226 lines
8.9 KiB
Python
226 lines
8.9 KiB
Python
'''
|
|
star.py
|
|
|
|
Copyright (C) 2020, 2021, 2022 Phillip A Carter
|
|
Copyright (C) 2020, 2021, 2022 Gregory D Carl
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
'''
|
|
|
|
import os
|
|
import sys
|
|
import math
|
|
import gettext
|
|
|
|
for f in sys.path:
|
|
if '/lib/python' in f:
|
|
if '/usr' in f:
|
|
localeDir = 'usr/share/locale'
|
|
else:
|
|
localeDir = os.path.join('{}'.format(f.split('/lib')[0]),'share','locale')
|
|
break
|
|
gettext.install("linuxcnc", localedir=localeDir)
|
|
|
|
# Conv is the upstream calling module
|
|
def preview(Conv, fTmp, fNgc, fNgcBkp, \
|
|
matNumber, matName, \
|
|
preAmble, postAmble, \
|
|
leadinLength, leadoutLength, \
|
|
isCenter, xOffset, yOffset, \
|
|
kerfWidth, isExternal, \
|
|
points, extDia, intDia, angle):
|
|
error = ''
|
|
msg1 = _('entry is invalid')
|
|
valid, xOffset = Conv.conv_is_float(xOffset)
|
|
if not valid and xOffset:
|
|
msg0 = _('X ORIGIN')
|
|
error += '{} {}\n\n'.format(msg0, msg1)
|
|
valid, yOffset = Conv.conv_is_float(yOffset)
|
|
if not valid and yOffset:
|
|
msg0 = _('Y ORIGIN')
|
|
error += '{} {}\n\n'.format(msg0, msg1)
|
|
valid, leadinLength = Conv.conv_is_float(leadinLength)
|
|
if not valid and leadinLength:
|
|
msg0 = _('LEAD IN')
|
|
error += '{} {}\n\n'.format(msg0, msg1)
|
|
valid, leadoutLength = Conv.conv_is_float(leadoutLength)
|
|
if not valid and leadoutLength:
|
|
msg0 = _('LEAD OUT')
|
|
error += '{} {}\n\n'.format(msg0, msg1)
|
|
valid, points = Conv.conv_is_int(points)
|
|
if not valid and points:
|
|
msg0 = _('POINTS')
|
|
error += '{} {}\n\n'.format(msg0, msg1)
|
|
valid, extDia = Conv.conv_is_float(extDia)
|
|
if not valid and extDia:
|
|
msg0 = _('OUTER DIA')
|
|
error += '{} {}\n\n'.format(msg0, msg1)
|
|
valid, intDia = Conv.conv_is_float(intDia)
|
|
if not valid and intDia:
|
|
msg0 = _('INNER DIA')
|
|
error += '{} {}\n\n'.format(msg0, msg1)
|
|
valid, angle = Conv.conv_is_float(angle)
|
|
if not valid and angle:
|
|
msg0 = _('ANGLE')
|
|
error += '{} {}\n\n'.format(msg0, msg1)
|
|
valid, kerfWidth = Conv.conv_is_float(kerfWidth)
|
|
if not valid:
|
|
msg = _('Invalid Kerf Width entry in material')
|
|
error += '{}\n\n'.format(msg)
|
|
if error:
|
|
return error
|
|
if points < 2:
|
|
msg = _('More than two POINTS required')
|
|
error += '{}\n\n'.format(msg)
|
|
if extDia == 0:
|
|
msg = _('OUTER DIA cannot be zero')
|
|
error += '{}\n\n'.format(msg)
|
|
if intDia == 0:
|
|
msg = _('INNER DIA cannot be zero')
|
|
error += '{}\n\n'.format(msg)
|
|
if intDia >= extDia:
|
|
msg = _('INNER DIA must be less than OUTER DIA')
|
|
error += '{}\n\n'.format(msg)
|
|
if error:
|
|
return error
|
|
extRadius = extDia / 2
|
|
intRadius = intDia / 2
|
|
angle = math.radians(angle)
|
|
# get start pop
|
|
if isCenter:
|
|
xC = xOffset
|
|
yC = yOffset
|
|
else:
|
|
xC = xOffset + extRadius * math.cos(math.radians(0))
|
|
yC = yOffset + extRadius * math.sin(math.radians(90))
|
|
# get all points
|
|
pList = get_points(points, angle, xC, yC, extRadius, intRadius)
|
|
# get external offset required
|
|
extOffset = get_offset([pList[3][0],pList[3][1]], [pList[2][0],pList[2][1]], [pList[1][0],pList[1][1]], kerfWidth)
|
|
# get internal offset required
|
|
intOffset = get_offset([pList[0][0],pList[0][1]], [pList[1][0],pList[1][1]], [pList[2][0],pList[2][1]], kerfWidth)
|
|
# get new points
|
|
move = 0 if isCenter else extOffset
|
|
if isExternal:
|
|
pList = get_points(points, angle, xC + move, yC + move, extRadius + extOffset, intRadius + intOffset)
|
|
else:
|
|
pList = get_points(points, angle, xC - move, yC - move, extRadius - extOffset, intRadius - intOffset)
|
|
outTmp = open(fTmp, 'w')
|
|
outNgc = open(fNgc, 'w')
|
|
inWiz = open(fNgcBkp, 'r')
|
|
for line in inWiz:
|
|
if '(new conversational file)' in line:
|
|
if('\\n') in preAmble:
|
|
outNgc.write('(preamble)\n')
|
|
for l in preAmble.split('\\n'):
