Compare commits

...

13 commits

Author SHA1 Message Date
Keir Fraser
0351c481c0 FF.CFG: Get rid of single quotes around example config values
Single quotes are not accepted by the parser, so the extra punctuation
is unnecessary and confusing verbiage.

Refs #865
2024-03-19 10:31:56 +00:00
Keir Fraser
ca7144b454 Add an example IMG.CFG for the ZX Spectrum FDC-1 / Sandy FDD2 interfaces 2024-02-29 14:47:39 +00:00
Keir Fraser
e829d827da github: Update workflow actions to latest versions 2024-02-05 15:08:48 +00:00
Keir Fraser
c6310b803b Update to v3.42 2024-01-11 13:53:15 +00:00
Keir Fraser
3946e7f7a6 adf: More accurate value for write_bc_ticks 2024-01-11 13:26:58 +00:00
Keir Fraser
18ecd15be9 qd: Use sampleclk_ns() rather than hardcoding a sample count value 2024-01-11 13:26:12 +00:00
Keir Fraser
ae4245018d floppy: Gently de-jitter/precomp WDATA line
This can be enough to handle heavily-precompensated marginal write
signals.

Fixes #861
2024-01-11 13:16:30 +00:00
Keir Fraser
cbbac4e3c2 Add an example IMG.CFG configuration for GRiD Compass
Refs #862
2024-01-11 09:38:08 +00:00
Eric Anderson
69e2c545a3 hfe: Process HFEv3 opcodes when writing 2023-10-29 08:10:35 +00:00
Eric Anderson
959fd9a4a0 img, dsk: Stream writes to flash
This starts writes for larger sector sizes earlier, allowing large
sectors to be supported independent of the write_bc size.
It also allows some write latencies to be hidden by the time it takes to
receive the data.

This also makes better use of write_bc for buffering. Waiting for a full
sector means that space in write_bc is _not_ used for buffering
processing delays of the sector. Draining the sector data earlier frees
space earlier from the buffer.

[keirf: Minor tweaks and refactoring.]
2023-09-17 22:16:53 +01:00
Keir Fraser
da6188ae7e hfe: Clarify HFEv3 tracklen "caching" in hfe_seek_track(). 2023-09-17 22:04:16 +01:00
Keir Fraser
9ac66c313e hfe: On track setup, start_bc = start_ticks * max_bc / max_ticks
In essence, we take the rotational position from index as a fraction
(start_ticks/max_ticks) and start the bitstream at the same position.
This is especially important for HFEv3 where the track data may be
elongated by opcodes.

Original commit message by ejona86:

hfe: Compensate for opcodes during seeking

This reduces the worst-case observed skew from 3 ms to 50 us. There is a
risk that in the future an opcode is added that is numerous and not
evenly distributed, but that seems unlikely and we'd need to swap to a
more complicated/advanced scheme.
2023-09-17 22:03:09 +01:00
Keir Fraser
25742f6ecf util: New function udiv64(): 64/32 -> 32q 2023-09-17 08:31:59 +01:00
14 changed files with 358 additions and 157 deletions

View file

@ -5,7 +5,7 @@ jobs:
runs-on: ubuntu-22.04 runs-on: ubuntu-22.04
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
- name: Set environment variables - name: Set environment variables
id: vars id: vars
@ -43,7 +43,7 @@ jobs:
mv flashfloppy-$VER.zip _cidist/ mv flashfloppy-$VER.zip _cidist/
- name: Upload artifacts - name: Upload artifacts
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v4
with: with:
name: FlashFloppy.CI.${{ steps.vars.outputs.sha_short }} name: FlashFloppy.CI.${{ steps.vars.outputs.sha_short }}
path: _cidist path: _cidist

View file

@ -10,7 +10,7 @@ jobs:
runs-on: ubuntu-22.04 runs-on: ubuntu-22.04
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
- name: Set environment variables - name: Set environment variables
id: vars id: vars

View file

@ -3,6 +3,11 @@
** Keir Fraser <keir.xen@gmail.com> ** Keir Fraser <keir.xen@gmail.com>
************************************ ************************************
** v3.42 - 11 January 2024
- HFEv3: Various read/write improvements
- WDATA: Merge short write pulses, and apply de-jitter/precomp
- IMG, EDSK: Stream large sector writes to flash
** v3.41 - 14 July 2023 ** v3.41 - 14 July 2023
- AT32F415: Fix timer handling since clock speed increase (v3.39). - AT32F415: Fix timer handling since clock speed increase (v3.39).
- LCD: Faster power-on initialisation. Don't wait for display to clear. - LCD: Faster power-on initialisation. Don't wait for display to clear.

