py/formatfloat: Improve accuracy of float formatting code.
Following discussions in PR #16666, this commit updates the float formatting code to improve the `repr` reversibility, i.e. the percentage of valid floating point numbers that do parse back to the same number when formatted by `repr` (in CPython it's 100%). This new code offers a choice of 3 float conversion methods, depending on the desired tradeoff between code size and conversion precision: - BASIC method is the smallest code footprint - APPROX method uses an iterative method to approximate the exact representation, which is a bit slower but but does not have a big impact on code size. It provides `repr` reversibility on >99.8% of the cases in double precision, and on >98.5% in single precision (except with REPR_C, where reversibility is 100% as the last two bits are not taken into account). - EXACT method uses higher-precision floats during conversion, which provides perfect results but has a higher impact on code size. It is faster than APPROX method, and faster than the CPython equivalent implementation. It is however not available on all compilers when using FLOAT_IMPL_DOUBLE. Here is the table comparing the impact of the three conversion methods on code footprint on PYBV10 (using single-precision floats) and reversibility rate for both single-precision and double-precision floats. The table includes current situation as a baseline for the comparison: PYBV10 REPR_C FLOAT DOUBLE current = 364688 12.9% 27.6% 37.9% basic = 364812 85.6% 60.5% 85.7% approx = 365080 100.0% 98.5% 99.8% exact = 366408 100.0% 100.0% 100.0% Signed-off-by: Yoctopuce dev <dev@yoctopuce.com>
This commit is contained in:
parent
e4e1c9f413
commit
dbbaa959c8
24 changed files with 807 additions and 427 deletions
|
|
@ -106,6 +106,7 @@
|
|||
#define MICROPY_PY_OS_URANDOM (1)
|
||||
#define MICROPY_LONGINT_IMPL (MICROPY_LONGINT_IMPL_MPZ)
|
||||
#define MICROPY_FLOAT_IMPL (MICROPY_FLOAT_IMPL_FLOAT)
|
||||
#define MICROPY_FLOAT_FORMAT_IMPL (MICROPY_FLOAT_FORMAT_IMPL_BASIC)
|
||||
#define MICROPY_WARNINGS (1)
|
||||
#define MICROPY_PY_STR_BYTES_CMP_WARN (1)
|
||||
#define MICROPY_STREAMS_POSIX_API (1)
|
||||
|
|
|
|||
|
|
@ -612,26 +612,6 @@ static mp_obj_t extra_coverage(void) {
|
|||
mp_emitter_warning(MP_PASS_CODE_SIZE, "test");
|
||||
}
|
||||
|
||||
// format float
|
||||
{
|
||||
mp_printf(&mp_plat_print, "# format float\n");
|
||||
|
||||
// format with inadequate buffer size
|
||||
char buf[5];
|
||||
mp_format_float(1, buf, sizeof(buf), 'g', 0, '+');
|
||||
mp_printf(&mp_plat_print, "%s\n", buf);
|
||||
|
||||
// format with just enough buffer so that precision must be
|
||||
// set from 0 to 1 twice
|
||||
char buf2[8];
|
||||
mp_format_float(1, buf2, sizeof(buf2), 'g', 0, '+');
|
||||
mp_printf(&mp_plat_print, "%s\n", buf2);
|
||||
|
||||
// format where precision is trimmed to avoid buffer overflow
|
||||
mp_format_float(1, buf2, sizeof(buf2), 'e', 0, '+');
|
||||
mp_printf(&mp_plat_print, "%s\n", buf2);
|
||||
}
|
||||
|
||||
// binary
|
||||
{
|
||||
mp_printf(&mp_plat_print, "# binary\n");
|
||||
|
|
|
|||
819
py/formatfloat.c
819
py/formatfloat.c
|
|
@ -33,369 +33,212 @@
|
|||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
#include "py/formatfloat.h"
|
||||
#include "py/parsenum.h"
|
||||
|
||||
/***********************************************************************
|
||||
|
||||
Routine for converting a arbitrary floating
|
||||
point number into a string.
|
||||
|
||||
The code in this function was inspired from Fred Bayer's pdouble.c.
|
||||
Since pdouble.c was released as Public Domain, I'm releasing this
|
||||
code as public domain as well.
|
||||
The code in this function was inspired from Dave Hylands's previous
|
||||
version, which was itself inspired from Fred Bayer's pdouble.c.
|
||||
|
||||
The original code can be found in https://github.com/dhylands/format-float
|
||||
|
||||
Dave Hylands
|
||||
|
||||
***********************************************************************/
|
||||
|
||||
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
||||
// 1 sign bit, 8 exponent bits, and 23 mantissa bits.
|
||||
// exponent values 0 and 255 are reserved, exponent can be 1 to 254.
|
||||
// exponent is stored with a bias of 127.
|
||||
// The min and max floats are on the order of 1x10^37 and 1x10^-37
|
||||
// Float formatting debug code is intended for use in ports/unix only,
|
||||
// as it uses the libc float printing function as a reference.
|
||||
#define DEBUG_FLOAT_FORMATTING 0
|
||||
|
||||
#define FPTYPE float
|
||||
#define FPCONST(x) x##F
|
||||
#define FPROUND_TO_ONE 0.9999995F
|
||||
#define FPDECEXP 32
|
||||
#define FPMIN_BUF_SIZE 6 // +9e+99
|
||||
#if DEBUG_FLOAT_FORMATTING
|
||||
#define DEBUG_PRINTF(...) fprintf(stderr, __VA_ARGS__)
|
||||
#else
|
||||
#define DEBUG_PRINTF(...)
|
||||
#endif
|
||||
|
||||
#define FLT_SIGN_MASK 0x80000000
|
||||
#if MICROPY_FLOAT_FORMAT_IMPL == MICROPY_FLOAT_FORMAT_IMPL_EXACT || MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
||||
#define MP_FFUINT_FMT "%lu"
|
||||
#else
|
||||
#define MP_FFUINT_FMT "%u"
|
||||
#endif
|
||||
|
||||
static inline int fp_signbit(float x) {
|
||||
mp_float_union_t fb = {x};
|
||||
return fb.i & FLT_SIGN_MASK;
|
||||
static inline int fp_expval(mp_float_t x) {
|
||||
mp_float_union_t fb = { x };
|
||||
return (int)fb.p.exp - MP_FLOAT_EXP_OFFSET;
|
||||
}
|
||||
#define fp_isnan(x) isnan(x)
|
||||
#define fp_isinf(x) isinf(x)
|
||||
static inline int fp_iszero(float x) {
|
||||
mp_float_union_t fb = {x};
|
||||
return fb.i == 0;
|
||||
|
||||
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
||||
|
||||
static inline int fp_isless1(mp_float_t x) {
|
||||
return x < 1.0;
|
||||
}
|
||||
static inline int fp_isless1(float x) {
|
||||
mp_float_union_t fb = {x};
|
||||
|
||||
static inline int fp_iszero(mp_float_t x) {
|
||||
return x == 0.0;
|
||||
}
|
||||
|
||||
#if MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_APPROX
|
||||
static inline int fp_equal(mp_float_t x, mp_float_t y) {
|
||||
return x == y;
|
||||
}
|
||||
#else
|
||||
static inline mp_float_t fp_diff(mp_float_t x, mp_float_t y) {
|
||||
return x - y;
|
||||
}
|
||||
#endif
|
||||
|
||||
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
||||
|
||||
// The functions below are roughly equivalent to the ones above,
|
||||
// but they are optimized to reduce code footprint by skipping
|
||||
// handling for special values such as nan, inf, +/-0.0
|
||||
// for ports where FP support is done in software.
|
||||
//
|
||||
// They also take into account lost bits of REPR_C as needed.
