circuitpython/ports/esp32
Angus Gratton beabef5aac esp32: Add missing network.STAT_CONNECT_FAIL constant.
The esp32 port had network.STAT_ASSOC_FAIL for the same purpose,
but this is undocumented and different to all other ports. That
constant is now deprecated.

This work was funded through GitHub Sponsors.

Signed-off-by: Angus Gratton <angus@redyak.com.au>
2024-11-30 12:36:03 +11:00
..
boards esp32: Use the recommended network.WLAN.IF_[AP|STA] constants. 2024-11-08 10:11:03 +11:00
main_esp32 esp32: Workaround IDF issue placing ISR ringbuf functions in IRAM. 2024-03-22 12:14:27 +11:00
main_esp32c3 esp32: Add support for esp32c6. 2024-10-09 23:29:38 +11:00
main_esp32c6 esp32: Add support for esp32c6. 2024-10-09 23:29:38 +11:00
main_esp32s2 esp32: Use shared/tinyusb integration for S2 and S3 USB. 2024-10-07 11:06:29 +11:00
main_esp32s3 esp32: Use shared/tinyusb integration for S2 and S3 USB. 2024-10-07 11:06:29 +11:00
modules ports: Use vfs module instead of os. 2024-02-07 13:25:09 +11:00
tools esp32/tools: Add metrics_esp32 size comparison script. 2024-08-14 15:58:05 +10:00
.gitignore esp32: Update port to support IDF v5.0.2. 2023-06-23 15:34:22 +10:00
adc.c esp32/adc: Set ADC to 12bit by default on esp32c6. 2024-10-09 23:31:21 +11:00
adc.h esp32/adc: Use new ADC calibration API in all cases. 2024-08-14 15:57:26 +10:00
CMakeLists.txt esp32: Add some notes about the different CMake files. 2024-10-28 11:24:15 +11:00
esp32_common.cmake esp32: Add some notes about the different CMake files. 2024-10-28 11:24:15 +11:00
esp32_nvs.c ports: Include py/mphal.h instead of mphalport.h. 2024-10-09 14:39:34 +11:00
esp32_partition.c ports: Include py/mphal.h instead of mphalport.h. 2024-10-09 14:39:34 +11:00
esp32_rmt.c ports: Include py/mphal.h instead of mphalport.h. 2024-10-09 14:39:34 +11:00
esp32_ulp.c all: Remove the "STATIC" macro and just use "static" instead. 2024-03-07 14:20:42 +11:00
fatfs_port.c all: Update to point to files in new shared/ directory. 2021-07-12 17:08:10 +10:00
gccollect.c esp32: Add support for esp32c6. 2024-10-09 23:29:38 +11:00
gccollect.h esp32: Add new port to Espressif ESP32 SoC. 2017-12-13 14:48:53 +11:00
help.c esp32: Use the recommended network.WLAN.IF_[AP|STA] constants. 2024-11-08 10:11:03 +11:00
lwip_patch.c esp32: Apply the LWIP active TCP socket limit. 2024-10-10 17:55:03 +11:00
machine_adc.c esp32/machine_adc: Make ADC 2 optional. 2024-10-09 23:30:20 +11:00
machine_adc_block.c esp32/adc: Set ADC to 12bit by default on esp32c6. 2024-10-09 23:31:21 +11:00
machine_bitstream.c esp32: Add support for esp32c6. 2024-10-09 23:29:38 +11:00
machine_dac.c all: Remove the "STATIC" macro and just use "static" instead. 2024-03-07 14:20:42 +11:00
machine_hw_spi.c esp32/machine_hw_spi: Reject invalid number of bits in constructor. 2024-10-30 15:14:30 +11:00
machine_i2c.c esp32: Add support for esp32c6. 2024-10-09 23:29:38 +11:00
machine_i2s.c esp32/machine_i2s: Ensure 2 DMA buffers and improve I2S error handling. 2024-08-02 10:30:14 +10:00
machine_pin.c esp32: Add support for esp32c6. 2024-10-09 23:29:38 +11:00
machine_pin.h esp32: Add support for esp32c6. 2024-10-09 23:29:38 +11:00
machine_pwm.c esp32/machine_pwm: Restore PWM support for ESP-IDF v5.0.x and v5.1.x. 2024-11-05 17:19:58 +11:00
machine_rtc.c all: Remove the "STATIC" macro and just use "static" instead. 2024-03-07 14:20:42 +11:00
machine_rtc.h esp32/modesp32: Add wake_on_ulp() so ULP can wake CPU from deepsleep. 2022-06-23 17:31:01 +10:00
machine_sdcard.c all: Remove the "STATIC" macro and just use "static" instead. 2024-03-07 14:20:42 +11:00
machine_timer.c esp32/machine_timer: Generalise timer clock configuration. 2024-10-09 23:30:48 +11:00
machine_timer.h esp32/machine_uart: Implement UART.RX_IDLE based on machine.Timer. 2024-08-29 16:34:33 +10:00
machine_touchpad.c esp32: Fix machine.TouchPad startup on ESP32-S2 and S3. 2024-11-28 15:45:39 +11:00
machine_uart.c esp32/machine_uart: Add support for LP_UART. 2024-10-09 23:31:16 +11:00
machine_wdt.c all: Remove the "STATIC" macro and just use "static" instead. 2024-03-07 14:20:42 +11:00
main.c esp32: Workaround native code execution crash on ESP32-S2. 2024-11-06 16:08:23 +11:00
Makefile esp32/Makefile: Only set port & baud for jobs that access hardware. 2024-10-09 23:31:54 +11:00
makeimg.py esp32: Create .uf2 binaries for S2 and S3 chips. 2022-02-02 23:47:49 +11:00
memory.h ports: Update for move of crypto-algorithms, uzlib to lib. 2021-07-12 16:37:20 +10:00
modesp.c all: Remove the "STATIC" macro and just use "static" instead. 2024-03-07 14:20:42 +11:00
modesp32.c esp32/modesp32: Make gpio_deep_sleep_hold optional. 2024-10-09 23:30:58 +11:00
modesp32.h esp32/modesp32: Properly define RTC_VALID_EXT_PINS on S2/S3 variants. 2022-04-14 16:17:52 +10:00
modespnow.c ports: Include py/mphal.h instead of mphalport.h. 2024-10-09 14:39:34 +11:00
modespnow.h esp32,esp8266: Add support for the Espressif ESP-NOW protocol. 2023-05-01 16:47:21 +10:00
modmachine.c esp32/modmachine: Allow building with USB CDC disabled. 2024-10-22 14:45:51 +11:00
modmachine.h extmod/modmachine: Provide common Python bindings for bootloader(). 2023-11-30 16:11:11 +11:00
modnetwork.h esp32,mimxrt,stm32: Implement ipconfig() for more network interfaces. 2024-06-04 12:45:01 +10:00
modnetwork_globals.h esp32: Add missing network.STAT_CONNECT_FAIL constant. 2024-11-30 12:36:03 +11:00
modos.c all: Remove the "STATIC" macro and just use "static" instead. 2024-03-07 14:20:42 +11:00
modsocket.c esp32/modsocket: Fix getaddrinfo hints to set AI_CANONNAME. 2024-11-13 13:35:37 +11:00
modtime.c all: Remove the "STATIC" macro and just use "static" instead. 2024-03-07 14:20:42 +11:00
mpconfigport.h esp32/sdkconfig: Disable PMP_IDRAM_SPLIT to fix native emit support. 2024-10-09 23:34:27 +11:00
mphalport.c esp32/mphalport: Always poll stdin ring-buffer to include UART use. 2024-10-16 14:50:11 +11:00
mphalport.h esp32: Fix hang in taskYIELD() on riscv CPUs when IRQs disabled. 2024-10-10 10:59:51 +11:00
mpnimbleport.c esp32: Fix heap corruption triggered by bluetooth.active(0). 2024-08-01 11:01:05 +10:00
mpthreadport.c esp32: Fix thread stack limit margin, change to new cstack API. 2024-08-14 12:56:46 +10:00
mpthreadport.h esp32: Add new port to Espressif ESP32 SoC. 2017-12-13 14:48:53 +11:00
network_common.c esp32/network_wlan: Add missing WLAN security constants. 2024-11-05 11:34:35 +11:00
network_lan.c esp32/network_lan: Ensure LAN MAC address is valid at LAN init. 2024-08-12 16:28:30 +10:00
network_ppp.c extmod/network_ppp: Allow stream=None to suspend PPP. 2024-11-13 13:11:32 +11:00
network_wlan.c esp32: Fix setting WLAN channel in AP mode. 2024-11-28 15:39:06 +11:00
panichandler.c esp32/panichandler: Print support information on panic. 2024-05-16 12:25:45 +10:00
partitions-2MiB.csv esp32/partitions-2MiB.csv: Update table so firmware fits. 2021-06-11 17:57:40 +10:00
partitions-4MiB-ota.csv esp32/partitions.csv: Rename to partitions-4MiB.csv. 2023-08-15 17:38:02 +10:00
partitions-4MiB.csv esp32/partitions.csv: Rename to partitions-4MiB.csv. 2023-08-15 17:38:02 +10:00
partitions-8MiB.csv esp32: Add support for ESP32-S3 SoCs. 2021-09-16 22:58:47 +10:00
partitions-16MiB-ota.csv esp32/boards: Add Silicognition wESP32 board configuration. 2021-08-07 12:50:13 +10:00
partitions-16MiB.csv esp32/partitions-16MiB.csv: Increase 14MiB filesystem to maximum size. 2022-02-08 12:25:10 +11:00
partitions-32MiB-ota.csv esp32: Add 32MiB partition table templates. 2022-11-09 10:57:44 +11:00
partitions-32MiB.csv esp32: Add 32MiB partition table templates. 2022-11-09 10:57:44 +11:00
ppp_set_auth.c esp32/network_ppp: Make PPP support optional. 2024-02-15 13:29:43 +11:00
ppp_set_auth.h esp32/ppp_set_auth: Add pppapi_set_auth from ESP-IDF. 2023-06-23 15:34:22 +10:00
qstrdefsport.h all: Add *FORMAT-OFF* in various places. 2020-02-28 10:31:07 +11:00
README.md esp32: Use the recommended network.WLAN.IF_[AP|STA] constants. 2024-11-08 10:11:03 +11:00
README.ulp.md all: Prune trailing whitespace. 2024-03-07 16:25:17 +11:00
uart.c esp32: Add support for IDF version v5.2. 2024-03-08 14:05:38 +11:00
uart.h esp32: Add MICROPY_HW_USB_CDC macro for native USB-CDC serial. 2024-09-03 14:28:26 +10:00
usb.c esp32: Add automatic bootloader handling for S2 and S3. 2024-10-07 11:06:57 +11:00
usb.h esp32: Add automatic bootloader handling for S2 and S3. 2024-10-07 11:06:57 +11:00
usb_serial_jtag.c esp32: Fix ESP32-C3 USB serial/jtag peripheral pre-IDF 5.1. 2024-09-03 10:27:28 +10:00
usb_serial_jtag.h esp32: Poll serial/JTAG for unread data to prevent blocking. 2023-10-31 11:59:15 +11:00

MicroPython port to the ESP32

This is a port of MicroPython to the Espressif ESP32 series of microcontrollers. It uses the ESP-IDF framework and MicroPython runs as a task under FreeRTOS.

Supported features include:

  • REPL (Python prompt) over UART0.
  • 16k stack for the MicroPython task and approximately 100k Python heap.
  • Many of MicroPython's features are enabled: unicode, arbitrary-precision integers, single-precision floats, complex numbers, frozen bytecode, as well as many of the internal modules.
  • Internal filesystem using the flash (currently 2M in size).
  • The machine module with GPIO, UART, SPI, software I2C, ADC, DAC, PWM, TouchPad, WDT and Timer.
  • The network module with WLAN (WiFi) support.
  • Bluetooth low-energy (BLE) support via the bluetooth module.

Initial development of this ESP32 port was sponsored in part by Microbric Pty Ltd.

Setting up ESP-IDF and the build environment

MicroPython on ESP32 requires the Espressif IDF version 5 (IoT development framework, aka SDK). The ESP-IDF includes the libraries and RTOS needed to manage the ESP32 microcontroller, as well as a way to manage the required build environment and toolchains needed to build the firmware.

The ESP-IDF changes quickly and MicroPython only supports certain versions. Currently MicroPython supports v5.0.4, v5.0.5, v5.1.2, v5.2.0, v5.2.2.

To install the ESP-IDF the full instructions can be found at the Espressif Getting Started guide.

If you are on a Windows machine then the Windows Subsystem for Linux is the most efficient way to install the ESP32 toolchain and build the project. If you use WSL then follow the Linux instructions rather than the Windows instructions.

The Espressif instructions will guide you through using the install.sh (or install.bat) script to download the toolchain and set up your environment. The steps to take are summarised below.

To check out a copy of the IDF use git clone:

$ git clone -b v5.2.2 --recursive https://github.com/espressif/esp-idf.git

You can replace v5.2.2 with any other supported version. (You don't need a full recursive clone; see the ci_esp32_setup function in tools/ci.sh in this repository for more detailed set-up commands.)

If you already have a copy of the IDF then checkout a version compatible with MicroPython and update the submodules using:

$ cd esp-idf
$ git checkout v5.2.2
$ git submodule update --init --recursive

After you've cloned and checked out the IDF to the correct version, run the install.sh script:

$ cd esp-idf
$ ./install.sh       # (or install.bat on Windows)
$ source export.sh   # (or export.bat on Windows)

The install.sh step only needs to be done once. You will need to source export.sh for every new session.

Building the firmware

The MicroPython cross-compiler must be built to pre-compile some of the built-in scripts to bytecode. This can be done by (from the root of this repository):

$ make -C mpy-cross

Then to build MicroPython for the ESP32 run:

$ cd ports/esp32
$ make submodules
$ make

This will produce a combined firmware.bin image in the build-ESP32_GENERIC/ subdirectory (this firmware image is made up of: bootloader.bin, partitions.bin and micropython.bin).

To flash the firmware you must have your ESP32 module in the bootloader mode and connected to a serial port on your PC. Refer to the documentation for your particular ESP32 module for how to do this. You will also need to have user permissions to access the /dev/ttyUSB0 device. On Linux, you can enable this by adding your user to the dialout group, and rebooting or logging out and in again. (Note: on some distributions this may be the uucp group, run ls -la /dev/ttyUSB0 to check.)

$ sudo adduser <username> dialout

If you are installing MicroPython to your module for the first time, or after installing any other firmware, you should first erase the flash completely:

$ make erase

To flash the MicroPython firmware to your ESP32 use:

$ make deploy

The default ESP32 board build by the above commands is the ESP32_GENERIC one, which should work on most ESP32 modules. You can specify a different board by passing BOARD=<board> to the make commands, for example:

$ make BOARD=ESP32_GENERIC_S3

Note: the above "make" commands are thin wrappers for the underlying idf.py build tool that is part of the ESP-IDF. You can instead use idf.py directly, for example:

$ idf.py build
$ idf.py -D MICROPY_BOARD=ESP32_GENERIC build
$ idf.py flash

Some boards also support "variants", which are allow for small variations of an otherwise similar board. For example different flash sizes or features. For example to build the OTA variant of ESP32_GENERIC.

$ make BOARD=ESP32_GENERIC BOARD_VARIANT=OTA

or to enable octal-SPIRAM support for the ESP32_GENERIC_S3 board:

$ make BOARD=ESP32_GENERIC BOARD_VARIANT=SPIRAM_OCT

Getting a Python prompt on the device

You can get a prompt via the serial port, via UART0, which is the same UART that is used for programming the firmware. The baudrate for the REPL is 115200 and you can use a command such as:

$ picocom -b 115200 /dev/ttyUSB0

or

$ miniterm.py /dev/ttyUSB0 115200

You can also use idf.py monitor.

Configuring the WiFi and using the board

The ESP32 port is designed to be (almost) equivalent to the ESP8266 in terms of the modules and user-facing API. There are some small differences, notably that the ESP32 does not automatically connect to the last access point when booting up. But for the most part the documentation and tutorials for the ESP8266 should apply to the ESP32 (at least for the components that are implemented).

See http://docs.micropython.org/en/latest/esp8266/esp8266/quickref.html for a quick reference, and http://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/intro.html for a tutorial.

The following function can be used to connect to a WiFi access point (you can either pass in your own SSID and password, or change the defaults so you can quickly call wlan_connect() and it just works):

def wlan_connect(ssid='MYSSID', password='MYPASS'):
    import network
    wlan = network.WLAN(network.WLAN.IF_STA)
    if not wlan.active() or not wlan.isconnected():
        wlan.active(True)
        print('connecting to:', ssid)
        wlan.connect(ssid, password)
        while not wlan.isconnected():
            pass
    print('network config:', wlan.ifconfig())

Note that some boards require you to configure the WiFi antenna before using the WiFi. On Pycom boards like the LoPy and WiPy 2.0 you need to execute the following code to select the internal antenna (best to put this line in your boot.py file):

import machine
antenna = machine.Pin(16, machine.Pin.OUT, value=0)

Defining a custom ESP32 board

The default ESP-IDF configuration settings are provided by the ESP32_GENERIC board definition in the directory boards/ESP32_GENERIC. For a custom configuration you can define your own board directory. Start a new board configuration by copying an existing one (like ESP32_GENERIC) and modifying it to suit your board.

MicroPython specific configuration values are defined in the board-specific mpconfigboard.h file, which is included by mpconfigport.h. Additional settings are put in mpconfigboard.cmake, including a list of sdkconfig files that configure ESP-IDF settings. Some standard sdkconfig files are provided in the boards/ directory, like boards/sdkconfig.ble. You can also define custom ones in your board directory.

See existing board definitions for further examples of configuration.

Configuration Troubleshooting

  • Continuous reboots after programming: Ensure CONFIG_ESPTOOLPY_FLASHMODE is correct for your board (e.g. ESP-WROOM-32 should be DIO). Then perform a make clean, rebuild, redeploy.