View file

@ -13,11 +13,11 @@
# jc: Specified by jumper JC (open: shugart, closed: ibmpc) # jc: Specified by jumper JC (open: shugart, closed: ibmpc)
# shugart: P2=DSKCHG, P34=RDY (Amiga, Atari ST, many others) # shugart: P2=DSKCHG, P34=RDY (Amiga, Atari ST, many others)
# ibmpc: P2=unused, P34=DSKCHG (IBM PC interface) # ibmpc: P2=unused, P34=DSKCHG (IBM PC interface)
# ibmpc-hdout: P2=HD_OUT, P34=DSKCHG (not generally needed: prefer 'ibmpc') # ibmpc-hdout: P2=HD_OUT, P34=DSKCHG (not generally needed: prefer ibmpc)
# jppc: P2=unused, P34=RDY (Japanese PC standard) # jppc: P2=unused, P34=RDY (Japanese PC standard)
# jppc-hdout: P2=HD_OUT, P34=RDY (Japanese PC alternate: prefer 'jppc') # jppc-hdout: P2=HD_OUT, P34=RDY (Japanese PC alternate: prefer jppc)
# akai-s950: Legacy alias of 'jppc-hdout', previously used for Akai S950 # akai-s950: Legacy alias of jppc-hdout, previously used for Akai S950
# amiga: P2=DSKCHG, P34=DRIVE_ID (not generally needed: prefer 'shugart') # amiga: P2=DSKCHG, P34=DRIVE_ID (not generally needed: prefer shugart)
interface = jc interface = jc
# Host platform: Improves image-format detection for generic types such as IMG # Host platform: Improves image-format detection for generic types such as IMG
@ -172,9 +172,9 @@ twobutton-action = zero
# Input sensor type at the rotary-encoder inputs (pins PC10 and PC11): # Input sensor type at the rotary-encoder inputs (pins PC10 and PC11):
# [full | half | quarter]: # [full | half | quarter]:
# Rotary encoder, identified by fraction of a Gray-code cycle performed # Rotary encoder, identified by fraction of a Gray-code cycle performed
# per detent/click. If default value ('full') requires multiple # per detent/click. If default value (full) requires multiple
# clicks/detents to move position then change to 'half' (if 2 clicks # clicks/detents to move position then change to half (if 2 clicks
# per move) or 'quarter' (if 4 clicks). # per move) or quarter (if 4 clicks).
# [trackball]: # [trackball]:
# Blackberry-style trackball (eg. using Hall-effect sensors). # Blackberry-style trackball (eg. using Hall-effect sensors).
# [buttons]: # [buttons]:
@ -220,15 +220,15 @@ oled-font = 6x13
oled-contrast = 143 oled-contrast = 143
# Text height and arrangement on LCD/OLED and on OSD, respectively. # Text height and arrangement on LCD/OLED and on OSD, respectively.
# 'default', or a comma-separated list (one entry per LCD/OLED row, top down). # Comma-separated list, one entry per display row, top down.
# Each list item is a digit plus optional height specifier: <content-row>[d] # Each list item is a digit plus optional height specifier: [0-7][d]
# content-row: '0-3' = specified content row, '7' = blank # content-row: 0-3 = specified content, 7 = blank
# 0: Current image name # 0: Current image name
# 1: Status # 1: Status
# 2: Image/Volume info # 2: Image/Volume info
# 3: Current subfolder name # 3: Current subfolder name
# height specifier: 'd' = double height (32px, OLED only; ignored for LCD) # height-specifier: d = double height (32px, OLED only; ignored for LCD)
# 'default' depends on display, eg.: oled-128x32='0,1' ; oled-128x64='3,0d,1' # Default depends on display, eg.: oled-128x32 -> 0,1 ; oled-128x64 -> 3,0d,1
# Values: [0-7][d] | default # Values: [0-7][d] | default
display-order = default display-order = default
osd-display-order = default osd-display-order = default

View file

@ -0,0 +1,17 @@
## IMG.CFG for machines produced by GRiD Systems Corp.
# NOTE: The tags match on filesize alone. If you wish to define an explicit
# tagname match, you can for example add 'flex' to the square-bracketed tags
# to limit matches to filenames of the form *.flex.{img,ima,dsk}
# 360k 40-cylinder DS/DD format used by GRiD Compass
[::368640]
cyls = 40
heads = 2
bps = 512
secs = 9
mode = mfm
interleave = 5
id = 1
tracks = 0-39.1
id = 10

View file

@ -0,0 +1,45 @@
## IMG.CFG for the Sandy FDD2 interface.
# Sandy FDD2 is a clone of the FDC-1 by Technology Research Ltd.
# Using a 1771 controller chip, it supports single-density (FM) recording
# only, unlike the later Beta Disk interfaces.
# *.ss40.img: Single-sided 40 cylinders.
[ss40::102400]
cyls = 40
heads = 1
secs = 10
bps = 256
mode = fm
interleave = 2
# *.ss80.img: Single-sided 80 cylinders.
[ss80::204800]
cyls = 80
heads = 1
secs = 10
bps = 256
mode = fm
interleave = 2
# *.ds40.img: Double-sided 40 cylinders.
[ds40::204800]
cyls = 40
heads = 2
secs = 10
bps = 256
mode = fm
interleave = 2
tracks = 0-39.1
h = 0
# *.ds80.img: Double-sided 80 cylinders.
[ds80::409600]
cyls = 80
heads = 2
secs = 10
bps = 256
mode = fm
interleave = 2
tracks = 0-79.1
h = 0