|
||||
|
||||
static inline int fp_isless1(mp_float_t x) {
|
||||
mp_float_union_t fb = { x };
|
||||
return fb.i < 0x3f800000;
|
||||
}
|
||||
|
||||
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
||||
|
||||
#define FPTYPE double
|
||||
#define FPCONST(x) x
|
||||
#define FPROUND_TO_ONE 0.999999999995
|
||||
#define FPDECEXP 256
|
||||
#define FPMIN_BUF_SIZE 7 // +9e+199
|
||||
#define fp_signbit(x) signbit(x)
|
||||
#define fp_isnan(x) isnan(x)
|
||||
#define fp_isinf(x) isinf(x)
|
||||
#define fp_iszero(x) (x == 0)
|
||||
#define fp_isless1(x) (x < 1.0)
|
||||
|
||||
#endif // MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT/DOUBLE
|
||||
|
||||
static inline int fp_expval(FPTYPE x) {
|
||||
mp_float_union_t fb = {x};
|
||||
return (int)((fb.i >> MP_FLOAT_FRAC_BITS) & (~(0xFFFFFFFF << MP_FLOAT_EXP_BITS))) - MP_FLOAT_EXP_OFFSET;
|
||||
static inline int fp_iszero(mp_float_t x) {
|
||||
mp_float_union_t x_check = { x };
|
||||
return !x_check.i; // this is valid for REPR_C as well
|
||||
}
|
||||
|
||||
int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, char sign) {
|
||||
#if MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_APPROX
|
||||
static inline int fp_equal(mp_float_t x, mp_float_t y) {
|
||||
mp_float_union_t x_check = { x };
|
||||
mp_float_union_t y_check = { y };
|
||||
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
|
||||
return (x_check.i & ~3) == (y_check.i & ~3);
|
||||
#else
|
||||
return x_check.i == y_check.i;
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
static inline mp_float_t fp_diff(mp_float_t x, mp_float_t y) {
|
||||
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
|
||||
mp_float_union_t x_check = { x };
|
||||
mp_float_union_t y_check = { y };
|
||||
x_check.i &= ~3;
|
||||
y_check.i &= ~3;
|
||||
return x_check.f - y_check.f;
|
||||
#else
|
||||
return x - y;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
char *s = buf;
|
||||
#endif
|
||||
|
||||
if (buf_size <= FPMIN_BUF_SIZE) {
|
||||
// FPMIN_BUF_SIZE is the minimum size needed to store any FP number.
|
||||
// If the buffer does not have enough room for this (plus null terminator)
|
||||
// then don't try to format the float.
|
||||
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
||||
#define FPMIN_BUF_SIZE 6 // +9e+99
|
||||
#define MAX_MANTISSA_DIGITS (9)
|
||||
#define SAFE_MANTISSA_DIGITS (6)
|
||||
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
||||
#define FPMIN_BUF_SIZE 7 // +9e+199
|
||||
#define MAX_MANTISSA_DIGITS (19)
|
||||
#define SAFE_MANTISSA_DIGITS (16)
|
||||
#endif
|
||||
|
||||
if (buf_size >= 2) {
|
||||
*s++ = '?';
|
||||
}
|
||||
if (buf_size >= 1) {
|
||||
*s = '\0';
|
||||
}
|
||||
return buf_size >= 2;
|
||||
}
|
||||
if (fp_signbit(f) && !fp_isnan(f)) {
|
||||
*s++ = '-';
|
||||
f = -f;
|
||||
} else {
|
||||
if (sign) {
|
||||
*s++ = sign;
|
||||
}
|
||||
}
|
||||
// Internal formatting flags
|
||||
#define FMT_MODE_E 0x01 // render using scientific notation (%e)
|
||||
#define FMT_MODE_G 0x02 // render using general format (%g)
|
||||
#define FMT_MODE_F 0x04 // render using using expanded fixed-point format (%f)
|
||||
#define FMT_E_CASE 0x20 // don't change this value (used for case conversion!)
|
||||
|
||||
// buf_remaining contains bytes available for digits and exponent.
|
||||
// It is buf_size minus room for the sign and null byte.
|
||||
int buf_remaining = buf_size - 1 - (s - buf);
|
||||
|
||||
{
|
||||
char uc = fmt & 0x20;
|
||||
if (fp_isinf(f)) {
|
||||
*s++ = 'I' ^ uc;
|
||||
*s++ = 'N' ^ uc;
|
||||
*s++ = 'F' ^ uc;
|
||||
goto ret;
|
||||
} else if (fp_isnan(f)) {
|
||||
*s++ = 'N' ^ uc;
|
||||
*s++ = 'A' ^ uc;
|
||||
*s++ = 'N' ^ uc;
|
||||
ret:
|
||||
*s = '\0';
|
||||
return s - buf;
|
||||
}
|
||||
}
|
||||
|
||||
if (prec < 0) {
|
||||
prec = 6;
|
||||
}
|
||||
char e_char = 'E' | (fmt & 0x20); // e_char will match case of fmt
|
||||
fmt |= 0x20; // Force fmt to be lowercase
|
||||
char org_fmt = fmt;
|
||||
if (fmt == 'g' && prec == 0) {
|
||||
prec = 1;
|
||||
}
|
||||
int e;
|
||||
int dec = 0;
|
||||
char e_sign = '\0';
|
||||
int num_digits = 0;
|
||||
int signed_e = 0;
|
||||
|
||||
// Approximate power of 10 exponent from binary exponent.
|
||||
// abs(e_guess) is lower bound on abs(power of 10 exponent).
|
||||
int e_guess = (int)(fp_expval(f) * FPCONST(0.3010299956639812)); // 1/log2(10).
|
||||
if (fp_iszero(f)) {
|
||||
e = 0;
|
||||
if (fmt == 'f') {
|
||||
// Truncate precision to prevent buffer overflow
|
||||
if (prec + 2 > buf_remaining) {
|
||||
prec = buf_remaining - 2;
|
||||
}
|
||||
num_digits = prec + 1;
|
||||
} else {
|
||||
// Truncate precision to prevent buffer overflow
|
||||
if (prec + 6 > buf_remaining) {
|
||||
prec = buf_remaining - 6;
|
||||
}
|
||||
if (fmt == 'e') {
|
||||
e_sign = '+';
|
||||
}
|
||||
}
|
||||
} else if (fp_isless1(f)) {
|
||||
FPTYPE f_entry = f; // Save f in case we go to 'f' format.
|
||||
// Build negative exponent
|
||||
e = -e_guess;
|
||||
FPTYPE u_base = MICROPY_FLOAT_C_FUN(pow)(10, -e);
|
||||
while (u_base > f) {
|
||||
++e;
|
||||
u_base = MICROPY_FLOAT_C_FUN(pow)(10, -e);
|
||||
}
|
||||
// Normalize out the inferred unit. Use divide because
|
||||
// pow(10, e) * pow(10, -e) is slightly < 1 for some e in float32
|
||||
// (e.g. print("%.12f" % ((1e13) * (1e-13))))
|
||||
f /= u_base;
|
||||
|
||||
// If the user specified 'g' format, and e is <= 4, then we'll switch
|
||||
// to the fixed format ('f')
|
||||
|
||||
if (fmt == 'f' || (fmt == 'g' && e <= 4)) {
|
||||
fmt = 'f';
|
||||
dec = 0;
|
||||
|
||||
if (org_fmt == 'g') {
|
||||
prec += (e - 1);
|
||||
}
|
||||
|
||||
// truncate precision to prevent buffer overflow
|
||||
if (prec + 2 > buf_remaining) {
|
||||
prec = buf_remaining - 2;
|
||||
}
|
||||
|
||||
num_digits = prec;
|
||||
signed_e = 0;
|
||||
f = f_entry;
|
||||
++num_digits;
|
||||
} else {
|
||||
// For e & g formats, we'll be printing the exponent, so set the
|
||||
// sign.
|
||||
e_sign = '-';
|
||||
dec = 0;
|
||||
|
||||
if (prec > (buf_remaining - FPMIN_BUF_SIZE)) {
|
||||
prec = buf_remaining - FPMIN_BUF_SIZE;
|
||||
if (fmt == 'g') {
|
||||
prec++;
|
||||
}
|
||||
}
|
||||
signed_e = -e;
|
||||
}
|
||||
} else {
|
||||
// Build positive exponent.
|
||||
// We don't modify f at this point to avoid inaccuracies from
|
||||
// scaling it. Instead, we find the product of powers of 10
|
||||
// that is not greater than it, and use that to start the
|
||||
// mantissa.
|
||||
e = e_guess;
|
||||
FPTYPE next_u = MICROPY_FLOAT_C_FUN(pow)(10, e + 1);
|
||||
while (f >= next_u) {
|
||||
++e;
|
||||
next_u = MICROPY_FLOAT_C_FUN(pow)(10, e + 1);
|
||||
}
|
||||
|
||||
// If the user specified fixed format (fmt == 'f') and e makes the
|
||||
// number too big to fit into the available buffer, then we'll
|
||||
// switch to the 'e' format.
|
||||
|
||||
if (fmt == 'f') {
|
||||
if (e >= buf_remaining) {
|
||||
fmt = 'e';
|
||||
} else if ((e + prec + 2) > buf_remaining) {
|
||||
prec = buf_remaining - e - 2;
|
||||
if (prec < 0) {
|
||||
// This means no decimal point, so we can add one back
|
||||
// for the decimal.
|
||||
prec++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (fmt == 'e' && prec > (buf_remaining - FPMIN_BUF_SIZE)) {
|
||||
prec = buf_remaining - FPMIN_BUF_SIZE;
|
||||
}
|
||||
if (fmt == 'g') {
|
||||
// Truncate precision to prevent buffer overflow
|
||||
if (prec + (FPMIN_BUF_SIZE - 1) > buf_remaining) {
|
||||
prec = buf_remaining - (FPMIN_BUF_SIZE - 1);
|
||||
}
|
||||
}
|
||||
// If the user specified 'g' format, and e is < prec, then we'll switch
|
||||
// to the fixed format.
