linuxcnc/nc_files/remap_lib/python-stdglue/stdglue.py
Sebastian Kuzminsky 3eb1c9c5e9 Merge remote-tracking branch 'origin/2.8' into 2.9
* origin/2.8:
  interpmodule: add interpreter.active_spindle property
  add a test that uses remap to introspect about interpreter spindle state
  fixup remap stdglue, interpreter.speed is an array now
  fixup remap docs, interpreter.speed is an array now
  fix remap/gettings-started config: speed is a tuple, not a float
  interpmodule: fix `speed` property
2023-01-09 09:52:01 -07:00

672 lines
24 KiB
Python

#NOTE:
# The legacy names *selected_pocket* and *current_pocket* actually reference
# a sequential tooldata index for tool items loaded from a tool
# table ([EMCIO]TOOL_TABLE) or via a tooldata database ([EMCIO]DB_PROGRAM)
# stdglue - canned prolog and epilog functions for the remappable builtin codes (T,M6,M61,S,F)
#
# we dont use argspec to avoid the generic error message of the argspec prolog and give more
# concise ones here
# cycle_prolog,cycle_epilog: generic code-independent support glue for oword sub cycles
#
# these are provided as starting point - for more concise error message you would better
# write a prolog specific for the code
#
# Usage:
#REMAP=G84.3 modalgroup=1 argspec=xyzqp prolog=cycle_prolog ngc=g843 epilog=cycle_epilog
import emccanon
from interpreter import *
from emccanon import MESSAGE
throw_exceptions = 1
# used so screens can get info.
# add this to toplevel to call it:
# import remap
# def __init__(self):
# if self.task:
# remap.build_hal(self)
def build_hal(self):
import hal
try:
h=hal.component('remapStat')
h.newpin("tool", hal.HAL_S32, hal.HAL_OUT)
h.newpin("wear", hal.HAL_S32, hal.HAL_OUT)
h.ready()
self.hal_tool_comp = h
except Exception as e:
print(e)
# REMAP=S prolog=setspeed_prolog ngc=setspeed epilog=setspeed_epilog
# exposed parameter: #<speed>
def setspeed_prolog(self,**words):
try:
c = self.blocks[self.remap_level]
if not c.s_flag:
self.set_errormsg("S requires a value")
return INTERP_ERROR
self.params["speed"] = c.s_number
except Exception as e:
self.set_errormsg("S/setspeed_prolog: %s)" % (e))
return INTERP_ERROR
return INTERP_OK
def setspeed_epilog(self,**words):
try:
if not self.value_returned:
r = self.blocks[self.remap_level].executing_remap
self.set_errormsg("the %s remap procedure %s did not return a value"
% (r.name,r.remap_ngc if r.remap_ngc else r.remap_py))
return INTERP_ERROR
if self.return_value < -TOLERANCE_EQUAL: # 'less than 0 within interp's precision'
self.set_errormsg("S: remap procedure returned %f" % (self.return_value))
return INTERP_ERROR
if self.blocks[self.remap_level].builtin_used:
pass
#print "---------- S builtin recursion, nothing to do"
else:
self.speed[0] = self.params["speed"]
emccanon.enqueue_SET_SPINDLE_SPEED(self.speed[0])
return INTERP_OK
except Exception as e:
self.set_errormsg("S/setspeed_epilog: %s)" % (e))
return INTERP_ERROR
return INTERP_OK
# REMAP=F prolog=setfeed_prolog ngc=setfeed epilog=setfeed_epilog
# exposed parameter: #<feed>
def setfeed_prolog(self,**words):
try:
c = self.blocks[self.remap_level]
if not c.f_flag:
self.set_errormsg("F requires a value")
return INTERP_ERROR
self.params["feed"] = c.f_number
except Exception as e:
self.set_errormsg("F/setfeed_prolog: %s)" % (e))
return INTERP_ERROR
return INTERP_OK
