sizeof, _sizeof);
|
|
cindex += column.step;
|
|
}
|
|
i++;
|
|
}
|
|
rindex++;
|
|
}
|
|
} else { // columns are indexed by a list
|
|
mp_obj_iter_buf_t column_iter_buf;
|
|
mp_obj_t column_item, column_iterable;
|
|
size_t j = 0, cindex = 0;
|
|
while((row_item = mp_iternext(row_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(row_item)) {
|
|
column_iterable = mp_getiter(column_list, &column_iter_buf);
|
|
while((column_item = mp_iternext(column_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(column_item)) {
|
|
memcpy(target+(i*n+j)*_sizeof, source+(rindex*ndarray->n+cindex)*_sizeof, _sizeof);
|
|
j++;
|
|
}
|
|
cindex++;
|
|
}
|
|
i++;
|
|
}
|
|
rindex++;
|
|
}
|
|
}
|
|
}
|
|
return MP_OBJ_FROM_PTR(out);
|
|
}
|
|
|
|
mp_obj_t ndarray_get_slice(ndarray_obj_t *ndarray, mp_obj_t index, ndarray_obj_t *values) {
|
|
mp_bound_slice_t row_slice = simple_slice(0, 0, 1), column_slice = simple_slice(0, 0, 1);
|
|
|
|
size_t m = 0, n = 0;
|
|
if(mp_obj_is_int(index) && (ndarray->m == 1) && (values == NULL)) {
|
|
// we have a row vector, and don't want to assign
|
|
column_slice = generate_slice(ndarray->n, index);
|
|
if(slice_length(column_slice) == 1) { // we were asked for a single item
|
|
// subscribe returns an mp_obj_t, if and only, if the index is an integer, and we have a row vector
|
|
return mp_binary_get_val_array(ndarray->array->typecode, ndarray->array->items, column_slice.start);
|
|
}
|
|
}
|
|
|
|
if(mp_obj_is_int(index) || mp_obj_is_type(index, &mp_type_slice)) {
|
|
if(ndarray->m == 1) { // we have a row vector
|
|
column_slice = generate_slice(ndarray->n, index);
|
|
row_slice = simple_slice(0, 1, 1);
|
|
} else { // we have a matrix
|
|
row_slice = generate_slice(ndarray->m, index);
|
|
column_slice = simple_slice(0, ndarray->n, 1); // take all columns
|
|
}
|
|
m = slice_length(row_slice);
|
|
n = slice_length(column_slice);
|
|
return iterate_slice_list(ndarray, m, n, row_slice, column_slice, mp_const_none, mp_const_none, values);
|
|
} else if(mp_obj_is_type(index, &mp_type_list)) {
|
|
n = true_length(index);
|
|
if(ndarray->m == 1) { // we have a flat array
|
|
// we might have to separate the n == 1 case
|
|
row_slice = simple_slice(0, 1, 1);
|
|
return iterate_slice_list(ndarray, 1, n, row_slice, column_slice, mp_const_none, index, values);
|
|
} else { // we have a matrix
|
|
return iterate_slice_list(ndarray, 1, n, row_slice, column_slice, mp_const_none, index, values);
|
|
}
|
|
}
|
|
else { // we certainly have a tuple, so let us deal with it
|
|
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(index);
|
|
if(tuple->len != 2) {
|
|
mp_raise_msg(&mp_type_IndexError, translate("too many indices"));
|
|
}
|
|
if(!(mp_obj_is_type(tuple->items[0], &mp_type_list) ||
|
|
mp_obj_is_type(tuple->items[0], &mp_type_slice) ||
|
|
mp_obj_is_int(tuple->items[0])) ||
|
|
!(mp_obj_is_type(tuple->items[1], &mp_type_list) ||
|
|
mp_obj_is_type(tuple->items[1], &mp_type_slice) ||
|
|
mp_obj_is_int(tuple->items[1]))) {
|
|