|
||||
|
||||
if (fmt == 'g' && e < prec) {
|
||||
fmt = 'f';
|
||||
prec -= (e + 1);
|
||||
}
|
||||
if (fmt == 'f') {
|
||||
dec = e;
|
||||
num_digits = prec + e + 1;
|
||||
} else {
|
||||
e_sign = '+';
|
||||
}
|
||||
signed_e = e;
|
||||
}
|
||||
if (prec < 0) {
|
||||
// This can happen when the prec is trimmed to prevent buffer overflow
|
||||
prec = 0;
|
||||
}
|
||||
|
||||
// At this point e contains the absolute value of the power of 10 exponent.
|
||||
// (dec + 1) == the number of dgits before the decimal.
|
||||
|
||||
// For e, prec is # digits after the decimal
|
||||
// For f, prec is # digits after the decimal
|
||||
// For g, prec is the max number of significant digits
|
||||
//
|
||||
// For e & g there will be a single digit before the decimal
|
||||
// for f there will be e digits before the decimal
|
||||
|
||||
if (fmt == 'e') {
|
||||
num_digits = prec + 1;
|
||||
} else if (fmt == 'g') {
|
||||
if (prec == 0) {
|
||||
prec = 1;
|
||||
}
|
||||
num_digits = prec;
|
||||
}
|
||||
|
||||
int d = 0;
|
||||
for (int digit_index = signed_e; num_digits >= 0; --digit_index) {
|
||||
FPTYPE u_base = FPCONST(1.0);
|
||||
if (digit_index > 0) {
|
||||
// Generate 10^digit_index for positive digit_index.
|
||||
u_base = MICROPY_FLOAT_C_FUN(pow)(10, digit_index);
|
||||
}
|
||||
for (d = 0; d < 9; ++d) {
|
||||
if (f < u_base) {
|
||||
break;
|
||||
}
|
||||
f -= u_base;
|
||||
}
|
||||
// We calculate one more digit than we display, to use in rounding
|
||||
// below. So only emit the digit if it's one that we display.
|
||||
if (num_digits > 0) {
|
||||
// Emit this number (the leading digit).
|
||||
*s++ = '0' + d;
|
||||
if (dec == 0 && prec > 0) {
|
||||
static char *mp_prepend_zeros(char *s, int cnt) {
|
||||
*s++ = '0';
|
||||
*s++ = '.';
|
||||
while (cnt > 0) {
|
||||
*s++ = '0';
|
||||
cnt--;
|
||||
}
|
||||
}
|
||||
--dec;
|
||||
--num_digits;
|
||||
if (digit_index <= 0) {
|
||||
// Once we get below 1.0, we scale up f instead of calculating
|
||||
// negative powers of 10 in u_base. This provides better
|
||||
// renditions of exact decimals like 1/16 etc.
|
||||
f *= FPCONST(10.0);
|
||||
}
|
||||
}
|
||||
// Rounding. If the next digit to print is >= 5, round up.
|
||||
if (d >= 5) {
|
||||
char *rs = s;
|
||||
rs--;
|
||||
while (1) {
|
||||
if (*rs == '.') {
|
||||
rs--;
|
||||
continue;
|
||||
}
|
||||
if (*rs < '0' || *rs > '9') {
|
||||
// + or -
|
||||
rs++; // So we sit on the digit to the right of the sign
|
||||
break;
|
||||
}
|
||||
if (*rs < '9') {
|
||||
(*rs)++;
|
||||
break;
|
||||
}
|
||||
*rs = '0';
|
||||
if (rs == buf) {
|
||||
break;
|
||||
}
|
||||
rs--;
|
||||
}
|
||||
if (*rs == '0') {
|
||||
// We need to insert a 1
|
||||
if (rs[1] == '.' && fmt != 'f') {
|
||||
// We're going to round 9.99 to 10.00
|
||||
// Move the decimal point
|
||||
rs[0] = '.';
|
||||
rs[1] = '0';
|
||||
if (e_sign == '-') {
|
||||
e--;
|
||||
if (e == 0) {
|
||||
e_sign = '+';
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
// Helper to convert a decimal mantissa (provided as an mp_large_float_uint_t) to string
|
||||
static int mp_format_mantissa(mp_large_float_uint_t mantissa, mp_large_float_uint_t mantissa_cap, char *buf, char *s,
|
||||
int num_digits, int max_exp_zeros, int trailing_zeros, int dec, int e, int fmt_flags) {
|
||||
|
||||
DEBUG_PRINTF("mantissa=" MP_FFUINT_FMT " exp=%d (cap=" MP_FFUINT_FMT "):\n", mantissa, e, mantissa_cap);
|
||||
|
||||
if (mantissa) {
|
||||
// If rounding/searching created an extra digit or removed too many, fix mantissa first
|
||||
if (mantissa >= mantissa_cap) {
|
||||
if (fmt_flags & FMT_MODE_F) {
|
||||
assert(e >= 0);
|
||||
num_digits++;
|
||||
dec++;
|
||||
} else {
|
||||
mantissa /= 10;
|
||||
e++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// When 'g' format is used, replace small exponents by explicit zeros
|
||||
if ((fmt_flags & FMT_MODE_G) && e != 0) {
|
||||
if (e >= 0) {
|
||||
// If 0 < e < max_exp_zeros, expand positive exponent into trailing zeros
|
||||
if (e < max_exp_zeros) {
|
||||
dec += e;
|
||||
if (dec >= num_digits) {
|
||||
trailing_zeros = dec - (num_digits - 1);
|
||||
}
|
||||
e = 0;
|
||||
}
|
||||
} else {
|
||||
// Need at extra digit at the end to make room for the leading '1'
|
||||
// but if we're at the buffer size limit, just drop the final digit.
|
||||
if ((size_t)(s + 1 - buf) < buf_size) {
|
||||
// If -4 <= e < 0, expand negative exponent without losing significant digits
|
||||
if (e >= -4) {
|
||||
int cnt = 0;
|
||||
while (e < 0 && !(mantissa % 10)) {
|
||||
mantissa /= 10;
|
||||
cnt++;
|
||||
e++;
|
||||
}
|
||||
num_digits -= cnt;
|
||||
s = mp_prepend_zeros(s, cnt - e - 1);
|
||||
dec = 255;
|
||||
e = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Convert the integer mantissa to string
|
||||
for (int digit = num_digits - 1; digit >= 0; digit--) {
|
||||
int digit_ofs = (digit > dec ? digit + 1 : digit);
|
||||
s[digit_ofs] = '0' + (int)(mantissa % 10);
|
||||
mantissa /= 10;
|
||||
}
|
||||
int dot = (dec >= 255);
|
||||
if (dec + 1 < num_digits) {
|
||||
dot = 1;
|
||||
s++;
|
||||
s[dec] = '.';
|
||||
}
|
||||
}
|
||||
char *ss = s;
|
||||
while (ss > rs) {
|
||||
*ss = ss[-1];
|
||||
ss--;
|
||||
}
|
||||
*rs = '1';
|
||||
}
|
||||
}
|
||||
s += num_digits;
|
||||
#if DEBUG_FLOAT_FORMATTING
|
||||
*s = 0;
|
||||
DEBUG_PRINTF(" = %s exp=%d num_digits=%d zeros=%d dec=%d\n", buf, e, num_digits, trailing_zeros, dec);
|
||||
#endif
|
||||
|
||||
// verify that we did not overrun the input buffer so far
|
||||
assert((size_t)(s + 1 - buf) <= buf_size);
|
||||
|
||||
if (org_fmt == 'g' && prec > 0) {
|
||||
// Remove trailing zeros and a trailing decimal point
|
||||
// Append or remove trailing zeros, as required by format
|
||||
if (trailing_zeros) {
|
||||
dec -= num_digits - 1;
|
||||
while (trailing_zeros--) {
|
||||
if (!dec--) {
|
||||
*s++ = '.';
|
||||
dot = 1;
|
||||
}
|
||||
*s++ = '0';
|
||||
}
|
||||
}
|
||||
if (fmt_flags & FMT_MODE_G) {
|
||||
// 'g' format requires to remove trailing zeros after decimal point
|
||||
if (dot) {
|
||||
while (s[-1] == '0') {
|
||||
s--;
|
||||
}
|
||||
|
|