def setfeed_epilog(self,**words):
try:
if not self.value_returned:
r = self.blocks[self.remap_level].executing_remap
self.set_errormsg("the %s remap procedure %s did not return a value"
% (r.name,r.remap_ngc if r.remap_ngc else r.remap_py))
return INTERP_ERROR
if self.blocks[self.remap_level].builtin_used:
pass
#print "---------- F builtin recursion, nothing to do"
else:
self.feed_rate = self.params["feed"]
emccanon.enqueue_SET_FEED_RATE(self.feed_rate)
return INTERP_OK
except Exception as e:
self.set_errormsg("F/setfeed_epilog: %s)" % (e))
return INTERP_ERROR
return INTERP_OK
# REMAP=T prolog=prepare_prolog ngc=prepare epilog=prepare_epilog
# exposed parameters: #<tool> #<pocket>
def prepare_prolog(self,**words):
try:
cblock = self.blocks[self.remap_level]
if not cblock.t_flag:
self.set_errormsg("T requires a tool number")
return INTERP_ERROR
tool = cblock.t_number
if tool:
(status, pocket) = self.find_tool_pocket(tool)
if status != INTERP_OK:
self.set_errormsg("T%d: pocket not found" % (tool))
return status
else:
pocket = -1 # this is a T0 - tool unload
self.params["tool"] = tool
self.params["pocket"] = pocket
return INTERP_OK
except Exception as e:
self.set_errormsg("T%d/prepare_prolog: %s" % (int(words['t']), e))
return INTERP_ERROR
def prepare_epilog(self, **words):
try:
if not self.value_returned:
r = self.blocks[self.remap_level].executing_remap
self.set_errormsg("the %s remap procedure %s did not return a value"
% (r.name,r.remap_ngc if r.remap_ngc else r.remap_py))
return INTERP_ERROR
if self.blocks[self.remap_level].builtin_used:
#print "---------- T builtin recursion, nothing to do"
return INTERP_OK
else:
if self.return_value > 0:
self.selected_tool = int(self.params["tool"])
self.selected_pocket = int(self.params["pocket"])
emccanon.SELECT_TOOL(self.selected_tool)
return INTERP_OK
else:
self.set_errormsg("T%d: aborted (return code %.1f)" % (int(self.params["tool"]),self.return_value))
return INTERP_ERROR
except Exception as e:
self.set_errormsg("T%d/prepare_epilog: %s" % (tool,e))
return INTERP_ERROR
# REMAP=M6 modalgroup=6 prolog=change_prolog ngc=change epilog=change_epilog
# exposed parameters:
# #<tool_in_spindle>
# #<selected_tool>
# #<current_pocket>
# #<selected_pocket>
def change_prolog(self, **words):
try:
# this is relevant only when using iocontrol-v2.
if self.params[5600] > 0.0:
if self.params[5601] < 0.0:
self.set_errormsg("Toolchanger hard fault %d" % (int(self.params[5601])))
return INTERP_ERROR
print("change_prolog: Toolchanger soft fault %d" % int(self.params[5601]))
if self.selected_pocket < 0:
self.set_errormsg("M6: no tool prepared")
return INTERP_ERROR
if self.cutter_comp_side:
self.set_errormsg("Cannot change tools with cutter radius compensation on")
return INTERP_ERROR
self.params["tool_in_spindle"] = self.current_tool
self.params["selected_tool"] = self.selected_tool
self.params["current_pocket"] = self.current_pocket
self.params["selected_pocket"] = self.selected_pocket
return INTERP_OK
except Exception as e:
self.set_errormsg("M6/change_prolog: %s" % (e))
return INTERP_ERROR
def change_epilog(self, **words):
try:
if not self.value_returned:
r = self.blocks[self.remap_level].executing_remap
self.set_errormsg("the %s remap procedure %s did not return a value"
% (r.name,r.remap_ngc if r.remap_ngc else r.remap_py))