|
|
outNgc.write('{}\n'.format(l))
|
|
else:
|
|
outNgc.write('\n{} (preamble)\n'.format(preAmble))
|
|
break
|
|
elif '(postamble)' in line:
|
|
break
|
|
elif 'm2' in line.lower() or 'm30' in line.lower():
|
|
continue
|
|
outNgc.write(line)
|
|
outTmp.write('\n(conversational star {})\n'.format(points))
|
|
outTmp.write(';using material #{}: {}\n'.format(matNumber, matName))
|
|
outTmp.write('M190 P{}\n'.format(matNumber))
|
|
outTmp.write('M66 P3 L3 Q1\n')
|
|
outTmp.write('f#<_hal[plasmac.cut-feed-rate]>\n')
|
|
if isExternal:
|
|
if leadinLength > 0:
|
|
lAngle = math.atan2(pList[0][1] - pList[-1][1],
|
|
pList[0][0] - pList[-1][0])
|
|
xlStart = pList[0][0] + leadinLength * math.cos(lAngle)
|
|
ylStart = pList[0][1] + leadinLength * math.sin(lAngle)
|
|
outTmp.write('g0 x{:.6f} y{:.6f}\n'.format(xlStart, ylStart))
|
|
outTmp.write('m3 $0 s1\n')
|
|
outTmp.write('g1 x{} y{}\n'.format(pList[0][0], pList[0][1]))
|
|
else:
|
|
outTmp.write('g0 x{} y{}\n'.format(pList[0][0], pList[0][1]))
|
|
outTmp.write('m3 $0 s1\n')
|
|
for i in range(points * 2, 0, -1):
|
|
outTmp.write('g1 x{} y{}\n'.format(pList[i - 1][0], pList[i - 1][1]))
|
|
if leadoutLength > 0:
|
|
lAngle = math.atan2(pList[0][1] - pList[1][1],
|
|
pList[0][0] - pList[1][0])
|
|
xlEnd = pList[0][0] + leadoutLength * math.cos(lAngle)
|
|
ylEnd = pList[0][1] + leadoutLength * math.sin(lAngle)
|
|
outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(xlEnd, ylEnd))
|
|
else:
|
|
if leadinLength > 0:
|
|
lAngle = math.atan2(pList[-1][1] - pList[0][1],
|
|
pList[-1][0] - pList[0][0])
|
|
xlStart = pList[points * 2 - 1][0] + leadinLength * math.cos(lAngle)
|
|
ylStart = pList[points * 2 - 1][1] + leadinLength * math.sin(lAngle)
|
|
outTmp.write('g0 x{:.6f} y{:.6f}\n'.format(xlStart, ylStart))
|
|
outTmp.write('m3 $0 s1\n')
|
|
outTmp.write('g1 x{} y{}\n'.format(pList[points * 2 - 1][0], pList[points * 2 - 1][1]))
|
|
outTmp.write('g1 x{} y{}\n'.format(pList[0][0], pList[0][1]))
|
|
else:
|
|
outTmp.write('g0 x{} y{}\n'.format(pList[points * 2 - 1][0], pList[points * 2 - 1][1]))
|
|
outTmp.write('m3 $0 s1\n')
|
|
outTmp.write('g1 x{} y{}\n'.format(pList[0][0], pList[0][1]))
|
|
for i in range(1, points * 2):
|
|
outTmp.write('g1 x{} y{}\n'.format(pList[i][0], pList[i][1]))
|
|
if leadoutLength > 0:
|
|
lAngle = math.atan2(pList[-1][1] - pList[-2][1],
|
|
pList[-1][0] - pList[-2][0])
|
|
xlEnd = pList[-1][0] + leadoutLength * math.cos(lAngle)
|
|
ylEnd = pList[-1][1] + leadoutLength * math.sin(lAngle)
|
|
outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(xlEnd, ylEnd))
|
|
outTmp.write('m5 $0\n')
|
|
outTmp.close()
|
|
outTmp = open(fTmp, 'r')
|
|
for line in outTmp:
|
|
outNgc.write(line)
|
|
outTmp.close()
|
|
if('\\n') in postAmble:
|
|
outNgc.write('(postamble)\n')
|
|
for l in postAmble.split('\\n'):
|
|
outNgc.write('{}\n'.format(l))
|
|
else:
|
|
outNgc.write('\n{} (postamble)\n'.format(postAmble))
|
|
outNgc.write('m2\n')
|
|
outNgc.close()
|
|
return False
|
|
|
|
def get_points(points, angle, xC, yC, extRadius, intRadius):
|
|
pList = []
|
|
for i in range(points * 2):
|
|
pAngle = angle + 2 * math.pi * i / (points * 2)
|
|
if i % 2 == 0:
|
|
x = xC + extRadius * math.cos(pAngle)
|
|
y = yC + extRadius * math.sin(pAngle)
|
|
else:
|
|
x = xC + intRadius * math.cos(pAngle)
|
|
y = yC + intRadius * math.sin(pAngle)
|
|
pList.append([round(x, 3), round(y, 3)])
|
|
return pList
|
|
|
|
def get_offset(A, B, C, kerfWidth):
|
|
# Ax, Ay = A[0] - B[0], A[1] - B[1]
|
|
# Cx, Cy = C[0] - B[0], C[1] - B[1]
|
|
# a = math.atan2(Ay, Ax)
|
|
# c = math.atan2(Cy, Cx)
|
|
a = math.atan2(A[1] - B[1], A[0] - B[0])
|
|
c = math.atan2(C[1] - B[1], C[0] - B[0])
|
|
if a < 0: a += math.pi * 2
|
|
if c < 0: c += math.pi * 2
|
|
ang = (math.pi * 2 + c - a) if a > c else (c - a)
|
|
ang = math.radians(90) - (ang / 2)
|
|
adj = (kerfWidth / 2) / math.sin(ang)
|
|
ofs = math.tan(ang) * adj
|
|
return ofs
|