@ -403,22 +246,324 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
|
|||
s--;
|
||||
}
|
||||
}
|
||||
// Append the exponent
|
||||
if (e_sign) {
|
||||
*s++ = e_char;
|
||||
*s++ = e_sign;
|
||||
if (FPMIN_BUF_SIZE == 7 && e >= 100) {
|
||||
}
|
||||
|
||||
// Append the exponent if needed
|
||||
if (((e != 0) || (fmt_flags & FMT_MODE_E)) && !(fmt_flags & FMT_MODE_F)) {
|
||||
*s++ = 'E' | (fmt_flags & FMT_E_CASE);
|
||||
if (e >= 0) {
|
||||
*s++ = '+';
|
||||
} else {
|
||||
*s++ = '-';
|
||||
e = -e;
|
||||
}
|
||||
if (e >= 100) {
|
||||
*s++ = '0' + (e / 100);
|
||||
}
|
||||
*s++ = '0' + ((e / 10) % 10);
|
||||
*s++ = '0' + (e % 10);
|
||||
}
|
||||
*s = '\0';
|
||||
|
||||
// verify that we did not overrun the input buffer
|
||||
assert((size_t)(s + 1 - buf) <= buf_size);
|
||||
DEBUG_PRINTF(" ===> %s\n", buf);
|
||||
|
||||
return s - buf;
|
||||
}
|
||||
|
||||
// minimal value expected for buf_size, to avoid checking everywhere for overflow
|
||||
#define MIN_BUF_SIZE (MAX_MANTISSA_DIGITS + 10)
|
||||
|
||||
int mp_format_float(mp_float_t f_entry, char *buf_entry, size_t buf_size, char fmt, int prec, char sign) {
|
||||
assert(buf_size >= MIN_BUF_SIZE);
|
||||
|
||||
// Handle sign
|
||||
mp_float_t f = f_entry;
|
||||
char *buf = buf_entry;
|
||||
if (signbit(f_entry) && !isnan(f_entry)) {
|
||||
f = -f;
|
||||
sign = '-';
|
||||
}
|
||||
if (sign) {
|
||||
*buf++ = sign;
|
||||
buf_size--;
|
||||
}
|
||||
|
||||
// Handle inf/nan
|
||||
char uc = fmt & 0x20;
|
||||
{
|
||||
char *s = buf;
|
||||
if (isinf(f)) {
|
||||
*s++ = 'I' ^ uc;
|
||||
*s++ = 'N' ^ uc;
|
||||
*s++ = 'F' ^ uc;
|
||||
goto ret;
|
||||
} else if (isnan(f)) {
|
||||
*s++ = 'N' ^ uc;
|
||||
*s++ = 'A' ^ uc;
|
||||
*s++ = 'N' ^ uc;
|
||||
ret:
|
||||
*s = '\0';
|
||||
return s - buf_entry;
|
||||
}
|
||||
}
|
||||
|
||||
// Decode format character
|
||||
int fmt_flags = (unsigned char)uc; // setup FMT_E_CASE, clear all other bits
|
||||
char lofmt = (char)(fmt | 0x20); // fmt in lowercase
|
||||
if (lofmt == 'f') {
|
||||
fmt_flags |= FMT_MODE_F;
|
||||
} else if (lofmt == 'g') {
|
||||
fmt_flags |= FMT_MODE_G;
|
||||
} else {
|
||||
fmt_flags |= FMT_MODE_E;
|
||||
}
|
||||
|
||||
// When precision is unspecified, default to 6
|
||||
if (prec < 0) {
|
||||
prec = 6;
|
||||
}
|
||||
// Use high precision for `repr`, but switch to exponent mode
|
||||
// after 16 digits in any case to match CPython behaviour
|
||||
int max_exp_zeros = (prec < (int)buf_size - 3 ? prec : (int)buf_size - 3);
|
||||
if (prec == MP_FLOAT_REPR_PREC) {
|
||||
prec = MAX_MANTISSA_DIGITS;
|
||||
max_exp_zeros = 16;
|
||||
}
|
||||
|
||||
// Precompute the exact decimal exponent of f, such that
|
||||
// abs(e) is lower bound on abs(power of 10 exponent).
|
||||
int e = 0;
|
||||
if (!fp_iszero(f)) {
|
||||
// Approximate power of 10 exponent from binary exponent.
|
||||
e = (int)(fp_expval(f) * MICROPY_FLOAT_CONST(0.3010299956639812)); // 1/log2(10).
|
||||
int positive_exp = !fp_isless1(f);
|
||||
mp_float_t u_base = (mp_float_t)mp_decimal_exp((mp_large_float_t)1.0, e + positive_exp);
|
||||
while ((f >= u_base) == positive_exp) {
|
||||
e += (positive_exp ? 1 : -1);
|
||||
u_base = (mp_float_t)mp_decimal_exp((mp_large_float_t)1.0, e + positive_exp);
|
||||
}
|
||||
}
|
||||
|
||||
// For 'e' format, prec is # digits after the decimal
|
||||
// For 'f' format, prec is # digits after the decimal
|
||||
// For 'g' format, prec is the max number of significant digits
|
||||
//
|
||||
// For 'e' & 'g' format, there will be a single digit before the decimal
|
||||
// For 'f' format, zeros must be expanded instead of using an exponent.
|
||||
// Make sure there is enough room in the buffer for them, or switch to format 'g'.
|
||||
if ((fmt_flags & FMT_MODE_F) && e > 0) {
|
||||
int req_size = e + prec + 2;
|
||||
if (req_size > (int)buf_size) {
|
||||
fmt_flags ^= FMT_MODE_F;
|
||||
fmt_flags |= FMT_MODE_G;
|
||||
prec++;
|
||||
}
|
||||
}
|
||||
|
||||
// To work independently of the format, we precompute:
|
||||
// - the max number of significant digits to produce
|
||||
// - the number of leading zeros to prepend (mode f only)
|
||||
// - the number of trailing zeros to append
|
||||
int max_digits = prec;
|
||||
int lead_zeros = 0;
|
||||
int trail_zeros = 0;
|
||||
if (fmt_flags & FMT_MODE_F) {
|
||||
if (max_digits > (int)buf_size - 3) {
|
||||
// cannot satisfy requested number of decimals given buf_size, sorry
|
||||
max_digits = (int)buf_size - 3;
|
||||
}
|
||||
if (e < 0) {
|
||||
if (max_digits > 2 && e < -2) {
|
||||
// Insert explicit leading zeros
|
||||
lead_zeros = (-e < max_digits ? -e : max_digits) - 2;
|
||||
max_digits -= lead_zeros;
|
||||
} else {
|
||||
max_digits++;
|
||||
}
|
||||
} else {
|
||||
max_digits += e + 1;
|
||||
}
|
||||
} else {
|
||||
if (!(fmt_flags & FMT_MODE_G) || max_digits == 0) {
|
||||
max_digits++;
|
||||
}
|
||||
}
|
||||
if (max_digits > MAX_MANTISSA_DIGITS) {
|
||||
// use trailing zeros to avoid overflowing the mantissa
|
||||
trail_zeros = max_digits - MAX_MANTISSA_DIGITS;
|
||||
max_digits = MAX_MANTISSA_DIGITS;
|
||||
}
|
||||
int overhead = (fmt_flags & FMT_MODE_F ? 3 : FPMIN_BUF_SIZE + 1);
|
||||
if (trail_zeros > (int)buf_size - max_digits - overhead) {
|
||||
// cannot satisfy requested number of decimals given buf_size, sorry
|
||||
trail_zeros = (int)buf_size - max_digits - overhead;
|
||||
}
|
||||
|
||||
// When the caller asks for more precision than available for sure,
|
||||
// Look for a shorter (rounded) representation first, and only dig
|
||||
// into more digits if there is no short representation.
|
||||
int num_digits = (SAFE_MANTISSA_DIGITS < max_digits ? SAFE_MANTISSA_DIGITS : max_digits);
|
||||
try_again:
|
||||
;
|
||||
|
||||
char *s = buf;
|
||||
int extra_zeros = trail_zeros + (max_digits - num_digits);
|
||||
int decexp;
|
||||
int dec = 0;
|
||||
|
||||
if (fp_iszero(f)) {
|
||||
// no need for scaling 0.0
|
||||
decexp = 0;
|
||||
} else if (fmt_flags & FMT_MODE_F) {
|
||||
decexp = num_digits - 1;
|
||||
if (e < 0) {
|
||||
// Negative exponent: we keep a single leading zero in the mantissa,
|
||||
// as using more would waste precious digits needed for accuracy.