View file

@ -69,6 +69,8 @@ int snprintf(char *str, size_t size, const char *format, ...)
#define htobe16(x) _rev16(x) #define htobe16(x) _rev16(x)
#define htobe32(x) _rev32(x) #define htobe32(x) _rev32(x)
uint32_t udiv64(uint64_t dividend, uint32_t divisor);
/* Arena-based memory allocation */ /* Arena-based memory allocation */
void *arena_alloc(uint32_t sz); void *arena_alloc(uint32_t sz);
uint32_t arena_total(void); uint32_t arena_total(void);

View file

@ -674,7 +674,7 @@ static void IRQ_wdata_dma(void)
bc_dat = image->write_bc_window; bc_dat = image->write_bc_window;
for (cons = dma_wr->cons; cons != prod; cons = (cons+1) & buf_mask) { for (cons = dma_wr->cons; cons != prod; cons = (cons+1) & buf_mask) {
next = dma_wr->buf[cons]; next = dma_wr->buf[cons];
curr = (uint16_t)(next - prev) - (cell >> 1); curr = (int16_t)(next - prev) - (cell >> 1);
if (unlikely(curr < 0)) { if (unlikely(curr < 0)) {
/* Runt flux, much shorter than bitcell clock. Merge it forward. */ /* Runt flux, much shorter than bitcell clock. Merge it forward. */
continue; continue;
@ -686,6 +686,8 @@ static void IRQ_wdata_dma(void)
if (!(bc_prod&31)) if (!(bc_prod&31))
bc_buf[((bc_prod-1) / 32) & bc_bufmask] = htobe32(bc_dat); bc_buf[((bc_prod-1) / 32) & bc_bufmask] = htobe32(bc_dat);
} }
curr += cell >> 1; /* remove the 1/2-cell bias */
prev -= curr >> 2; /* de-jitter/precomp: carry 1/4 of phase error */
bc_dat = (bc_dat << 1) | 1; bc_dat = (bc_dat << 1) | 1;
bc_prod++; bc_prod++;
switch (sync) { switch (sync) {

View file

@ -41,6 +41,7 @@ static bool_t adf_open(struct image *im)
im->tracklen_bc = DD_TRACKLEN_BC; im->tracklen_bc = DD_TRACKLEN_BC;
im->ticks_per_cell = ((sampleclk_stk(im->stk_per_rev) * 16u) im->ticks_per_cell = ((sampleclk_stk(im->stk_per_rev) * 16u)
/ im->tracklen_bc); / im->tracklen_bc);
im->write_bc_ticks = im->ticks_per_cell / 16u;
im->nr_cyls = f_size(&im->fp) / (2 * 11 * 512); im->nr_cyls = f_size(&im->fp) / (2 * 11 * 512);

