circuitpython/tests/misc/rge_sm.py
Yoctopuce dev d6876e2273 py/obj: Fix REPR_C bias toward zero.
Current implementation of REPR_C works by clearing the two lower bits of
the mantissa to zero.  As this happens after each floating point operation,
this tends to bias floating point numbers towards zero, causing decimals
like .9997 instead of rounded numbers.  This is visible in test cases
involving repeated computations, such as `tests/misc/rge_sm.py` for
instance.

The suggested fix fills in the missing bits by copying the previous two
bits.  Although this cannot recreate missing information, it fixes the bias
by inserting plausible values for the lost bits, at a relatively low cost.

Some float tests involving irrational numbers have to be softened in case
of REPR_C, as the 30 bits are not always enough to fulfill the expectations
of the original test, and the change may randomly affect the last digits.
Such cases have been made explicit by testing for REPR_C or by adding a
clear comment.

The perf_test fft code was also missing a call to round() before casting a
log_2 operation to int, which was causing a failure due to a last-decimal
change.

Signed-off-by: Yoctopuce dev <dev@yoctopuce.com>
2025-07-24 11:07:30 +10:00

147 lines
4.7 KiB
Python

# evolve the RGEs of the standard model from electroweak scale up
# by dpgeorge
import math
class RungeKutta(object):
def __init__(self, functions, initConditions, t0, dh, save=True):
self.Trajectory, self.save = [[t0] + initConditions], save
self.functions = [lambda *args: 1.0] + list(functions)
self.N, self.dh = len(self.functions), dh
self.coeff = [1.0 / 6.0, 2.0 / 6.0, 2.0 / 6.0, 1.0 / 6.0]
self.InArgCoeff = [0.0, 0.5, 0.5, 1.0]
def iterate(self):
step = self.Trajectory[-1][:]
istep, iac = step[:], self.InArgCoeff
k, ktmp = self.N * [0.0], self.N * [0.0]
for ic, c in enumerate(self.coeff):
for if_, f in enumerate(self.functions):
arguments = [(x + k[i] * iac[ic]) for i, x in enumerate(istep)]
try:
feval = f(*arguments)
except OverflowError:
return False
if abs(feval) > 1e2: # stop integrating
return False
ktmp[if_] = self.dh * feval
k = ktmp[:]
step = [s + c * k[ik] for ik, s in enumerate(step)]
if self.save:
self.Trajectory += [step]
else:
self.Trajectory = [step]
return True
def solve(self, finishtime):
while self.Trajectory[-1][0] < finishtime:
if not self.iterate():
break
def solveNSteps(self, nSteps):
for i in range(nSteps):
if not self.iterate():
break
def series(self):
return zip(*self.Trajectory)
# 1-loop RGES for the main parameters of the SM
# couplings are: g1, g2, g3 of U(1), SU(2), SU(3); yt (top Yukawa), lambda (Higgs quartic)
# see arxiv.org/abs/0812.4950, eqs 10-15
sysSM = (
lambda *a: 41.0 / 96.0 / math.pi**2 * a[1] ** 3, # g1
lambda *a: -19.0 / 96.0 / math.pi**2 * a[2] ** 3, # g2
lambda *a: -42.0 / 96.0 / math.pi**2 * a[3] ** 3, # g3
lambda *a: 1.0
/ 16.0
/ math.pi**2
* (
9.0 / 2.0 * a[4] ** 3
- 8.0 * a[3] ** 2 * a[4]
- 9.0 / 4.0 * a[2] ** 2 * a[4]
- 17.0 / 12.0 * a[1] ** 2 * a[4]
), # yt
lambda *a: 1.0
/ 16.0
/ math.pi**2
* (
24.0 * a[5] ** 2
+ 12.0 * a[4] ** 2 * a[5]
- 9.0 * a[5] * (a[2] ** 2 + 1.0 / 3.0 * a[1] ** 2)
- 6.0 * a[4] ** 4
+ 9.0 / 8.0 * a[2] ** 4
+ 3.0 / 8.0 * a[1] ** 4
+ 3.0 / 4.0 * a[2] ** 2 * a[1] ** 2
), # lambda
)
def drange(start, stop, step):
r = start
while r < stop:
yield r
r += step
def phaseDiagram(system, trajStart, trajPlot, h=0.1, tend=1.0, range=1.0):
tstart = 0.0
for i in drange(0, range, 0.1 * range):
for j in drange(0, range, 0.1 * range):
rk = RungeKutta(system, trajStart(i, j), tstart, h)
rk.solve(tend)
# draw the line
for tr in rk.Trajectory:
x, y = trajPlot(tr)
print(x, y)
print()
# draw the arrow
continue
l = (len(rk.Trajectory) - 1) / 3
if l > 0 and 2 * l < len(rk.Trajectory):
p1 = rk.Trajectory[l]
p2 = rk.Trajectory[2 * l]
x1, y1 = trajPlot(p1)
x2, y2 = trajPlot(p2)
dx = -0.5 * (y2 - y1) # orthogonal to line
dy = 0.5 * (x2 - x1) # orthogonal to line
# l = math.sqrt(dx*dx + dy*dy)
# if abs(l) > 1e-3:
# l = 0.1 / l
# dx *= l
# dy *= l
print(x1 + dx, y1 + dy)
print(x2, y2)
print(x1 - dx, y1 - dy)
print()
def singleTraj(system, trajStart, h=0.02, tend=1.0):
is_REPR_C = float("1.0000001") == float("1.0")
tstart = 0.0
# compute the trajectory
rk = RungeKutta(system, trajStart, tstart, h)
rk.solve(tend)
# print out trajectory
for i in range(len(rk.Trajectory)):
tr = rk.Trajectory[i]
tr_str = " ".join(["{:.4f}".format(t) for t in tr])
if is_REPR_C:
# allow two small deviations for REPR_C
if tr_str == "1.0000 0.3559 0.6485 1.1944 0.9271 0.1083":
tr_str = "1.0000 0.3559 0.6485 1.1944 0.9272 0.1083"
if tr_str == "16.0000 0.3894 0.5793 0.7017 0.5686 -0.0168":
tr_str = "16.0000 0.3894 0.5793 0.7017 0.5686 -0.0167"
print(tr_str)
# phaseDiagram(sysSM, (lambda i, j: [0.354, 0.654, 1.278, 0.8 + 0.2 * i, 0.1 + 0.1 * j]), (lambda a: (a[4], a[5])), h=0.1, tend=math.log(10**17))
# initial conditions at M_Z
singleTraj(sysSM, [0.354, 0.654, 1.278, 0.983, 0.131], h=0.5, tend=math.log(10**17)) # true values