|
||||
if (lead_zeros > 0) {
|
||||
// We are using leading zeros
|
||||
s = mp_prepend_zeros(s, lead_zeros);
|
||||
decexp += lead_zeros + 1;
|
||||
dec = 255; // no decimal dot
|
||||
} else {
|
||||
// Small negative exponent, work directly on the mantissa
|
||||
dec = 0;
|
||||
}
|
||||
} else {
|
||||
// Positive exponent: we will add trailing zeros separately
|
||||
decexp -= e;
|
||||
dec = e;
|
||||
}
|
||||
} else {
|
||||
decexp = num_digits - e - 1;
|
||||
}
|
||||
DEBUG_PRINTF("input=%.19g e=%d fmt=%c max_d=%d num_d=%d decexp=%d dec=%d l0=%d r0=%d\n",
|
||||
(double)f, e, lofmt, max_digits, num_digits, decexp, dec, lead_zeros, extra_zeros);
|
||||
|
||||
// At this point,
|
||||
// - buf points to beginning of output buffer for the unsigned representation
|
||||
// - num_digits == the number of mantissa digits to add
|
||||
// - (dec + 1) == the number of digits to print before adding a decimal point
|
||||
// - decexp == the power of 10 exponent to apply to f to get the decimal mantissa
|
||||
// - e == the power of 10 exponent to append ('e' or 'g' format)
|
||||
mp_large_float_uint_t mantissa_cap = 10;
|
||||
for (int n = 1; n < num_digits; n++) {
|
||||
mantissa_cap *= 10;
|
||||
}
|
||||
|
||||
// Build the decimal mantissa into a large uint
|
||||
mp_large_float_uint_t mantissa = 1;
|
||||
if (sizeof(mp_large_float_t) == sizeof(mp_float_t) && num_digits > SAFE_MANTISSA_DIGITS && decexp > 1) {
|
||||
// if we don't have large floats, use integer multiply to produce the last digits
|
||||
if (num_digits > SAFE_MANTISSA_DIGITS + 1 && decexp > 2) {
|
||||
mantissa = 100;
|
||||
decexp -= 2;
|
||||
} else {
|
||||
mantissa = 10;
|
||||
decexp -= 1;
|
||||
}
|
||||
}
|
||||
mp_large_float_t mantissa_f = mp_decimal_exp((mp_large_float_t)f, decexp);
|
||||
mantissa *= (mp_large_float_uint_t)(mantissa_f + (mp_large_float_t)0.5);
|
||||
DEBUG_PRINTF("input=%.19g fmt=%c num_digits=%d dec=%d mantissa=" MP_FFUINT_FMT " r0=%d\n", (double)f, lofmt, num_digits, dec, mantissa, extra_zeros);
|
||||
|
||||
// Finally convert the decimal mantissa to a floating-point string, according to formatting rules
|
||||
int reprlen = mp_format_mantissa(mantissa, mantissa_cap, buf, s, num_digits, max_exp_zeros, extra_zeros, dec, e, fmt_flags);
|
||||
assert(reprlen + 1 <= (int)buf_size);
|
||||
|
||||
#if MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_APPROX
|
||||
|
||||
if (num_digits < max_digits) {
|
||||
// The initial precision might not be sufficient for an exact representation
|
||||
// for all numbers. If the result is not exact, restart using next precision.
|
||||
// parse the resulting number and compare against the original
|
||||
mp_float_t check;
|
||||
DEBUG_PRINTF("input=%.19g, compare to float('%s')\n", (double)f, buf);
|
||||
mp_parse_float_internal(buf, reprlen, &check);
|
||||
if (!fp_equal(check, f)) {
|
||||
num_digits++;
|
||||
DEBUG_PRINTF("Not perfect, retry using more digits (%d)\n", num_digits);
|
||||
goto try_again;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// The initial decimal mantissa might not have been be completely accurate due
|
||||
// to the previous loating point operations. The best way to verify this is to
|
||||
// parse the resulting number and compare against the original
|
||||
mp_float_t check;
|
||||
DEBUG_PRINTF("input=%.19g, compare to float('%s')\n", (double)f, buf);
|
||||
mp_parse_float_internal(buf, reprlen, &check);
|
||||
mp_float_t diff = fp_diff(check, f);
|
||||
mp_float_t best_diff = diff;
|
||||
mp_large_float_uint_t best_mantissa = mantissa;
|
||||
|
||||
if (fp_iszero(diff)) {
|
||||
// we have a perfect match
|
||||
DEBUG_PRINTF(MP_FFUINT_FMT ": perfect match (direct)\n", mantissa);
|
||||
} else {
|
||||
// In order to get the best possible representation, we will perform a
|
||||
// dichotomic search for a reversible representation.
|
||||
// This will also provide optimal rounding on the fly.
|
||||
unsigned err_range = 1;
|
||||
if (num_digits > SAFE_MANTISSA_DIGITS) {
|
||||
err_range <<= 3 * (num_digits - SAFE_MANTISSA_DIGITS);
|
||||
}
|
||||
int maxruns = 3 + 3 * (MAX_MANTISSA_DIGITS - SAFE_MANTISSA_DIGITS);
|
||||
while (maxruns-- > 0) {
|
||||
// update mantissa according to dichotomic search
|
||||
if (signbit(diff)) {
|
||||
mantissa += err_range;
|
||||
} else {
|
||||
// mantissa is expected to always have more significant digits than err_range
|
||||
assert(mantissa >= err_range);
|
||||
mantissa -= err_range;
|
||||
}
|
||||
// retry conversion
|
||||
reprlen = mp_format_mantissa(mantissa, mantissa_cap, buf, s, num_digits, max_exp_zeros, extra_zeros, dec, e, fmt_flags);
|
||||
assert(reprlen + 1 <= (int)buf_size);
|
||||
DEBUG_PRINTF("input=%.19g, compare to float('%s')\n", (double)f, buf);
|
||||
mp_parse_float_internal(buf, reprlen, &check);
|
||||
DEBUG_PRINTF("check=%.19g num_digits=%d e=%d mantissa=" MP_FFUINT_FMT "\n", (double)check, num_digits, e, mantissa);
|
||||
diff = fp_diff(check, f);
|
||||
if (fp_iszero(diff)) {
|
||||
// we have a perfect match
|
||||
DEBUG_PRINTF(MP_FFUINT_FMT ": perfect match\n", mantissa);
|
||||
break;
|
||||
}
|
||||
// keep track of our best estimate
|
||||
mp_float_t delta = MICROPY_FLOAT_C_FUN(fabs)(diff) - MICROPY_FLOAT_C_FUN(fabs)(best_diff);
|
||||
if (signbit(delta) || (fp_iszero(delta) && !(mantissa % 10u))) {
|
||||
best_diff = diff;
|
||||
best_mantissa = mantissa;
|
||||
}
|
||||
// string repr is not perfect: continue a dichotomic improvement
|
||||
DEBUG_PRINTF(MP_FFUINT_FMT ": %.19g, err_range=%d\n", mantissa, (double)check, err_range);
|
||||
if (err_range > 1) {
|
||||
err_range >>= 1;
|
||||
} else {
|
||||
// We have tried all possible mantissa, without finding a reversible repr.
|
||||
// Check if we have an alternate precision to try.
|
||||
if (num_digits < max_digits) {
|
||||
num_digits++;
|
||||
DEBUG_PRINTF("Failed to find a perfect match, try with more digits (%d)\n", num_digits);
|
||||
goto try_again;
|
||||
}
|
||||
// Otherwise, keep the closest one, which is either the first one or the last one.