mp_raise_msg(&mp_type_IndexError, translate("indices must be integers, slices, or Boolean lists"));
|
|
}
|
|
if(mp_obj_is_type(tuple->items[0], &mp_type_list)) { // rows are indexed by Boolean list
|
|
m = true_length(tuple->items[0]);
|
|
if(mp_obj_is_type(tuple->items[1], &mp_type_list)) {
|
|
n = true_length(tuple->items[1]);
|
|
return iterate_slice_list(ndarray, m, n, row_slice, column_slice,
|
|
tuple->items[0], tuple->items[1], values);
|
|
} else { // the column is indexed by an integer, or a slice
|
|
column_slice = generate_slice(ndarray->n, tuple->items[1]);
|
|
n = slice_length(column_slice);
|
|
return iterate_slice_list(ndarray, m, n, row_slice, column_slice,
|
|
tuple->items[0], mp_const_none, values);
|
|
}
|
|
|
|
} else { // rows are indexed by a slice, or an integer
|
|
row_slice = generate_slice(ndarray->m, tuple->items[0]);
|
|
m = slice_length(row_slice);
|
|
if(mp_obj_is_type(tuple->items[1], &mp_type_list)) { // columns are indexed by a Boolean list
|
|
n = true_length(tuple->items[1]);
|
|
return iterate_slice_list(ndarray, m, n, row_slice, column_slice,
|
|
mp_const_none, tuple->items[1], values);
|
|
} else { // columns are indexed by an integer, or a slice
|
|
column_slice = generate_slice(ndarray->n, tuple->items[1]);
|
|
n = slice_length(column_slice);
|
|
return iterate_slice_list(ndarray, m, n, row_slice, column_slice,
|
|
mp_const_none, mp_const_none, values);
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_obj_t ndarray_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
if (value == MP_OBJ_SENTINEL) { // return value(s)
|
|
return ndarray_get_slice(self, index, NULL);
|
|
} else { // assignment to slices; the value must be an ndarray, or a scalar
|
|
if(!mp_obj_is_type(value, &ulab_ndarray_type) &&
|
|
!mp_obj_is_int(value) && !mp_obj_is_float(value)) {
|
|
mp_raise_ValueError(translate("right hand side must be an ndarray, or a scalar"));
|
|
} else {
|
|
ndarray_obj_t *values = NULL;
|
|
if(mp_obj_is_int(value)) {
|
|
values = create_new_ndarray(1, 1, self->array->typecode);
|
|
mp_binary_set_val_array(values->array->typecode, values->array->items, 0, value);
|
|
} else if(mp_obj_is_float(value)) {
|
|
values = create_new_ndarray(1, 1, NDARRAY_FLOAT);
|
|
mp_binary_set_val_array(NDARRAY_FLOAT, values->array->items, 0, value);
|
|
} else {
|
|
values = MP_OBJ_TO_PTR(value);
|
|
}
|
|
return ndarray_get_slice(self, index, values);
|
|
}
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
|
|
// itarray iterator
|
|
|
|
mp_obj_t ndarray_getiter(mp_obj_t o_in, mp_obj_iter_buf_t *iter_buf) {
|
|
return mp_obj_new_ndarray_iterator(o_in, 0, iter_buf);
|
|
}
|
|
|
|
typedef struct _mp_obj_ndarray_it_t {
|
|
mp_obj_base_t base;
|
|
mp_fun_1_t iternext;
|
|
mp_obj_t ndarray;
|
|
size_t cur;
|
|
} mp_obj_ndarray_it_t;
|
|
|
|
mp_obj_t ndarray_iternext(mp_obj_t self_in) {
|
|
mp_obj_ndarray_it_t *self = MP_OBJ_TO_PTR(self_in);
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(self->ndarray);
|
|
// TODO: in numpy, ndarrays are iterated with respect to the first axis.