View file

@ -271,15 +271,17 @@ static void dsk_setup_track(
im->cur_ticks = im->cur_bc * im->ticks_per_cell; im->cur_ticks = im->cur_bc * im->ticks_per_cell;
im->ticks_since_flux = 0; im->ticks_since_flux = 0;
decode_off = calc_start_pos(im);
rd->prod = rd->cons = 0; rd->prod = rd->cons = 0;
bc->prod = bc->cons = 0; bc->prod = bc->cons = 0;
if (start_pos) { if (start_pos) {
decode_off = calc_start_pos(im);
image_read_track(im); image_read_track(im);
bc->cons = decode_off * 16; bc->cons = decode_off * 16;
*start_pos = start_ticks; *start_pos = start_ticks;
} else {
im->dsk.decode_pos = 0;
} }
} }
@ -481,10 +483,9 @@ static bool_t dsk_write_track(struct image *im)
unsigned int bufmask = (wr->len / 2) - 1; unsigned int bufmask = (wr->len / 2) - 1;
uint8_t *wrbuf = (uint8_t *)im->bufs.write_data.p + 512; /* skip DIB/TIB */ uint8_t *wrbuf = (uint8_t *)im->bufs.write_data.p + 512; /* skip DIB/TIB */
uint32_t c = wr->cons / 16, p = wr->prod / 16; uint32_t c = wr->cons / 16, p = wr->prod / 16;
unsigned int i; unsigned int i, off;
time_t t; time_t t;
uint16_t crc, off; uint16_t crc = im->dsk.crc;
uint8_t x;
/* If we are processing final data then use the end index, rounded up. */ /* If we are processing final data then use the end index, rounded up. */
barrier(); barrier();
@ -494,77 +495,103 @@ static bool_t dsk_write_track(struct image *im)
while ((int16_t)(p - c) > 128) { while ((int16_t)(p - c) > 128) {
uint32_t sc = c; if (im->dsk.decode_pos == 0) {
if (be16toh(buf[c++ & bufmask]) != 0x4489) uint8_t x;
continue;
if ((x = mfmtobin(buf[c & bufmask])) == 0xa1)
continue;
c++;
switch (x) { if (be16toh(buf[c++ & bufmask]) != 0x4489)
continue;
if ((x = mfmtobin(buf[c & bufmask])) == 0xa1)
continue;
c++;
case 0xfe: /* IDAM */ switch (x) {
for (i = 0; i < 3; i++)
wrbuf[i] = 0xa1; case 0xfe: /* IDAM */
wrbuf[i++] = x; for (i = 0; i < 3; i++)
for (; i < 10; i++) wrbuf[i] = 0xa1;
wrbuf[i] = mfmtobin(buf[c++ & bufmask]); wrbuf[i++] = x;
crc = crc16_ccitt(wrbuf, i, 0xffff); for (; i < 10; i++)
if (crc != 0) { wrbuf[i] = mfmtobin(buf[c++ & bufmask]);
log("IDAM Bad CRC: %04x, %02x\n", crc, wrbuf[6]); crc = crc16_ccitt(wrbuf, i, 0xffff);
if (crc != 0) {
log("IDAM Bad CRC: %04x, %02x\n", crc, wrbuf[6]);
break;
}
/* Convert logical sector number -> rotational number. */
for (i = 0; i < tib->nr_secs; i++)
if (wrbuf[6] == tib->sib[i].r)
break;
im->dsk.write_sector = i;
if (im->dsk.write_sector >= tib->nr_secs) {
log("IDAM Bad Sector: %02x\n", wrbuf[6]);
im->dsk.write_sector = -2;
}
break;
case 0xfb: /* DAM */
im->dsk.decode_pos = 1;
im->dsk.decode_data_pos = 0;
break; break;
} }
/* Convert logical sector number -> rotational number. */
for (i = 0; i < tib->nr_secs; i++)
if (wrbuf[6] == tib->sib[i].r)
break;
im->dsk.write_sector = i;
if (im->dsk.write_sector >= tib->nr_secs) {
log("IDAM Bad Sector: %02x\n", wrbuf[6]);
im->dsk.write_sector = -2;
}
break;
case 0xfb: /* DAM */ { } else {
unsigned int nr, todo, sec_sz;
/* Data record, shy address mark */
unsigned int sec_sz;
int sec_nr = im->dsk.write_sector; int sec_nr = im->dsk.write_sector;
ASSERT(im->dsk.decode_pos == 1);
if (sec_nr < 0) { if (sec_nr < 0) {
if (sec_nr == -1) if (sec_nr == -1) {
sec_nr = dsk_find_first_write_sector(im, write, tib); sec_nr = dsk_find_first_write_sector(im, write, tib);
im->dsk.write_sector = sec_nr;
}
if (sec_nr < 0) { if (sec_nr < 0) {
log("DAM Unknown\n"); log("DAM Unknown\n");
goto dam_out; goto data_complete;
} }
} }
sec_sz = data_sz(&tib->sib[sec_nr]); sec_sz = data_sz(&tib->sib[sec_nr]);
if ((int16_t)(p - c) < (sec_sz + 2)) {
c = sc;
goto out;
}
crc = MFM_DAM_CRC;
log("Write %u[%02x]/%u... ",
sec_nr, tib->sib[sec_nr].r, tib->nr_secs);
t = time_now();
for (i = off = 0; i < sec_nr; i++) for (i = off = 0; i < sec_nr; i++)
off += tib->sib[i].actual_length; off += tib->sib[i].actual_length;
F_lseek(&im->fp, im->dsk.trk_off + off); off += im->dsk.trk_off;
off += im->dsk.decode_data_pos;
for (todo = sec_sz; todo != 0; todo -= nr) { if (im->dsk.decode_data_pos < sec_sz) {
nr = min_t(unsigned int, todo, CHUNK_SIZE); unsigned int nr = sec_sz - im->dsk.decode_data_pos;
nr = min_t(unsigned int, nr, CHUNK_SIZE - (off & 511));
if ((int16_t)(p - c) < nr)
break;
if (!im->dsk.decode_data_pos) {
crc = MFM_DAM_CRC;
log("Write %d[%02x]/%u...",
sec_nr, tib->sib[sec_nr].r, tib->nr_secs);
F_lseek(&im->fp, off);
}
t = time_now();
mfm_ring_to_bin(buf, bufmask, c, wrbuf, nr); mfm_ring_to_bin(buf, bufmask, c, wrbuf, nr);
c += nr; c += nr;
crc = crc16_ccitt(wrbuf, nr, crc); crc = crc16_ccitt(wrbuf, nr, crc);
F_write(&im->fp, wrbuf, nr, NULL); F_write(&im->fp, wrbuf, nr, NULL);
printk(" %u us", time_diff(t, time_now()) / TIME_MHZ);
im->dsk.decode_data_pos += nr;
if (im->dsk.decode_data_pos < sec_sz)
printk("...");
else
printk("\n");
} }
printk("%u us\n", time_diff(t, time_now()) / TIME_MHZ); if (im->dsk.decode_data_pos < sec_sz)
continue;
if ((int16_t)(p - c) < 2)
break;
mfm_ring_to_bin(buf, bufmask, c, wrbuf, 2); mfm_ring_to_bin(buf, bufmask, c, wrbuf, 2);
c += 2; c += 2;
crc = crc16_ccitt(wrbuf, 2, crc); crc = crc16_ccitt(wrbuf, 2, crc);
@ -573,15 +600,14 @@ static bool_t dsk_write_track(struct image *im)
crc, sec_nr, tib->sib[sec_nr].r); crc, sec_nr, tib->sib[sec_nr].r);
} }
dam_out: data_complete:
im->dsk.write_sector = -2; im->dsk.write_sector = -2;
break; im->dsk.decode_pos = 0;
}
} }
} }
out: im->dsk.crc = crc;
wr->cons = c * 16; wr->cons = c * 16;
return flush; return flush;
} }