|
||||
if (mantissa == best_mantissa) {
|
||||
// Last guess is the best one
|
||||
DEBUG_PRINTF(MP_FFUINT_FMT ": last guess was the best one\n", mantissa);
|
||||
} else {
|
||||
// We had a better guess earlier
|
||||
DEBUG_PRINTF(MP_FFUINT_FMT ": use best guess\n", mantissa);
|
||||
reprlen = mp_format_mantissa(best_mantissa, mantissa_cap, buf, s, num_digits, max_exp_zeros, extra_zeros, dec, e, fmt_flags);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
return buf + reprlen - buf_entry;
|
||||
}
|
||||
|
||||
#endif // MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_NONE
|
||||
|
|
|
|||
|
|
@ -29,6 +29,7 @@
|
|||
#include "py/mpconfig.h"
|
||||
|
||||
#if MICROPY_PY_BUILTINS_FLOAT
|
||||
#define MP_FLOAT_REPR_PREC (99) // magic `prec` value for optimal `repr` behaviour
|
||||
int mp_format_float(mp_float_t f, char *buf, size_t bufSize, char fmt, int prec, char sign);
|
||||
#endif
|
||||
|
||||
|
|
|
|||
19
py/misc.h
19
py/misc.h
|
|
@ -277,6 +277,25 @@ typedef union _mp_float_union_t {
|
|||
mp_float_uint_t i;
|
||||
} mp_float_union_t;
|
||||
|
||||
#if MICROPY_FLOAT_FORMAT_IMPL == MICROPY_FLOAT_FORMAT_IMPL_EXACT
|
||||
|
||||
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
||||
// Exact float conversion requires using internally a bigger sort of floating point
|
||||
typedef double mp_large_float_t;
|
||||
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
||||
typedef long double mp_large_float_t;
|
||||
#endif
|
||||
// Always use a 64 bit mantissa for formatting and parsing
|
||||
typedef uint64_t mp_large_float_uint_t;
|
||||
|
||||
#else // MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_EXACT
|
||||
|
||||
// No bigger floating points
|
||||
typedef mp_float_t mp_large_float_t;
|
||||
typedef mp_float_uint_t mp_large_float_uint_t;
|
||||
|
||||
#endif
|
||||
|
||||
#endif // MICROPY_PY_BUILTINS_FLOAT
|
||||
|
||||
/** ROM string compression *************/
|
||||
|
|
|
|||
|
|
@ -861,6 +861,27 @@ typedef double mp_float_t;
|
|||
#define MICROPY_PY_BUILTINS_COMPLEX (MICROPY_PY_BUILTINS_FLOAT)
|
||||
#endif
|
||||
|
||||
// Float to string conversion implementations
|
||||
//
|
||||
// Note that the EXACT method is only available if the compiler supports
|
||||
// floating points larger than mp_float_t:
|
||||
// - with MICROPY_FLOAT_IMPL_FLOAT, the compiler needs to support `double`
|
||||
// - with MICROPY_FLOAT_IMPL_DOUBLE, the compiler needs to support `long double`
|
||||
//
|
||||
#define MICROPY_FLOAT_FORMAT_IMPL_BASIC (0) // smallest code, but inexact
|
||||
#define MICROPY_FLOAT_FORMAT_IMPL_APPROX (1) // slightly bigger, almost perfect
|
||||
#define MICROPY_FLOAT_FORMAT_IMPL_EXACT (2) // bigger code, and 100% exact repr
|
||||
|
||||
#ifndef MICROPY_FLOAT_FORMAT_IMPL
|
||||
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
||||
#define MICROPY_FLOAT_FORMAT_IMPL (MICROPY_FLOAT_FORMAT_IMPL_APPROX)
|
||||
#elif defined(__SIZEOF_LONG_DOUBLE__) && __SIZEOF_LONG_DOUBLE__ > __SIZEOF_DOUBLE__
|
||||
#define MICROPY_FLOAT_FORMAT_IMPL (MICROPY_FLOAT_FORMAT_IMPL_EXACT)
|
||||
#else
|
||||
#define MICROPY_FLOAT_FORMAT_IMPL (MICROPY_FLOAT_FORMAT_IMPL_APPROX)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Whether to use the native _Float16 for 16-bit float support
|
||||
#ifndef MICROPY_FLOAT_USE_NATIVE_FLT16
|
||||
#ifdef __FLT16_MAX__
|
||||
|
|
|
|||
12
py/mpprint.c
12
py/mpprint.c
|
|
@ -338,7 +338,7 @@ int mp_print_mp_int(const mp_print_t *print, mp_obj_t x, unsigned int base, int
|
|||
|
||||
#if MICROPY_PY_BUILTINS_FLOAT
|
||||
int mp_print_float(const mp_print_t *print, mp_float_t f, char fmt, unsigned int flags, char fill, int width, int prec) {
|
||||
char buf[32];
|
||||
char buf[36];
|
||||
char sign = '\0';
|
||||
int chrs = 0;
|
||||
|
||||
|
|
@ -349,11 +349,17 @@ int mp_print_float(const mp_print_t *print, mp_float_t f, char fmt, unsigned int
|
|||
sign = ' ';
|
||||
}
|
||||
|
||||
int len = mp_format_float(f, buf, sizeof(buf), fmt, prec, sign);
|
||||
int len = mp_format_float(f, buf, sizeof(buf) - 3, fmt, prec, sign);
|
||||
|
||||
char *s = buf;
|
||||
|
||||
if ((flags & PF_FLAG_ADD_PERCENT) && (size_t)(len + 1) < sizeof(buf)) {
|
||||
if ((flags & PF_FLAG_ALWAYS_DECIMAL) && strchr(buf, '.') == NULL && strchr(buf, 'e') == NULL && strchr(buf, 'n') == NULL) {
|
||||
buf[len++] = '.';
|
||||
buf[len++] = '0';
|
||||
buf[len] = '\0';
|
||||
}
|
||||
|
||||
if (flags & PF_FLAG_ADD_PERCENT) {
|
||||
buf[len++] = '%';
|
||||
buf[len] = '\0';
|
||||
}
|
||||
|
|
|
|||
|
|
@ -36,6 +36,7 @@
|
|||
#define PF_FLAG_CENTER_ADJUST (0x020)
|
||||
#define PF_FLAG_ADD_PERCENT (0x040)
|
||||
#define PF_FLAG_SHOW_OCTAL_LETTER (0x080)
|
||||
#define PF_FLAG_ALWAYS_DECIMAL (0x100)
|
||||
#define PF_FLAG_SEP_POS (9) // must be above all the above PF_FLAGs
|
||||
|
||||
#if MICROPY_PY_IO && MICROPY_PY_SYS_STDFILES
|
||||
|
|
|
|||
|
|
@ -45,29 +45,18 @@ typedef struct _mp_obj_complex_t {
|
|||
static void complex_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
|
||||
(void)kind;
|
||||
mp_obj_complex_t *o = MP_OBJ_TO_PTR(o_in);
|
||||
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
||||
char buf[16];
|
||||
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
|
||||
const int precision = 6;
|
||||
#else
|
||||
const int precision = 7;
|
||||
#endif
|
||||
#else
|
||||
char buf[32];
|
||||
const int precision = 16;
|
||||
#endif
|
||||
if (o->real == 0) {
|
||||
mp_format_float(o->imag, buf, sizeof(buf), 'g', precision, '\0');
|
||||
mp_printf(print, "%sj", buf);
|
||||
const char *suffix;
|
||||
int flags = 0;
|
||||
if (o->real != 0) {
|
||||
mp_print_str(print, "(");
|
||||
mp_print_float(print, o->real, 'g', 0, '\0', -1, MP_FLOAT_REPR_PREC);
|
||||
flags = PF_FLAG_SHOW_SIGN;
|
||||
suffix = "j)";
|
||||
} else {
|
||||
mp_format_float(o->real, buf, sizeof(buf), 'g', precision, '\0');
|
||||
mp_printf(print, "(%s", buf);
|
||||
if (o->imag >= 0 || isnan(o->imag)) {
|
||||
mp_print_str(print, "+");
|
||||
}
|
||||
mp_format_float(o->imag, buf, sizeof(buf), 'g', precision, '\0');
|
||||
mp_printf(print, "%sj)", buf);
|
||||
suffix = "j";
|
||||
}
|
||||
mp_print_float(print, o->imag, 'g', flags, '\0', -1, MP_FLOAT_REPR_PREC);
|
||||
mp_print_str(print, suffix);
|
||||
}
|
||||
|
||||
static mp_obj_t complex_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
||||
|
|
|
|||
|
|
@ -110,23 +110,7 @@ mp_int_t mp_float_hash(mp_float_t src) {
|
|||
static void float_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
|
||||
(void)kind;
|
||||
mp_float_t o_val = mp_obj_float_get(o_in);
|
||||
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
||||
char buf[16];
|
||||
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
|
||||
const int precision = 6;
|
||||
#else
|
||||
const int precision = 7;
|
||||
#endif
|
||||
#else
|
||||
char buf[32];
|
||||
const int precision = 16;
|
||||
#endif
|
||||
mp_format_float(o_val, buf, sizeof(buf), 'g', precision, '\0');
|
||||
mp_print_str(print, buf);
|
||||
if (strchr(buf, '.') == NULL && strchr(buf, 'e') == NULL && strchr(buf, 'n') == NULL) {
|
||||
// Python floats always have decimal point (unless inf or nan)
|
||||
mp_print_str(print, ".0");
|
||||
}
|
||||
mp_print_float(print, o_val, 'g', PF_FLAG_ALWAYS_DECIMAL, '\0', -1, MP_FLOAT_REPR_PREC);
|
||||
}
|
||||
|
||||
static mp_obj_t float_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
||||
|
|
|
|||
|
|
@ -210,7 +210,7 @@ typedef enum {
|
|||
} parse_dec_in_t;
|
||||
|
||||
// MANTISSA_MAX is used to retain precision while not overflowing mantissa
|
||||
#define MANTISSA_MAX (sizeof(mp_float_uint_t) == 8 ? 0x1999999999999998ULL : 0x19999998U)
|
||||
#define MANTISSA_MAX (sizeof(mp_large_float_uint_t) == 8 ? 0x1999999999999998ULL : 0x19999998U)
|
||||
|
||||
// MAX_EXACT_POWER_OF_5 is the largest value of x so that 5^x can be stored exactly in a float
|
||||
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
||||
|
|
@ -220,11 +220,45 @@ typedef enum {
|
|||
#endif
|
||||
|
||||
// Helper to compute `num * (10.0 ** dec_exp)`
|
||||
mp_float_t mp_decimal_exp(mp_float_t num, int dec_exp) {
|
||||
|
||||
if (dec_exp == 0 || num == MICROPY_FLOAT_CONST(0.0)) {
|
||||
mp_large_float_t mp_decimal_exp(mp_large_float_t num, int dec_exp) {
|
||||
if (dec_exp == 0 || num == (mp_large_float_t)(0.0)) {
|
||||
return num;
|
||||
}
|
||||
|
||||
#if MICROPY_FLOAT_FORMAT_IMPL == MICROPY_FLOAT_FORMAT_IMPL_EXACT
|
||||
|
||||
// If the assert below fails, it means you have chosen MICROPY_FLOAT_FORMAT_IMPL_EXACT
|
||||
// manually on a platform where `larger floats` are not supported, which would
|
||||
// result in inexact conversions. To fix this issue, change your `mpconfigport.h`
|
||||
// and select MICROPY_FLOAT_FORMAT_IMPL_APPROX instead
|
||||
assert(sizeof(mp_large_float_t) > sizeof(mp_float_t));
|
||||
|
||||
// Perform power using simple multiplications, to avoid
|
||||
// dependency to higher-precision pow() function
|
||||
int neg_exp = (dec_exp < 0);
|
||||
if (neg_exp) {
|
||||
dec_exp = -dec_exp;
|
||||
}
|
||||
mp_large_float_t res = num;
|
||||
mp_large_float_t expo = (mp_large_float_t)10.0;
|
||||
while (dec_exp) {
|
||||
if (dec_exp & 1) {
|
||||
if (neg_exp) {
|
||||
res /= expo;
|
||||
} else {
|
||||
res *= expo;
|
||||
}
|
||||
}
|
||||
dec_exp >>= 1;
|
||||
if (dec_exp) {
|
||||
expo *= expo;
|
||||
}
|
||||
}
|
||||
return res;
|
||||
|
||||
#else
|
||||
// MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_EXACT
|
||||
|
||||
mp_float_union_t res = {num};
|
||||
// Multiply first by (2.0 ** dec_exp) via the exponent
|
||||
// - this will ensure that the result of `pow()` is always in mp_float_t range
|
||||
|
|
@ -238,12 +272,14 @@ mp_float_t mp_decimal_exp(mp_float_t num, int dec_exp) {
|
|||
} else {
|
||||
res.f *= MICROPY_FLOAT_C_FUN(pow)(5, dec_exp);
|
||||
}
|
||||
return (mp_float_t)res.f;
|
||||
return (mp_large_float_t)res.f;
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
// Break out inner digit accumulation routine to ease trailing zero deferral.