yield INTERP_ERROR
# this is relevant only when using iocontrol-v2.
if self.params[5600] > 0.0:
if self.params[5601] < 0.0:
self.set_errormsg("Toolchanger hard fault %d" % (int(self.params[5601])))
yield INTERP_ERROR
print("change_epilog: Toolchanger soft fault %d" % int(self.params[5601]))
if self.blocks[self.remap_level].builtin_used:
#print "---------- M6 builtin recursion, nothing to do"
yield INTERP_OK
else:
if self.return_value > 0.0:
# commit change
self.selected_pocket = int(self.params["selected_pocket"])
emccanon.CHANGE_TOOL(self.selected_pocket)
self.current_pocket = self.selected_pocket
self.selected_pocket = -1
self.selected_tool = -1
# cause a sync()
self.set_tool_parameters()
self.toolchange_flag = True
yield INTERP_EXECUTE_FINISH
else:
# yield to print any messages from the NGC program
yield INTERP_EXECUTE_FINISH
self.set_errormsg("M6 aborted (return code %.1f)" % (self.return_value))
yield INTERP_ERROR
except Exception as e:
self.set_errormsg("M6/change_epilog: %s" % (e))
yield INTERP_ERROR
# REMAP=M61 modalgroup=6 prolog=settool_prolog ngc=settool epilog=settool_epilog
# exposed parameters: #<tool> #<pocket>
def settool_prolog(self,**words):
try:
c = self.blocks[self.remap_level]
if not c.q_flag:
self.set_errormsg("M61 requires a Q parameter")
return INTERP_ERROR
tool = int(c.q_number)
if tool < -TOLERANCE_EQUAL: # 'less than 0 within interp's precision'
self.set_errormsg("M61: Q value < 0")
return INTERP_ERROR
(status,pocket) = self.find_tool_pocket(tool)
if status != INTERP_OK:
self.set_errormsg("M61 failed: requested tool %d not in table" % (tool))
return status
self.params["tool"] = tool
self.params["pocket"] = pocket
return INTERP_OK
except Exception as e:
self.set_errormsg("M61/settool_prolog: %s)" % (e))
return INTERP_ERROR
def settool_epilog(self,**words):
try:
if not self.value_returned:
r = self.blocks[self.remap_level].executing_remap
self.set_errormsg("the %s remap procedure %s did not return a value"
% (r.name,r.remap_ngc if r.remap_ngc else r.remap_py))
return INTERP_ERROR
if self.blocks[self.remap_level].builtin_used:
#print "---------- M61 builtin recursion, nothing to do"
return INTERP_OK
else:
if self.return_value > 0.0:
self.current_tool = int(self.params["tool"])
self.current_pocket = int(self.params["pocket"])
emccanon.CHANGE_TOOL_NUMBER(self.current_pocket)
# cause a sync()
self.tool_change_flag = True
self.set_tool_parameters()
else:
self.set_errormsg("M61 aborted (return code %.1f)" % (self.return_value))
return INTERP_ERROR
except Exception as e:
self.set_errormsg("M61/settool_epilog: %s)" % (e))
return INTERP_ERROR
# educational alternative: M61 remapped to an all-Python handler
# demo - this really does the same thing as the builtin (non-remapped) M61
#
# REMAP=M61 modalgroup=6 python=set_tool_number
def set_tool_number(self, **words):
try:
c = self.blocks[self.remap_level]
if c.q_flag:
toolno = int(c.q_number)
else:
self.set_errormsg("M61 requires a Q parameter")
return status
(status,pocket) = self.find_tool_pocket(toolno)
if status != INTERP_OK:
self.set_errormsg("M61 failed: requested tool %d not in table" % (toolno))
return status
if words['q'] > -TOLERANCE_EQUAL: # 'greater equal 0 within interp's precision'
self.current_pocket = pocket
self.current_tool = toolno
emccanon.CHANGE_TOOL_NUMBER(pocket)
# cause a sync()
self.tool_change_flag = True
self.set_tool_parameters()
return INTERP_OK
else:
self.set_errormsg("M61 failed: Q=%4" % (toolno))
return INTERP_ERROR
except Exception as e:
self.set_errormsg("M61/set_tool_number: %s" % (e))
return INTERP_ERROR
_uvw = ("u","v","w","a","b","c")
_xyz = ("x","y","z","a","b","c")
# given a plane, return sticky words, incompatible axis words and plane name
# sticky[0] is also the movement axis
_compat = {
emccanon.CANON_PLANE_XY : (("z","r"),_uvw,"XY"),
emccanon.CANON_PLANE_YZ : (("x","r"),_uvw,"YZ"),
emccanon.CANON_PLANE_XZ : (("y","r"),_uvw,"XZ"),
emccanon.CANON_PLANE_UV : (("w","r"),_xyz,"UV"),
emccanon.CANON_PLANE_VW : (("u","r"),_xyz,"VW"),
emccanon.CANON_PLANE_UW : (("v","r"),_xyz,"UW")}
# extract and pass parameters from current block, merged with extra parameters on a continuation line
# keep tjose parameters across invocations
# export the parameters into the oword procedure
def cycle_prolog(self,**words):
# self.sticky_params is assumed to have been initialized by the
# init_stgdlue() method below
global _compat
try:
# determine whether this is the first or a subsequent call
c = self.blocks[self.remap_level]
r = c.executing_remap
if c.g_modes[1] == r.motion_code:
# first call - clear the sticky dict
self.sticky_params[r.name] = dict()
self.params["motion_code"] = c.g_modes[1]
(sw,incompat,plane_name) =_compat[self.plane]
for (word,value) in list(words.items()):
# inject current parameters
self.params[word] = value
# record sticky words
if word in sw:
if self.debugmask & 0x00080000: print("%s: record sticky %s = %.4f" % (r.name,word,value))
self.sticky_params[r.name][word] = value
if word in incompat:
return "%s: Cannot put a %s in a canned cycle in the %s plane" % (r.name, word.upper(), plane_name)
# inject sticky parameters which were not in words:
for (key,value) in list(self.sticky_params[r.name].items()):
if not key in words:
if self.debugmask & 0x00080000: print("%s: inject sticky %s = %.4f" % (r.name,key,value))
self.params[key] = value
if not "r" in self.sticky_params[r.name]:
return "%s: cycle requires R word" % (r.name)
else:
if self.sticky_params[r.name] <= 0.0:
return "%s: R word must be > 0 if used (%.4f)" % (r.name, words["r"])
if "l" in words:
# checked in interpreter during block parsing
# if l <= 0 or l not near an int
self.params["l"] = words["l"]
if "p" in words:
p = words["p"]
if p < 0.0:
return "%s: P word must be >= 0 if used (%.4f)" % (r.name, p)
self.params["p"] = p
if self.feed_rate == 0.0:
return "%s: feed rate must be > 0" % (r.name)
if self.feed_mode == INVERSE_TIME:
return "%s: Cannot use inverse time feed with canned cycles" % (r.name)
if self.cutter_comp_side:
return "%s: Cannot use canned cycles with cutter compensation on" % (r.name)
return INTERP_OK
except Exception as e:
raise
return "cycle_prolog failed: %s" % (e)
# make sure the next line has the same motion code, unless overridden by a
# new G-code
def cycle_epilog(self,**words):
try:
c = self.blocks[self.remap_level]
self.motion_mode = c.executing_remap.motion_code # retain the current motion mode
return INTERP_OK
except Exception as e:
return "cycle_epilog failed: %s" % (e)
# this should be called from TOPLEVEL __init__()
def init_stdglue(self):
self.sticky_params = dict()
#####################################
# pure python remaps
#####################################
# REMAP=M6 python=ignore_m6
#
# m5 silently ignored
#
def ignore_m6(self,**words):
try:
return INTERP_OK
except Exception as e:
return "Ignore M6 failed: %s" % (e)