View file

@ -128,9 +128,10 @@ static void hfe_seek_track(struct image *im, uint16_t track)
im->hfe.trk_off = le16toh(thdr.offset); im->hfe.trk_off = le16toh(thdr.offset);
im->hfe.trk_len = le16toh(thdr.len) / 2; im->hfe.trk_len = le16toh(thdr.len) / 2;
im->tracklen_bc = im->hfe.trk_len * 8; im->tracklen_bc = im->hfe.trk_len * 8;
/* Opcodes in v3 make it difficult to predict the track's length. Keep the if (im->hfe.is_v3 && im->tracklen_ticks) {
* previous track's value if this isn't the first seek. */ /* Opcodes in v3 make it difficult to predict the track's length. Keep
if (!(im->hfe.is_v3 && im->tracklen_ticks)) { * the previous track's value since this isn't the first seek. */
} else {
im->tracklen_ticks = im->tracklen_bc * im->ticks_per_cell; im->tracklen_ticks = im->tracklen_bc * im->ticks_per_cell;
im->stk_per_rev = stk_sampleclk(im->tracklen_ticks / 16); im->stk_per_rev = stk_sampleclk(im->tracklen_ticks / 16);
} }
@ -152,13 +153,16 @@ static void hfe_setup_track(
hfe_seek_track(im, track); hfe_seek_track(im, track);
start_ticks = start_pos ? *start_pos : get_write(im, im->wr_cons)->start; start_ticks = start_pos ? *start_pos : get_write(im, im->wr_cons)->start;
im->cur_bc = (start_ticks * 16) / im->ticks_per_cell;
if (im->cur_bc >= im->tracklen_bc)
im->cur_bc = 0;
im->cur_ticks = im->cur_bc * im->ticks_per_cell;
im->ticks_since_flux = 0;
start_ticks = im->cur_ticks / 16; im->cur_ticks = start_ticks * 16;
im->cur_bc = udiv64((uint64_t)im->cur_ticks * im->tracklen_bc,
im->tracklen_ticks);
if ((im->cur_ticks >= im->tracklen_ticks) ||
(im->cur_bc >= im->tracklen_bc)) {
im->cur_ticks = 0;
im->cur_bc = 0;
}
im->ticks_since_flux = 0;
rd->prod = rd->cons = 0; rd->prod = rd->cons = 0;
bc->prod = bc->cons = 0; bc->prod = bc->cons = 0;
@ -172,10 +176,16 @@ static void hfe_setup_track(
im->hfe.trk_pos = (im->cur_bc/8) & ~255; im->hfe.trk_pos = (im->cur_bc/8) & ~255;
image_read_track(im); image_read_track(im);
bc->cons = im->cur_bc & 2047; bc->cons = im->cur_bc & 2047;
*start_pos = start_ticks;
} else { } else {
/* Write mode. */ /* Write mode. */
im->hfe.trk_pos = im->cur_bc / 8; im->hfe.trk_pos = im->cur_bc / 8;
if (im->hfe.is_v3) {
/* Provide context to the write to avoid corrupting an opcode. */
if ((im->hfe.trk_pos & 255) == 0 && im->hfe.trk_pos != 0)
im->hfe.trk_pos--;
else if ((im->hfe.trk_pos & 255) == 1)
im->hfe.trk_pos = (im->hfe.trk_pos+1) % im->hfe.trk_len;
}
im->hfe.write.start = im->hfe.trk_pos; im->hfe.write.start = im->hfe.trk_pos;
im->hfe.write.wrapped = FALSE; im->hfe.write.wrapped = FALSE;
im->hfe.write_batch.len = 0; im->hfe.write_batch.len = 0;
@ -270,6 +280,7 @@ static uint16_t hfe_rdata_flux(struct image *im, uint16_t *tbuf, uint16_t nr)
x = _rbit32(bc_b[(bc_c/8) & bc_mask]) >> 24; x = _rbit32(bc_b[(bc_c/8) & bc_mask]) >> 24;
im->ticks_per_cell = ticks_per_cell = im->ticks_per_cell = ticks_per_cell =
(sampleclk_us(2) * 16 * x) / 72; (sampleclk_us(2) * 16 * x) / 72;
im->write_bc_ticks = ticks_per_cell / 16;
bc_c += 8; bc_c += 8;
im->cur_bc += 8; im->cur_bc += 8;
continue; continue;
@ -330,6 +341,7 @@ static bool_t hfe_write_track(struct image *im)
unsigned int bufmask = wr->len - 1; unsigned int bufmask = wr->len - 1;
uint8_t *w, *wrbuf = im->bufs.write_data.p; uint8_t *w, *wrbuf = im->bufs.write_data.p;
uint32_t i, space, c = wr->cons / 8, p = wr->prod / 8; uint32_t i, space, c = wr->cons / 8, p = wr->prod / 8;
bool_t is_v3 = im->hfe.is_v3;
bool_t writeback = FALSE; bool_t writeback = FALSE;
time_t t; time_t t;
@ -381,11 +393,62 @@ static bool_t hfe_write_track(struct image *im)
+ (im->cur_track & 1) * 256 + (im->cur_track & 1) * 256
+ batch_off - im->hfe.write_batch.off + batch_off - im->hfe.write_batch.off
+ (off & 255); + (off & 255);
for (i = 0; i < nr; i++)
*w++ = _rbit32(buf[c++ & bufmask]) >> 24; i = 0;
if (is_v3 && off == im->hfe.write.start && off != 0) {
/* Avoid starting write in the middle of an opcode. */
if (w[-2] == OP_SkipBits) {
i++;
} else {
switch (w[-1]) {
case OP_SkipBits:
i += 2;
break;
case OP_Bitrate:
i++;
break;
default:
break;
}
}
}
while (i < nr) {
if (is_v3 && (w[i] & 0xf) == 0xf) {
switch (w[i]) {
case OP_SkipBits:
/* Keep the write byte-aligned. This changes the length of
* the track by 8+skip bitcells, but overwriting OP_SkipBits
* should be rare. */
w[i++] = OP_Nop;
continue;
case OP_Bitrate:
/* Assume bitrate does not change significantly for the
* entire track, and write_bc_ticks already adjusted when
* reading. */
i += 2;
continue;
case OP_Nop:
case OP_Index:
default:
/* Preserve opcode. But making sure not to write past end of
* buffer. */
i++;
continue;
case OP_Rand:
/* Replace with data. */
break;
}
}
w[i++] = _rbit32(buf[c++ & bufmask]) >> 24;
}
im->hfe.write_batch.dirty = TRUE; im->hfe.write_batch.dirty = TRUE;
im->hfe.trk_pos += nr; im->hfe.trk_pos += i; /* i may be larger than nr due to opcodes. */
if (im->hfe.trk_pos >= im->hfe.trk_len) { if (im->hfe.trk_pos >= im->hfe.trk_len) {
ASSERT(im->hfe.trk_pos == im->hfe.trk_len); ASSERT(im->hfe.trk_pos == im->hfe.trk_len);
im->hfe.trk_pos = 0; im->hfe.trk_pos = 0;