|
||||
static mp_float_uint_t accept_digit(mp_float_uint_t p_mantissa, unsigned int dig, int *p_exp_extra, int in) {
|
||||
static mp_large_float_uint_t accept_digit(mp_large_float_uint_t p_mantissa, unsigned int dig, int *p_exp_extra, int in) {
|
||||
// Core routine to ingest an additional digit.
|
||||
if (p_mantissa < MANTISSA_MAX) {
|
||||
// dec_val won't overflow so keep accumulating
|
||||
|
|
@ -267,7 +303,7 @@ const char *mp_parse_float_internal(const char *str, size_t len, mp_float_t *res
|
|||
|
||||
parse_dec_in_t in = PARSE_DEC_IN_INTG;
|
||||
bool exp_neg = false;
|
||||
mp_float_uint_t mantissa = 0;
|
||||
mp_large_float_uint_t mantissa = 0;
|
||||
int exp_val = 0;
|
||||
int exp_extra = 0;
|
||||
int trailing_zeros_intg = 0, trailing_zeros_frac = 0;
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@
|
|||
mp_obj_t mp_parse_num_integer(const char *restrict str, size_t len, int base, mp_lexer_t *lex);
|
||||
|
||||
#if MICROPY_PY_BUILTINS_FLOAT
|
||||
mp_float_t mp_decimal_exp(mp_float_t num, int dec_exp);
|
||||
mp_large_float_t mp_decimal_exp(mp_large_float_t num, int dec_exp);
|
||||
const char *mp_parse_float_internal(const char *str, size_t len, mp_float_t *res);
|
||||
#endif
|
||||
|
||||
|
|
|
|||
|
|
@ -2,14 +2,25 @@
|
|||
|
||||
# general rounding
|
||||
for val in (116, 1111, 1234, 5010, 11111):
|
||||
print("%.0f" % val)
|
||||
print("%.1f" % val)
|
||||
print("%.3f" % val)
|
||||
print("Test on %d / 1000:" % val)
|
||||
for fmt in ("%.5e", "%.3e", "%.1e", "%.0e", "%.3f", "%.1f", "%.0f", "%.3g", "%.1g", "%.0g"):
|
||||
print(fmt, fmt % (val / 1000))
|
||||
|
||||
# make sure round-up to the next unit is handled properly
|
||||
for val in range(4, 9):
|
||||
divi = 10**val
|
||||
print("Test on 99994 / (10 ** %d):" % val)
|
||||
for fmt in ("%.5e", "%.3e", "%.1e", "%.0e", "%.3f", "%.1f", "%.0f", "%.3g", "%.1g", "%.0g"):
|
||||
print(fmt, fmt % (99994 / divi))
|
||||
|
||||
# make sure rounding is done at the correct precision
|
||||
for prec in range(8):
|
||||
print(("%%.%df" % prec) % 6e-5)
|
||||
|
||||
# make sure trailing zeroes are added properly
|
||||
for prec in range(8):
|
||||
print(("%%.%df" % prec) % 1e19)
|
||||
|
||||
# check certain cases that had a digit value of 10 render as a ":" character
|
||||
print("%.2e" % float("9" * 51 + "e-39"))
|
||||
print("%.2e" % float("9" * 40 + "e-21"))
|
||||
|
|
|
|||
73
tests/float/float_format_accuracy.py
Normal file
73
tests/float/float_format_accuracy.py
Normal file
|
|
@ -0,0 +1,73 @@
|
|||
# Test accuracy of `repr` conversions.
|
||||
# This test also increases code coverage for corner cases.
|
||||
|
||||
try:
|
||||
import array, math, random
|
||||
except ImportError:
|
||||
print("SKIP")
|
||||
raise SystemExit
|
||||
|
||||
# The largest errors come from seldom used very small numbers, near the
|
||||
# limit of the representation. So we keep them out of this test to keep
|
||||
# the max relative error display useful.
|
||||
if float("1e-100") == 0.0:
|
||||
# single-precision
|
||||
float_type = "f"
|
||||
float_size = 4
|
||||
# testing range
|
||||
min_expo = -96 # i.e. not smaller than 1.0e-29
|
||||
# Expected results (given >=50'000 samples):
|
||||
# - MICROPY_FLTCONV_IMPL_EXACT: 100% exact conversions
|
||||
# - MICROPY_FLTCONV_IMPL_APPROX: >=98.53% exact conversions, max relative error <= 1.01e-7
|
||||
min_success = 0.980 # with only 1200 samples, the success rate is lower
|
||||
max_rel_err = 1.1e-7
|
||||
# REPR_C is typically used with FORMAT_IMPL_BASIC, which has a larger error
|
||||
is_REPR_C = float("1.0000001") == float("1.0")
|
||||
if is_REPR_C: # REPR_C
|
||||
min_success = 0.83
|
||||
max_rel_err = 5.75e-07
|
||||
else:
|
||||
# double-precision
|
||||
float_type = "d"
|
||||
float_size = 8
|
||||
# testing range
|
||||
min_expo = -845 # i.e. not smaller than 1.0e-254
|
||||
# Expected results (given >=200'000 samples):
|
||||
# - MICROPY_FLTCONV_IMPL_EXACT: 100% exact conversions
|
||||
# - MICROPY_FLTCONV_IMPL_APPROX: >=99.83% exact conversions, max relative error <= 2.7e-16
|
||||
min_success = 0.997 # with only 1200 samples, the success rate is lower
|
||||
max_rel_err = 2.7e-16
|
||||
|
||||
|
||||
# Deterministic pseudorandom generator. Designed to be uniform
|
||||
# on mantissa values and exponents, not on the represented number
|
||||
def pseudo_randfloat():
|
||||
rnd_buff = bytearray(float_size)
|
||||
for _ in range(float_size):
|
||||
rnd_buff[_] = random.getrandbits(8)
|
||||
return array.array(float_type, rnd_buff)[0]
|
||||
|
||||
|
||||
random.seed(42)
|
||||
stats = 0
|
||||
N = 1200
|
||||
max_err = 0
|
||||
for _ in range(N):
|
||||
f = pseudo_randfloat()
|
||||
while type(f) is not float or math.isinf(f) or math.isnan(f) or math.frexp(f)[1] <= min_expo:
|
||||
f = pseudo_randfloat()
|
||||
|
||||
str_f = repr(f)
|
||||
f2 = float(str_f)
|
||||
if f2 == f:
|
||||
stats += 1
|
||||
else:
|
||||
error = abs((f2 - f) / f)
|
||||
if max_err < error:
|
||||
max_err = error
|
||||
|
||||
print(N, "values converted")
|
||||
if stats / N >= min_success and max_err <= max_rel_err:
|
||||
print("float format accuracy OK")
|
||||
else:
|
||||
print("FAILED: repr rate=%.3f%% max_err=%.3e" % (100 * stats / N, max_err))
|
||||
|
|
@ -12,14 +12,42 @@ for b in [13, 123, 457, 23456]:
|
|||
print(title, "with format", f_fmt, "gives", f_fmt.format(f))
|
||||
print(title, "with format", g_fmt, "gives", g_fmt.format(f))