|
|
size_t iter_end = 0;
|
|
if((ndarray->m == 1)) {
|
|
iter_end = ndarray->array->len;
|
|
} else {
|
|
iter_end = ndarray->m;
|
|
}
|
|
if(self->cur < iter_end) {
|
|
if(ndarray->n == ndarray->array->len) { // we have a linear array
|
|
// read the current value
|
|
mp_obj_t value;
|
|
value = mp_binary_get_val_array(ndarray->array->typecode, ndarray->array->items, self->cur);
|
|
self->cur++;
|
|
return value;
|
|
} else { // we have a matrix, return the number of rows
|
|
ndarray_obj_t *value = create_new_ndarray(1, ndarray->n, ndarray->array->typecode);
|
|
// copy the memory content here
|
|
uint8_t *tmp = (uint8_t *)ndarray->array->items;
|
|
size_t strip_size = ndarray->n * mp_binary_get_size('@', ndarray->array->typecode, NULL);
|
|
memcpy(value->array->items, &tmp[self->cur*strip_size], strip_size);
|
|
self->cur++;
|
|
return value;
|
|
}
|
|
} else {
|
|
return MP_OBJ_STOP_ITERATION;
|
|
}
|
|
}
|
|
|
|
mp_obj_t mp_obj_new_ndarray_iterator(mp_obj_t ndarray, size_t cur, mp_obj_iter_buf_t *iter_buf) {
|
|
assert(sizeof(mp_obj_ndarray_it_t) <= sizeof(mp_obj_iter_buf_t));
|
|
mp_obj_ndarray_it_t *o = (mp_obj_ndarray_it_t*)iter_buf;
|
|
o->base.type = &mp_type_polymorph_iter;
|
|
o->iternext = ndarray_iternext;
|
|
o->ndarray = ndarray;
|
|
o->cur = cur;
|
|
return MP_OBJ_FROM_PTR(o);
|
|
}
|
|
|
|
mp_obj_t ndarray_shape(mp_obj_t self_in) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_obj_t tuple[2] = {
|
|
mp_obj_new_int(self->m),
|
|
mp_obj_new_int(self->n)
|
|
};
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
|
|
mp_obj_t ndarray_rawsize(mp_obj_t self_in) {
|
|
// returns a 5-tuple with the
|
|
//
|
|
// 0. number of rows
|
|
// 1. number of columns
|
|
// 2. length of the storage (should be equal to the product of 1. and 2.)
|
|
// 3. length of the data storage in bytes
|
|
// 4. datum size in bytes
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(5, NULL));
|
|
tuple->items[0] = MP_OBJ_NEW_SMALL_INT(self->m);
|
|
tuple->items[1] = MP_OBJ_NEW_SMALL_INT(self->n);
|
|
tuple->items[2] = MP_OBJ_NEW_SMALL_INT(self->array->len);
|
|
tuple->items[3] = MP_OBJ_NEW_SMALL_INT(self->bytes);
|
|
tuple->items[4] = MP_OBJ_NEW_SMALL_INT(mp_binary_get_size('@', self->array->typecode, NULL));
|
|
return tuple;
|
|
}
|
|
|
|
mp_obj_t ndarray_flatten(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_order, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_QSTR(MP_QSTR_C)} },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
mp_obj_t self_copy = ndarray_copy(pos_args[0]);
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(self_copy);
|
|
|
|
GET_STR_DATA_LEN(args[0].u_obj, order, len);
|
|
if((len != 1) || ((memcmp(order, "C", 1) != 0) && (memcmp(order, "F", 1) != 0))) {
|
|
mp_raise_ValueError(translate("flattening order must be either 'C', or 'F'"));
|
|
}
|
|
|
|
// if order == 'C', we simply have to set m, and n, there is nothing else to do
|
|
if(memcmp(order, "F", 1) == 0) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
|
|
uint8_t _sizeof = mp_binary_get_size('@', self->array->typecode, NULL);
|
|
// get the data of self_in: we won't need a temporary buffer for the transposition
|
|
uint8_t *self_array = (uint8_t *)self->array->items;
|
|
uint8_t *array = (uint8_t *)ndarray->array->items;
|
|
size_t i=0;
|
|
for(size_t n=0; n < self->n; n++) {
|
|
for(size_t m=0; m < self->m; m++) {
|
|
memcpy(array+_sizeof*i, self_array+_sizeof*(m*self->n + n), _sizeof);
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
ndarray->n = ndarray->array->len;
|
|
ndarray->m = 1;
|
|
return self_copy;
|
|
}
|
|
|
|
mp_obj_t ndarray_asbytearray(mp_obj_t self_in) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return MP_OBJ_FROM_PTR(self->array);
|
|
}
|
|
|
|
// Binary operations
|
|
|
|
mp_obj_t ndarray_binary_op(mp_binary_op_t op, mp_obj_t lhs, mp_obj_t rhs) {
|
|
// if(op == MP_BINARY_OP_REVERSE_ADD) {
|
|
// return ndarray_binary_op(MP_BINARY_OP_ADD, rhs, lhs);
|
|
// }
|
|
// One of the operands is a scalar
|
|
// TODO: conform to numpy with the upcasting
|
|
// TODO: implement in-place operators
|
|
mp_obj_t RHS = MP_OBJ_NULL;
|
|
bool rhs_is_scalar = true;
|
|
if(mp_obj_is_int(rhs)) {
|
|
int32_t ivalue = mp_obj_get_int(rhs);
|
|
if((ivalue > 0) && (ivalue < 256)) {
|
|
CREATE_SINGLE_ITEM(RHS, uint8_t, NDARRAY_UINT8, ivalue);
|
|
} else if((ivalue > 255) && (ivalue < 65535)) {
|
|
CREATE_SINGLE_ITEM(RHS, uint16_t, NDARRAY_UINT16, ivalue);
|
|
} else if((ivalue < 0) && (ivalue > -128)) {
|
|
CREATE_SINGLE_ITEM(RHS, int8_t, NDARRAY_INT8, ivalue);
|
|
} else if((ivalue < -127) && (ivalue > -32767)) {
|
|
CREATE_SINGLE_ITEM(RHS, int16_t, NDARRAY_INT16, ivalue);
|
|
} else { // the integer value clearly does not fit the ulab types, so move on to float
|
|
CREATE_SINGLE_ITEM(RHS, mp_float_t, NDARRAY_FLOAT, ivalue);
|
|
}
|
|
} else if(mp_obj_is_float(rhs)) {
|
|
mp_float_t fvalue = mp_obj_get_float(rhs);
|
|
CREATE_SINGLE_ITEM(RHS, mp_float_t, NDARRAY_FLOAT, fvalue);
|
|
} else {
|
|
RHS = rhs;
|
|
rhs_is_scalar = false;
|
|
}
|
|
//else
|
|
if(mp_obj_is_type(lhs, &ulab_ndarray_type) && mp_obj_is_type(RHS, &ulab_ndarray_type)) {
|
|
// next, the ndarray stuff
|
|
ndarray_obj_t *ol = MP_OBJ_TO_PTR(lhs);
|
|
ndarray_obj_t *or = MP_OBJ_TO_PTR(RHS);
|
|
if(!rhs_is_scalar && ((ol->m != or->m) || (ol->n != or->n))) {
|
|
mp_raise_ValueError(translate("operands could not be broadcast together"));
|
|
}
|
|
// At this point, the operands should have the same shape
|
|
switch(op) {
|
|
case MP_BINARY_OP_EQUAL:
|
|
// Two arrays are equal, if their shape, typecode, and elements are equal
|
|
if((ol->m != or->m) || (ol->n != or->n) || (ol->array->typecode != or->array->typecode)) {
|
|
return mp_const_false;
|
|
} else {
|
|
size_t i = ol->bytes;
|
|
uint8_t *l = (uint8_t *)ol->array->items;
|
|
uint8_t *r = (uint8_t *)or->array->items;
|
|
while(i) { // At this point, we can simply compare the bytes, the type is irrelevant
|
|
if(*l++ != *r++) {
|
|
return mp_const_false;
|
|
}
|
|
i--;
|
|
}
|
|
return mp_const_true;
|
|
}
|
|
break;
|
|
case MP_BINARY_OP_LESS:
|
|
case MP_BINARY_OP_LESS_EQUAL:
|
|
case MP_BINARY_OP_MORE:
|
|
case MP_BINARY_OP_MORE_EQUAL:
|
|
case MP_BINARY_OP_ADD:
|
|
case MP_BINARY_OP_SUBTRACT:
|
|
case MP_BINARY_OP_TRUE_DIVIDE:
|
|
case MP_BINARY_OP_MULTIPLY:
|
|
// TODO: I believe, this part can be made significantly smaller (compiled size)
|
|
// by doing only the typecasting in the large ifs, and moving the loops outside
|
|
// These are the upcasting rules
|
|
// float always becomes float
|
|
// operation on identical types preserves type
|
|
// uint8 + int8 => int16
|
|
// uint8 + int16 => int16
|
|
// uint8 + uint16 => uint16
|
|
// int8 + int16 => int16
|
|
// int8 + uint16 => uint16
|
|
// uint16 + int16 => float