View file

@ -1876,15 +1876,17 @@ static void raw_setup_track(
im->cur_ticks = im->cur_bc * im->ticks_per_cell; im->cur_ticks = im->cur_bc * im->ticks_per_cell;
im->ticks_since_flux = 0; im->ticks_since_flux = 0;
decode_off = calc_start_pos(im);
rd->prod = rd->cons = 0; rd->prod = rd->cons = 0;
bc->prod = bc->cons = 0; bc->prod = bc->cons = 0;
if (start_pos) { if (start_pos) {
decode_off = calc_start_pos(im);
image_read_track(im); image_read_track(im);
bc->cons = decode_off * 16; bc->cons = decode_off * 16;
*start_pos = start_ticks; *start_pos = start_ticks;
} else {
im->img.decode_pos = 0;
} }
} }
@ -1963,8 +1965,8 @@ static bool_t raw_write_track(struct image *im)
struct raw_sec *sec; struct raw_sec *sec;
unsigned int i, off; unsigned int i, off;
time_t t; time_t t;
uint16_t crc; uint16_t crc = im->img.crc;
uint8_t idam_r, x; uint8_t idam_r;
/* If we are processing final data then use the end index, rounded up. */ /* If we are processing final data then use the end index, rounded up. */
barrier(); barrier();
@ -1974,110 +1976,137 @@ static bool_t raw_write_track(struct image *im)
while ((int16_t)(p - c) > 128) { while ((int16_t)(p - c) > 128) {
uint32_t sc = c; if (im->img.decode_pos == 0) {
if (im->sync == SYNC_fm) { uint8_t x;
uint16_t sync;
if (buf[c++ & bufmask] != 0xaaaa)
continue;
sync = buf[c & bufmask];
if (mfmtobin(sync >> 1) != FM_SYNC_CLK)
continue;
x = mfmtobin(sync);
c++;
} else { /* MFM */
if (be16toh(buf[c++ & bufmask]) != 0x4489)
continue;
if ((x = mfmtobin(buf[c & bufmask])) == 0xa1)
continue;
c++;
}
switch (x) {
case 0xfe: /* IDAM */
if (im->sync == SYNC_fm) { if (im->sync == SYNC_fm) {
wrbuf[0] = x;
for (i = 1; i < 7; i++) uint16_t sync;
wrbuf[i] = mfmtobin(buf[c++ & bufmask]); if (buf[c++ & bufmask] != 0xaaaa)
idam_r = wrbuf[3]; continue;
sync = buf[c & bufmask];
if (mfmtobin(sync >> 1) != FM_SYNC_CLK)
continue;
x = mfmtobin(sync);
c++;
} else { /* MFM */ } else { /* MFM */
for (i = 0; i < 3; i++)
wrbuf[i] = 0xa1; if (be16toh(buf[c++ & bufmask]) != 0x4489)
wrbuf[i++] = x; continue;
for (; i < 10; i++) if ((x = mfmtobin(buf[c & bufmask])) == 0xa1)
wrbuf[i] = mfmtobin(buf[c++ & bufmask]); continue;
idam_r = wrbuf[6]; c++;
} }
crc = crc16_ccitt(wrbuf, i, 0xffff);
if (crc != 0) { switch (x) {
log("IDAM Bad CRC: %04x, %u\n", crc, idam_r);
case 0xfe: /* IDAM */
if (im->sync == SYNC_fm) {
wrbuf[0] = x;
for (i = 1; i < 7; i++)
wrbuf[i] = mfmtobin(buf[c++ & bufmask]);
idam_r = wrbuf[3];
} else { /* MFM */
for (i = 0; i < 3; i++)
wrbuf[i] = 0xa1;
wrbuf[i++] = x;
for (; i < 10; i++)
wrbuf[i] = mfmtobin(buf[c++ & bufmask]);
idam_r = wrbuf[6];
}
crc = crc16_ccitt(wrbuf, i, 0xffff);
if (crc != 0) {
log("IDAM Bad CRC: %04x, %u\n", crc, idam_r);
break;
}
/* Search by sector id for this sector's logical order. */
for (i = 0, sec = im->img.sec_info;
(i < trk->nr_sectors) && (sec->r != idam_r);
i++, sec++)
continue;
im->img.write_sector = i;
if (i >= trk->nr_sectors) {
log("IDAM Bad Sector: %02x\n", idam_r);
im->img.write_sector = -2;
}
break;
case 0xfb: /* DAM */
im->img.decode_pos = 1;
im->img.decode_data_pos = 0;
break; break;
} }
/* Search by sector id for this sector's logical order. */
for (i = 0, sec = im->img.sec_info;
(i < trk->nr_sectors) && (sec->r != idam_r);
i++, sec++)