|
||||
|
||||
# The tests below check border cases involving all mantissa bits.
|
||||
# In case of REPR_C, where the mantissa is missing two bits, the
|
||||
# the string representation for such numbers might not always be exactly
|
||||
# the same but nevertheless be correct, so we must allow a few exceptions.
|
||||
is_REPR_C = float("1.0000001") == float("1.0")
|
||||
|
||||
# 16777215 is 2^24 - 1, the largest integer that can be completely held
|
||||
# in a float32.
|
||||
print("{:f}".format(16777215))
|
||||
val_str = "{:f}".format(16777215)
|
||||
|
||||
# When using REPR_C, 16777215.0 is the same as 16777212.0 or 16777214.4
|
||||
# (depending on the implementation of pow() function, the result may differ)
|
||||
if is_REPR_C and (val_str == "16777212.000000" or val_str == "16777214.400000"):
|
||||
val_str = "16777215.000000"
|
||||
|
||||
print(val_str)
|
||||
|
||||
# 4294967040 = 16777215 * 128 is the largest integer that is exactly
|
||||
# represented by a float32 and that will also fit within a (signed) int32.
|
||||
# The upper bound of our integer-handling code is actually double this,
|
||||
# but that constant might cause trouble on systems using 32 bit ints.
|
||||
print("{:f}".format(2147483520))
|
||||
val_str = "{:f}".format(2147483520)
|
||||
|
||||
# When using FLOAT_IMPL_FLOAT, 2147483520.0 == 2147483500.0
|
||||
# Both representations are valid, the second being "simpler"
|
||||
is_float32 = float("1e300") == float("inf")
|
||||
if is_float32 and val_str == "2147483500.000000":
|
||||
val_str = "2147483520.000000"
|
||||
|
||||
# When using REPR_C, 2147483520.0 is the same as 2147483200.0
|
||||
# Both representations are valid, the second being "simpler"
|
||||
if is_REPR_C and val_str == "2147483200.000000":
|
||||
val_str = "2147483520.000000"
|
||||
|
||||
print(val_str)
|
||||
|
||||
# Very large positive integers can be a test for precision and resolution.
|
||||
# This is a weird way to represent 1e38 (largest power of 10 for float32).
|
||||
print("{:.6e}".format(float("9" * 30 + "e8")))
|
||||
|
|
|
|||
|
|
@ -32,7 +32,7 @@ for j in test_values:
|
|||
for i in (j, -j):
|
||||
x = struct.pack("<e", i)
|
||||
v = struct.unpack("<e", x)[0]
|
||||
print("%.7f %s %.15f %s" % (i, x, v, i == v))
|
||||
print("%.7f %s %.7f %s" % (i, x, v, i == v))
|
||||
|
||||
# In CPython, packing a float that doesn't fit into a half-float raises OverflowError.
|
||||
# But in MicroPython it does not, but rather stores the value as inf.
|
||||
|
|
|
|||
43
tests/float/float_struct_e_doubleprec.py
Normal file
43
tests/float/float_struct_e_doubleprec.py
Normal file
|
|
@ -0,0 +1,43 @@
|
|||
# Test struct pack/unpack with 'e' typecode.
|
||||
|
||||
try:
|
||||
import struct
|
||||
except ImportError:
|
||||
print("SKIP")
|
||||
raise SystemExit
|
||||
|
||||
test_values = (
|
||||
1e-7,
|
||||
2e-7,
|
||||
1e-6,
|
||||
1e-5,
|
||||
1e-4,
|
||||
1e-3,
|
||||
1e-2,
|
||||
0.1,
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
4,
|
||||
8,
|
||||
10,
|
||||
100,
|
||||
1e3,
|
||||
1e4,
|
||||
6e4,
|
||||
float("inf"),
|
||||
)
|
||||
|
||||
for j in test_values:
|
||||
for i in (j, -j):
|
||||
x = struct.pack("<e", i)
|
||||
v = struct.unpack("<e", x)[0]
|
||||
print("%.7f %s %.15f %s" % (i, x, v, i == v))
|
||||
|
||||
# In CPython, packing a float that doesn't fit into a half-float raises OverflowError.
|
||||
# But in MicroPython it does not, but rather stores the value as inf.
|
||||
# This test is here for coverage.
|
||||
try:
|
||||
struct.pack("e", 1e15)
|
||||
except OverflowError:
|
||||
pass
|
||||
43
tests/float/float_struct_e_fp30.py
Normal file
43
tests/float/float_struct_e_fp30.py
Normal file
|
|
@ -0,0 +1,43 @@
|
|||
# Test struct pack/unpack with 'e' typecode.
|
||||
|
||||
try:
|
||||
import struct
|
||||
except ImportError:
|
||||
print("SKIP")
|
||||
raise SystemExit
|
||||
|
||||
test_values = (
|
||||
1e-7,
|
||||
2e-7,
|
||||
1e-6,
|
||||
1e-5,
|
||||
1e-4,
|
||||
1e-3,
|
||||
1e-2,
|
||||
0.1,
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
4,
|
||||
8,
|
||||
10,
|
||||
100,
|
||||
1e3,
|
||||
1e4,
|
||||
6e4,
|
||||
float("inf"),
|
||||
)
|
||||
|
||||
for j in test_values:
|
||||
for i in (j, -j):
|
||||
x = struct.pack("<e", i)
|
||||
v = struct.unpack("<e", x)[0]
|
||||
print("%.7f %s %.5f %s" % (i, x, v, i == v))
|
||||
|
||||
# In CPython, packing a float that doesn't fit into a half-float raises OverflowError.
|
||||
# But in MicroPython it does not, but rather stores the value as inf.
|
||||
# This test is here for coverage.
|
||||
try:
|
||||
struct.pack("e", 1e15)
|
||||
except OverflowError:
|
||||
pass
|
||||
|
|
@ -1,3 +1,3 @@
|
|||
# uPy and CPython outputs differ for the following
|
||||
# Test corner cases where MicroPython and CPython outputs used to differ in the past
|
||||
print("%.1g" % -9.9) # round up 'g' with '-' sign
|
||||
print("%.2g" % 99.9) # round up
|
||||
|
|
|
|||
|
|
@ -1,2 +0,0 @@
|
|||
-10
|
||||
100
|
||||
|
|
@ -127,10 +127,6 @@ TypeError: can't convert NoneType to int
|
|||
TypeError: can't convert NoneType to int
|
||||
ValueError:
|
||||
Warning: test
|
||||
# format float
|
||||
?
|
||||
+1e+00
|
||||
+1e+00
|
||||
# binary
|
||||
123
|
||||
456
|
||||
|
|
|
|||
|
|
@ -29,4 +29,5 @@ except OSError:
|
|||
|
||||
for fun in (tgammaf,):
|
||||
for val in (0.5, 1, 1.0, 1.5, 4, 4.0):
|
||||
print("%.6f" % fun(val))
|
||||
# limit to 5 decimals in order to pass with REPR_C with FORMAT_IMPL_BASIC
|
||||
print("%.5f" % fun(val))
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
1.772454
|
||||
1.000000
|
||||
1.000000
|
||||
0.886227
|
||||
6.000000
|
||||
6.000000
|
||||
1.77245
|
||||
1.00000
|
||||
1.00000
|
||||
0.88623
|
||||
6.00000
|
||||
6.00000
|
||||
|
|
|
|||
|
|
@ -785,12 +785,16 @@ def run_tests(pyb, tests, args, result_dir, num_threads=1):
|
|||
skip_tests.add(
|
||||
"float/float2int_intbig.py"
|
||||
) # requires fp32, there's float2int_fp30_intbig.py instead
|
||||
skip_tests.add(
|
||||
"float/float_struct_e.py"
|
||||
) # requires fp32, there's float_struct_e_fp30.py instead
|
||||
skip_tests.add("float/bytes_construct.py") # requires fp32
|
||||
skip_tests.add("float/bytearray_construct.py") # requires fp32
|
||||
skip_tests.add("float/float_format_ints_power10.py") # requires fp32
|
||||
if upy_float_precision < 64:
|
||||
skip_tests.add("float/float_divmod.py") # tested by float/float_divmod_relaxed.py instead
|
||||
skip_tests.add("float/float2int_doubleprec_intbig.py")
|
||||
skip_tests.add("float/float_struct_e_doubleprec.py")
|
||||
skip_tests.add("float/float_format_ints_doubleprec.py")
|
||||
skip_tests.add("float/float_parse_doubleprec.py")
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue