linuxcnc/lib/python/plasmac/star.py

226 lines
8.9 KiB
Python

'''
star.py
Copyright (C) 2020, 2021, 2022 Phillip A Carter
Copyright (C) 2020, 2021, 2022 Gregory D Carl
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
'''
import os
import sys
import math
import gettext
for f in sys.path:
if '/lib/python' in f:
if '/usr' in f:
localeDir = 'usr/share/locale'
else:
localeDir = os.path.join('{}'.format(f.split('/lib')[0]),'share','locale')
break
gettext.install("linuxcnc", localedir=localeDir)
# Conv is the upstream calling module
def preview(Conv, fTmp, fNgc, fNgcBkp, \
matNumber, matName, \
preAmble, postAmble, \
leadinLength, leadoutLength, \
isCenter, xOffset, yOffset, \
kerfWidth, isExternal, \
points, extDia, intDia, angle):
error = ''
msg1 = _('entry is invalid')
valid, xOffset = Conv.conv_is_float(xOffset)
if not valid and xOffset:
msg0 = _('X ORIGIN')
error += '{} {}\n\n'.format(msg0, msg1)
valid, yOffset = Conv.conv_is_float(yOffset)
if not valid and yOffset:
msg0 = _('Y ORIGIN')
error += '{} {}\n\n'.format(msg0, msg1)
valid, leadinLength = Conv.conv_is_float(leadinLength)
if not valid and leadinLength:
msg0 = _('LEAD IN')
error += '{} {}\n\n'.format(msg0, msg1)
valid, leadoutLength = Conv.conv_is_float(leadoutLength)
if not valid and leadoutLength:
msg0 = _('LEAD OUT')
error += '{} {}\n\n'.format(msg0, msg1)
valid, points = Conv.conv_is_int(points)
if not valid and points:
msg0 = _('POINTS')
error += '{} {}\n\n'.format(msg0, msg1)
valid, extDia = Conv.conv_is_float(extDia)
if not valid and extDia:
msg0 = _('OUTER DIA')
error += '{} {}\n\n'.format(msg0, msg1)
valid, intDia = Conv.conv_is_float(intDia)
if not valid and intDia:
msg0 = _('INNER DIA')
error += '{} {}\n\n'.format(msg0, msg1)
valid, angle = Conv.conv_is_float(angle)
if not valid and angle:
msg0 = _('ANGLE')
error += '{} {}\n\n'.format(msg0, msg1)
valid, kerfWidth = Conv.conv_is_float(kerfWidth)
if not valid:
msg = _('Invalid Kerf Width entry in material')
error += '{}\n\n'.format(msg)
if error:
return error
if points < 2:
msg = _('More than two POINTS required')
error += '{}\n\n'.format(msg)
if extDia == 0:
msg = _('OUTER DIA cannot be zero')
error += '{}\n\n'.format(msg)
if intDia == 0:
msg = _('INNER DIA cannot be zero')
error += '{}\n\n'.format(msg)
if intDia >= extDia:
msg = _('INNER DIA must be less than OUTER DIA')
error += '{}\n\n'.format(msg)
if error:
return error
extRadius = extDia / 2
intRadius = intDia / 2
angle = math.radians(angle)
# get start pop
if isCenter:
xC = xOffset
yC = yOffset
else:
xC = xOffset + extRadius * math.cos(math.radians(0))
yC = yOffset + extRadius * math.sin(math.radians(90))
# get all points
pList = get_points(points, angle, xC, yC, extRadius, intRadius)
# get external offset required
extOffset = get_offset([pList[3][0],pList[3][1]], [pList[2][0],pList[2][1]], [pList[1][0],pList[1][1]], kerfWidth)
# get internal offset required
intOffset = get_offset([pList[0][0],pList[0][1]], [pList[1][0],pList[1][1]], [pList[2][0],pList[2][1]], kerfWidth)
# get new points
move = 0 if isCenter else extOffset
if isExternal:
pList = get_points(points, angle, xC + move, yC + move, extRadius + extOffset, intRadius + intOffset)
else:
pList = get_points(points, angle, xC - move, yC - move, extRadius - extOffset, intRadius - intOffset)
outTmp = open(fTmp, 'w')
outNgc = open(fNgc, 'w')
inWiz = open(fNgcBkp, 'r')
for line in inWiz:
if '(new conversational file)' in line:
if('\\n') in preAmble:
outNgc.write('(preamble)\n')
for l in preAmble.split('\\n'):
outNgc.write('{}\n'.format(l))
else:
outNgc.write('\n{} (preamble)\n'.format(preAmble))
break
elif '(postamble)' in line:
break
elif 'm2' in line.lower() or 'm30' in line.lower():
continue
outNgc.write(line)
outTmp.write('\n(conversational star {})\n'.format(points))
outTmp.write(';using material #{}: {}\n'.format(matNumber, matName))
outTmp.write('M190 P{}\n'.format(matNumber))
outTmp.write('M66 P3 L3 Q1\n')
outTmp.write('f#<_hal[plasmac.cut-feed-rate]>\n')
if isExternal:
if leadinLength > 0:
lAngle = math.atan2(pList[0][1] - pList[-1][1],
pList[0][0] - pList[-1][0])
xlStart = pList[0][0] + leadinLength * math.cos(lAngle)
ylStart = pList[0][1] + leadinLength * math.sin(lAngle)
outTmp.write('g0 x{:.6f} y{:.6f}\n'.format(xlStart, ylStart))
outTmp.write('m3 $0 s1\n')
outTmp.write('g1 x{} y{}\n'.format(pList[0][0], pList[0][1]))
else:
outTmp.write('g0 x{} y{}\n'.format(pList[0][0], pList[0][1]))
outTmp.write('m3 $0 s1\n')
for i in range(points * 2, 0, -1):
outTmp.write('g1 x{} y{}\n'.format(pList[i - 1][0], pList[i - 1][1]))
if leadoutLength > 0:
lAngle = math.atan2(pList[0][1] - pList[1][1],
pList[0][0] - pList[1][0])
xlEnd = pList[0][0] + leadoutLength * math.cos(lAngle)
ylEnd = pList[0][1] + leadoutLength * math.sin(lAngle)
outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(xlEnd, ylEnd))
else:
if leadinLength > 0:
lAngle = math.atan2(pList[-1][1] - pList[0][1],
pList[-1][0] - pList[0][0])
xlStart = pList[points * 2 - 1][0] + leadinLength * math.cos(lAngle)
ylStart = pList[points * 2 - 1][1] + leadinLength * math.sin(lAngle)
outTmp.write('g0 x{:.6f} y{:.6f}\n'.format(xlStart, ylStart))
outTmp.write('m3 $0 s1\n')
outTmp.write('g1 x{} y{}\n'.format(pList[points * 2 - 1][0], pList[points * 2 - 1][1]))
outTmp.write('g1 x{} y{}\n'.format(pList[0][0], pList[0][1]))
else:
outTmp.write('g0 x{} y{}\n'.format(pList[points * 2 - 1][0], pList[points * 2 - 1][1]))
outTmp.write('m3 $0 s1\n')
outTmp.write('g1 x{} y{}\n'.format(pList[0][0], pList[0][1]))
for i in range(1, points * 2):
outTmp.write('g1 x{} y{}\n'.format(pList[i][0], pList[i][1]))
if leadoutLength > 0:
lAngle = math.atan2(pList[-1][1] - pList[-2][1],
pList[-1][0] - pList[-2][0])
xlEnd = pList[-1][0] + leadoutLength * math.cos(lAngle)
ylEnd = pList[-1][1] + leadoutLength * math.sin(lAngle)
outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(xlEnd, ylEnd))
outTmp.write('m5 $0\n')
outTmp.close()
outTmp = open(fTmp, 'r')
for line in outTmp:
outNgc.write(line)
outTmp.close()
if('\\n') in postAmble:
outNgc.write('(postamble)\n')
for l in postAmble.split('\\n'):
outNgc.write('{}\n'.format(l))
else:
outNgc.write('\n{} (postamble)\n'.format(postAmble))
outNgc.write('m2\n')
outNgc.close()
return False
def get_points(points, angle, xC, yC, extRadius, intRadius):
pList = []
for i in range(points * 2):
pAngle = angle + 2 * math.pi * i / (points * 2)
if i % 2 == 0:
x = xC + extRadius * math.cos(pAngle)
y = yC + extRadius * math.sin(pAngle)
else:
x = xC + intRadius * math.cos(pAngle)
y = yC + intRadius * math.sin(pAngle)
pList.append([round(x, 3), round(y, 3)])
return pList
def get_offset(A, B, C, kerfWidth):
# Ax, Ay = A[0] - B[0], A[1] - B[1]
# Cx, Cy = C[0] - B[0], C[1] - B[1]
# a = math.atan2(Ay, Ax)
# c = math.atan2(Cy, Cx)
a = math.atan2(A[1] - B[1], A[0] - B[0])
c = math.atan2(C[1] - B[1], C[0] - B[0])
if a < 0: a += math.pi * 2
if c < 0: c += math.pi * 2
ang = (math.pi * 2 + c - a) if a > c else (c - a)
ang = math.radians(90) - (ang / 2)
adj = (kerfWidth / 2) / math.sin(ang)
ofs = math.tan(ang) * adj
return ofs