continue;
im->img.write_sector = i;
if (i >= trk->nr_sectors) {
log("IDAM Bad Sector: %02x\n", idam_r);
im->img.write_sector = -2;
}
break;
case 0xfb: /* DAM */ { } else {
unsigned int nr, todo, sec_sz;
/* Data record, shy address mark */
unsigned int sec_sz;
int sec_nr = im->img.write_sector; int sec_nr = im->img.write_sector;
ASSERT(im->img.decode_pos == 1);
if (sec_nr < 0) { if (sec_nr < 0) {
if (sec_nr == -1) if (sec_nr == -1) {
sec_nr = raw_find_first_write_sector(im, write, trk); sec_nr = raw_find_first_write_sector(im, write, trk);
im->img.write_sector = sec_nr;
}
if (sec_nr < 0) { if (sec_nr < 0) {
log("DAM Unknown\n"); log("DAM Unknown\n");
goto dam_out; goto data_complete;
} }
} }
sec_sz = sec_sz(im->img.sec_info[sec_nr].n); sec_sz = sec_sz(im->img.sec_info[sec_nr].n);
if ((int16_t)(p - c) < (sec_sz + 2)) {
c = sc;
goto out;
}
crc = (im->sync == SYNC_fm) ? FM_DAM_CRC : MFM_DAM_CRC;
sec = &im->img.sec_info[sec_nr]; sec = &im->img.sec_info[sec_nr];
log("Write %u[%02x]/%u... ", sec_nr, sec->r, trk->nr_sectors);
t = time_now();
if (im->img.file_sec_offsets) { if (im->img.file_sec_offsets) {
off = im->img.file_sec_offsets[sec_nr]; off = im->img.file_sec_offsets[sec_nr];
} else if (trk->img_bps != 0) { } else if (trk->img_bps != 0) {
off = sec_nr * trk->img_bps; off = sec_nr * trk->img_bps;
} else { } else {
off = 0;
sec = im->img.sec_info; sec = im->img.sec_info;
for (i = 0; i < sec_nr; i++) for (i = off = 0; i < sec_nr; i++)
off += sec_sz(sec++->n); off += sec_sz(sec++->n);
} }
F_lseek(&im->fp, im->img.trk_off + off); off += im->img.trk_off;
off += im->img.decode_data_pos;
for (todo = sec_sz; todo != 0; todo -= nr) { if (im->img.decode_data_pos < sec_sz) {
nr = min_t(unsigned int, todo, CHUNK_SIZE); unsigned int nr = sec_sz - im->img.decode_data_pos;
nr = min_t(unsigned int, nr, CHUNK_SIZE - (off & 511));
if ((int16_t)(p - c) < nr)
break;
if (!im->img.decode_data_pos) {
crc = (im->sync == SYNC_fm) ? FM_DAM_CRC : MFM_DAM_CRC;
log("Write %u[%02x]/%u...",
sec_nr, sec->r, trk->nr_sectors);
F_lseek(&im->fp, off);
}
t = time_now();
mfm_ring_to_bin(buf, bufmask, c, wrbuf, nr); mfm_ring_to_bin(buf, bufmask, c, wrbuf, nr);
c += nr; c += nr;
crc = crc16_ccitt(wrbuf, nr, crc); crc = crc16_ccitt(wrbuf, nr, crc);
process_data(im, wrbuf, nr); process_data(im, wrbuf, nr);
F_write(&im->fp, wrbuf, nr, NULL); F_write(&im->fp, wrbuf, nr, NULL);
printk(" %u us", time_diff(t, time_now()) / TIME_MHZ);
im->img.decode_data_pos += nr;
if (im->img.decode_data_pos < sec_sz)
printk("...");
else
printk("\n");
} }
printk("%u us\n", time_diff(t, time_now()) / TIME_MHZ); if (im->img.decode_data_pos < sec_sz)
continue;
if ((int16_t)(p - c) < 2)
break;
mfm_ring_to_bin(buf, bufmask, c, wrbuf, 2); mfm_ring_to_bin(buf, bufmask, c, wrbuf, 2);
c += 2; c += 2;
crc = crc16_ccitt(wrbuf, 2, crc); crc = crc16_ccitt(wrbuf, 2, crc);
@ -2085,15 +2114,14 @@ static bool_t raw_write_track(struct image *im)
log("Bad CRC: %04x, %u[%02x]\n", crc, sec_nr, sec->r); log("Bad CRC: %04x, %u[%02x]\n", crc, sec_nr, sec->r);
} }
dam_out: data_complete:
im->img.write_sector = -2; im->img.write_sector = -2;
break; im->img.decode_pos = 0;
}
} }
} }
out: im->img.crc = crc;
wr->cons = c * 16; wr->cons = c * 16;
return flush; return flush;
} }