# REMAP=T python=index_lathe_tool_with_wear
#
# uses T101 for tool 1, wear 1 no M6 needed
# tool offsets for tool 1 and tool 10001 are added together.
#
def index_lathe_tool_with_wear(self,**words):
# only run this if we are really moving the machine
# skip this if running task for the screen
if not self.task:
yield INTERP_OK
try:
# check there is a tool number from the Gcode
cblock = self.blocks[self.remap_level]
if not cblock.t_flag:
self.set_errormsg("T requires a tool number")
yield INTERP_ERROR
tool_raw = int(cblock.t_number)
# interpret the raw tool number into tool and wear number
# If it's less then 100 someone forgot to add the wear #, so we added it automatically
# separate out tool number (tool) and wear number (wear), add 10000 to wear number
if tool_raw <100:
tool_raw=tool_raw*100
tool = int(tool_raw/100)
wear = 10000 + tool_raw % 100
# uncomment for debugging
#print'***tool#',cblock.t_number,'toolraw:',tool_raw,'tool split:',tool,'wear split',wear
if tool:
# check for tool number entry in tool file
(status, pocket) = self.find_tool_pocket(tool)
if status != INTERP_OK:
self.set_errormsg("T%d: tool entry not found" % (tool))
yield status
else:
tool = -1
pocket = -1
wear = -1
self.params["tool"] = tool
self.params["pocket"] = pocket
self.params["wear"] = wear
try:
self.hal_tool_comp['tool']= tool_raw
self.hal_tool_comp['wear']= wear
except:
pass
# index tool immediately to tool number
self.selected_tool = int(self.params["tool"])
self.selected_pocket = int(self.params["pocket"])
emccanon.SELECT_TOOL(self.selected_tool)
if self.selected_pocket < 0:
self.set_errormsg("T0 not valid")
yield INTERP_ERROR
if self.cutter_comp_side:
self.set_errormsg("Cannot change tools with cutter radius compensation on")
yield INTERP_ERROR
self.params["tool_in_spindle"] = self.current_tool
self.params["selected_tool"] = self.selected_tool
self.params["current_pocket"] = self.current_pocket
self.params["selected_pocket"] = self.selected_pocket
# change tool
try:
self.selected_pocket = int(self.params["selected_pocket"])
emccanon.CHANGE_TOOL(self.selected_pocket)
self.current_pocket = self.selected_pocket
self.selected_pocket = -1
self.selected_tool = -1
# cause a sync()
self.set_tool_parameters()
self.toolchange_flag = True
except:
self.set_errormsg("T change aborted (return code %.1f)" % (self.return_value))
yield INTERP_ERROR
# add tool offset
self.execute("g43 h%d"% tool)
# if the wear offset is specified, add it's offset
try:
if wear>10000:
self.execute("g43.2 h%d"% wear)
yield INTERP_OK
except:
self.set_errormsg("Tool change aborted - No wear %d entry found in tool table" %wear)
yield INTERP_ERROR
except:
self.set_errormsg("Tool change aborted (return code %.1f)" % (self.return_value))
yield INTERP_ERROR
# REMAP=M6 modalgroup=10 python=tool_probe_m6
#
# auto tool probe on m6
# move to tool change position for toolchange
# wait for acknowledge of tool change
# move to tool setter probe position
# probe tool on tool setter
# move back to tool change position
# set offsets
# based on Versaprobe remap
#
# param 5000 holds the work piece height
# param 4999 should be set to 1 if the
# machine is based in imperial
#
# required INI settings
# (Abs coordinates/ machine based units)
#
#[CHANGE_POSITION]
#X = 5
#Y = 0
#Z = 0
#[TOOLSENSOR]
#X = 5.00
#Y = -1
#Z = -1
#PROBEHEIGHT = 2.3
#MAXPROBE = -3
#SEARCH_VEL = 20
#PROBE_VEL = 5
def tool_probe_m6(self, **words):
# only run this if we are really moving the machine
# skip this if running task for the screen
if not self.task:
yield INTERP_OK
IMPERIAL_BASED = not(bool(self.params['_metric_machine']))
try:
# we need to be in machine based units
# if we aren't - switch
# remember so we can switch back later
switchUnitsFlag = False
if bool(self.params["_imperial"]) != IMPERIAL_BASED:
print ("not right Units: {}".format(bool(self.params["_imperial"])))
if IMPERIAL_BASED:
print ("switched Units to imperial")
self.execute("G20")
else:
print ("switched Units to metric")
self.execute("G21")
switchUnitsFlag = True
self.params["tool_in_spindle"] = self.current_tool
self.params["selected_tool"] = self.selected_tool
self.params["current_pocket"] = self.current_pocket
self.params["selected_pocket"] = self.selected_pocket
# cancel tool offset
self.execute("G49")
# change tool where ever we are
# user sets toolchange position prior to toolchange
# we will return here after
try:
self.selected_pocket = int(self.params["selected_pocket"])
emccanon.CHANGE_TOOL(self.selected_pocket)
self.current_pocket = self.selected_pocket
self.selected_pocket = -1
self.selected_tool = -1
# cause a sync()
self.set_tool_parameters()
self.toolchange_flag = True
except InterpreterException as e:
self.set_errormsg("tool_probe_m6 remap error: %s" % (e))
yield INTERP_ERROR
yield INTERP_EXECUTE_FINISH
# record current position; probably should record every axis
self.params[4999] = emccanon.GET_EXTERNAL_POSITION_X()
self.params[4998] = emccanon.GET_EXTERNAL_POSITION_Y()
self.params[4997] = emccanon.GET_EXTERNAL_POSITION_Z()
try:
# move to tool probe position (from INI)
self.execute("G90")
self.execute("G53 G0 X[#<_ini[TOOLSENSOR]X>] Y[#<_ini[TOOLSENSOR]Y>]")
self.execute("G53 G0 Z[#<_ini[TOOLSENSOR]Z>]")
# set incremental mode
self.execute("G91")
# course probe
self.execute("F [#<_ini[TOOLSENSOR]SEARCH_VEL>]")
self.execute("G38.2 Z [#<_ini[TOOLSENSOR]MAXPROBE>]")
# Wait for results
yield INTERP_EXECUTE_FINISH
# FIXME if there is an error it never comes back
# which leaves linuxcnc in g91 state
if self.params[5070] == 0 or self.return_value > 0.0:
self.execute("G90")
self.set_errormsg("tool_probe_m6 remap error:")
yield INTERP_ERROR
# rapid up off trigger point to do it again
if bool(self.params["_imperial"]):
f = 0.25
else:
f = 4.0
self.execute("G0 Z{}".format(f))
self.execute("F [#<_ini[TOOLSENSOR]PROBE_VEL>]")
self.execute("G38.2 Z-0.5")
yield INTERP_EXECUTE_FINISH
# FIXME if there is an error it never comes back
# which leaves linuxcnc in g91 state
if self.params[5070] == 0 or self.return_value > 0.0:
self.execute("G90")
self.set_errormsg("tool_probe_m6 remap error:")
yield INTERP_ERROR
# set back absolute state
self.execute("G90")
# return to recorded tool change position
self.execute("G53 G0 Z[#4997]")
yield INTERP_EXECUTE_FINISH
self.execute("G53 G0 X[#4999] Y[#4998]")
# adjust tool offset from calculations
proberesult = self.params[5063]
probeheight = self.params["_ini[TOOLSENSOR]PROBEHEIGHT"]
workheight = self.params[5000]
adj = proberesult - probeheight + workheight
self.execute("G10 L1 P#<selected_tool> Z{}".format(adj))
# apply tool offset
self.execute("G43")
# if we switched units for tool change - switch back
if switchUnitsFlag:
if IMPERIAL_BASED:
self.execute("G21")
print ("switched Units back to metric")
else:
self.execute("G20")
print ("switched Units back to imperial")
except InterpreterException as e:
msg = "%d: '%s' - %s" % (e.line_number,e.line_text, e.error_message)
print (msg)
yield INTERP_ERROR
except:
self.set_errormsg("tool_probe_m6 remap error." )
yield INTERP_ERROR