|
|
// The parameters of RUN_BINARY_LOOP are
|
|
// typecode of result, type_out, type_left, type_right, lhs operand, rhs operand, operator
|
|
if(ol->array->typecode == NDARRAY_UINT8) {
|
|
if(or->array->typecode == NDARRAY_UINT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_UINT8, uint8_t, uint8_t, uint8_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_INT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, uint8_t, int8_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_UINT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint8_t, uint16_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_INT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, uint8_t, int16_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_FLOAT) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint8_t, mp_float_t, ol, or, op);
|
|
}
|
|
} else if(ol->array->typecode == NDARRAY_INT8) {
|
|
if(or->array->typecode == NDARRAY_UINT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int8_t, uint8_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_INT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT8, int8_t, int8_t, int8_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_UINT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int8_t, uint16_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_INT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int8_t, int16_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_FLOAT) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, int8_t, mp_float_t, ol, or, op);
|
|
}
|
|
} else if(ol->array->typecode == NDARRAY_UINT16) {
|
|
if(or->array->typecode == NDARRAY_UINT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, uint8_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_INT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, int8_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_UINT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, uint16_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_INT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, int16_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_FLOAT) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint8_t, mp_float_t, ol, or, op);
|
|
}
|
|
} else if(ol->array->typecode == NDARRAY_INT16) {
|
|
if(or->array->typecode == NDARRAY_UINT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int16_t, uint8_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_INT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int16_t, int8_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_UINT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, int16_t, uint16_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_INT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int16_t, int16_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_FLOAT) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, mp_float_t, ol, or, op);
|
|
}
|
|
} else if(ol->array->typecode == NDARRAY_FLOAT) {
|
|
if(or->array->typecode == NDARRAY_UINT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, uint8_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_INT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, int8_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_UINT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, uint16_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_INT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, int16_t, ol, or, op);
|
|
} else if(or->array->typecode == NDARRAY_FLOAT) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, mp_float_t, ol, or, op);
|
|
}
|
|
} else { // this should never happen
|
|
mp_raise_TypeError(translate("wrong input type"));
|
|
}
|
|
// this instruction should never be reached, but we have to make the compiler happy
|
|
return MP_OBJ_NULL;
|
|
default:
|
|
return MP_OBJ_NULL; // op not supported
|
|
}
|
|
} else {
|
|
mp_raise_TypeError(translate("wrong operand type on the right hand side"));
|
|
}
|
|
}
|
|
|
|
mp_obj_t ndarray_unary_op(mp_unary_op_t op, mp_obj_t self_in) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
ndarray_obj_t *ndarray = NULL;
|
|
switch (op) {
|
|
case MP_UNARY_OP_LEN:
|
|
if(self->m > 1) {
|
|
return mp_obj_new_int(self->m);
|
|
} else {
|
|
return mp_obj_new_int(self->n);
|
|
}
|
|
break;
|
|
|
|
case MP_UNARY_OP_INVERT:
|
|
if(self->array->typecode == NDARRAY_FLOAT) {
|
|
mp_raise_ValueError(translate("operation is not supported for given type"));
|
|
}
|
|
// we can invert the content byte by byte, there is no need to distinguish
|
|
// between different typecodes
|
|
ndarray = MP_OBJ_TO_PTR(ndarray_copy(self_in));
|
|
uint8_t *array = (uint8_t *)ndarray->array->items;
|
|
for(size_t i=0; i < self->bytes; i++) array[i] = ~array[i];
|
|
return MP_OBJ_FROM_PTR(ndarray);
|
|
break;
|
|
|
|
case MP_UNARY_OP_NEGATIVE:
|
|
ndarray = MP_OBJ_TO_PTR(ndarray_copy(self_in));
|
|
if(self->array->typecode == NDARRAY_UINT8) {
|
|
uint8_t *array = (uint8_t *)ndarray->array->items;
|
|
for(size_t i=0; i < self->array->len; i++) array[i] = -array[i];
|
|
} else if(self->array->typecode == NDARRAY_INT8) {
|
|
int8_t *array = (int8_t *)ndarray->array->items;
|
|
for(size_t i=0; i < self->array->len; i++) array[i] = -array[i];
|
|
} else if(self->array->typecode == NDARRAY_UINT16) {
|
|
uint16_t *array = (uint16_t *)ndarray->array->items;
|
|
for(size_t i=0; i < self->array->len; i++) array[i] = -array[i];
|
|
} else if(self->array->typecode == NDARRAY_INT16) {
|
|
int16_t *array = (int16_t *)ndarray->array->items;
|
|
for(size_t i=0; i < self->array->len; i++) array[i] = -array[i];
|
|
} else {
|
|
mp_float_t *array = (mp_float_t *)ndarray->array->items;
|
|
for(size_t i=0; i < self->array->len; i++) array[i] = -array[i];
|
|
}
|
|
return MP_OBJ_FROM_PTR(ndarray);
|
|
break;
|
|
|
|
case MP_UNARY_OP_POSITIVE:
|
|
return ndarray_copy(self_in);
|
|
|
|
case MP_UNARY_OP_ABS:
|
|
if((self->array->typecode == NDARRAY_UINT8) || (self->array->typecode == NDARRAY_UINT16)) {
|
|
return ndarray_copy(self_in);
|
|
}
|
|
ndarray = MP_OBJ_TO_PTR(ndarray_copy(self_in));
|
|
if((self->array->typecode == NDARRAY_INT8)) {
|
|
int8_t *array = (int8_t *)ndarray->array->items;
|
|
for(size_t i=0; i < self->array->len; i++) {
|
|
if(array[i] < 0) array[i] = -array[i];
|
|
}
|
|
} else if((self->array->typecode == NDARRAY_INT16)) {
|
|
int16_t *array = (int16_t *)ndarray->array->items;
|
|
for(size_t i=0; i < self->array->len; i++) {
|
|
if(array[i] < 0) array[i] = -array[i];
|
|
}
|
|
} else {
|
|
mp_float_t *array = (mp_float_t *)ndarray->array->items;
|
|
for(size_t i=0; i < self->array->len; i++) {
|
|
if(array[i] < 0) array[i] = -array[i];
|
|
}
|
|
}
|
|
return MP_OBJ_FROM_PTR(ndarray);
|
|
break;
|
|
default: return MP_OBJ_NULL; // operator not supported
|
|
}
|
|
}
|