View file

@ -33,7 +33,7 @@ static bool_t qd_open(struct image *im)
im->qd.tb = 1; im->qd.tb = 1;
im->nr_cyls = 1; im->nr_cyls = 1;
im->nr_sides = 1; im->nr_sides = 1;
im->write_bc_ticks = sampleclk_us(4) + 66; /* 4.917us */ im->write_bc_ticks = sampleclk_ns(4917); /* 4.917us */
im->ticks_per_cell = im->write_bc_ticks; im->ticks_per_cell = im->write_bc_ticks;
im->sync = SYNC_none; im->sync = SYNC_none;

View file

@ -335,6 +335,18 @@ unsigned int popcount(uint32_t x)
return (((x + (x >> 4)) & 0x0f0f0f0f) * 0x01010101) >> 24; return (((x + (x >> 4)) & 0x0f0f0f0f) * 0x01010101) >> 24;
} }
/* 64:32->32q division requiring 32:32->64 multiply. Cortex M3+ */
uint32_t udiv64(uint64_t dividend, uint32_t divisor)
{
uint32_t x, q = 0;
for (x = 1u<<31; x != 0; x >>= 1) {
if (((uint64_t)(q|x)*divisor) <= dividend)
q |= x;
}
return q;
}
/* /*
* Local variables: * Local variables:
* mode: C * mode: C