Merge pull request #471 from v923z/io

implement numpy.save, numpy.load
This commit is contained in:
Zoltán Vörös 2022-01-19 19:57:38 +01:00 committed by GitHub
commit 16b277fe1a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
13 changed files with 629 additions and 37 deletions

View file

@ -19,6 +19,7 @@ SRC_USERMOD += $(USERMODULES_DIR)/numpy/create.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/fft/fft.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/fft/fft_tools.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/filter.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/io/io.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/linalg/linalg.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/linalg/linalg_tools.c
SRC_USERMOD += $(USERMODULES_DIR)/numpy/numerical.c

375
code/numpy/io/io.c Normal file
View file

@ -0,0 +1,375 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2022 Zoltán Vörös
*/
#include <string.h>
#include <stdio.h>
#include "py/builtin.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "../../ndarray.h"
#include "io.h"
#define ULAB_IO_BUFFER_SIZE 128
#define ULAB_IO_NULL_ENDIAN 0
#define ULAB_IO_LITTLE_ENDIAN 1
#define ULAB_IO_BIG_ENDIAN 2
#if ULAB_NUMPY_HAS_LOAD
static void io_read_(mp_obj_t stream, const mp_stream_p_t *stream_p, char *buffer, char *string, uint16_t len, int *error) {
size_t read = stream_p->read(stream, buffer, len, error);
bool fail = false;
if(read == len) {
if(string != NULL) {
if(memcmp(buffer, string, len) != 0) {
fail = true;
}
}
} else {
fail = true;
}
if(fail) {
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, error);
mp_raise_msg(&mp_type_RuntimeError, translate("corrupted file"));
}
}
static mp_obj_t io_load(mp_obj_t file) {
if(!mp_obj_is_str(file)) {
mp_raise_TypeError(translate("wrong input type"));
}
int error;
char *buffer = m_new(char, ULAB_IO_BUFFER_SIZE);
// test for endianness
uint16_t x = 1;
int8_t native_endianness = (x >> 8) == 1 ? ULAB_IO_BIG_ENDIAN : ULAB_IO_LITTLE_ENDIAN;
mp_obj_t open_args[2] = {
file,
MP_OBJ_NEW_QSTR(MP_QSTR_rb)
};
mp_obj_t stream = mp_builtin_open(2, open_args, (mp_map_t *)&mp_const_empty_map);
const mp_stream_p_t *stream_p = mp_get_stream(stream);
// read header
// magic string
io_read_(stream, stream_p, buffer, "\x93NUMPY", 6, &error);
// simply discard the version number
io_read_(stream, stream_p, buffer, NULL, 2, &error);
// header length, represented as a little endian uint16 (0x76, 0x00)
io_read_(stream, stream_p, buffer, NULL, 2, &error);
uint16_t header_length = buffer[1];
header_length <<= 8;
header_length += buffer[0];
// beginning of the dictionary describing the array
io_read_(stream, stream_p, buffer, "{'descr': '", 11, &error);
uint8_t dtype;
io_read_(stream, stream_p, buffer, NULL, 1, &error);
uint8_t endianness = ULAB_IO_NULL_ENDIAN;
if(*buffer == '<') {
endianness = ULAB_IO_LITTLE_ENDIAN;
} else if(*buffer == '>') {
endianness = ULAB_IO_BIG_ENDIAN;
}
io_read_(stream, stream_p, buffer, NULL, 2, &error);
if(memcmp(buffer, "u1", 2) == 0) {
dtype = NDARRAY_UINT8;
} else if(memcmp(buffer, "i1", 2) == 0) {
dtype = NDARRAY_INT8;
} else if(memcmp(buffer, "u2", 2) == 0) {
dtype = NDARRAY_UINT16;
} else if(memcmp(buffer, "i2", 2) == 0) {
dtype = NDARRAY_INT16;
}
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
else if(memcmp(buffer, "f4", 2) == 0) {
dtype = NDARRAY_FLOAT;
}
#else
else if(memcmp(buffer, "f8", 2) == 0) {
dtype = NDARRAY_FLOAT;
}
#endif
#if ULAB_SUPPORTS_COMPLEX
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
else if(memcmp(buffer, "c8", 2) == 0) {
dtype = NDARRAY_COMPLEX;
}
#else
else if(memcmp(buffer, "c16", 3) == 0) {
dtype = NDARRAY_COMPLEX;
}
#endif
#endif /* ULAB_SUPPORT_COPMLEX */
else {
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
mp_raise_TypeError(translate("wrong dtype"));
}
io_read_(stream, stream_p, buffer, "', 'fortran_order': False, 'shape': (", 37, &error);
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
memset(shape, 0, sizeof(size_t) * ULAB_MAX_DIMS);
uint16_t bytes_to_read = MIN(ULAB_IO_BUFFER_SIZE, header_length - 51);
// bytes_to_read is 128 at most. This should be enough to contain a
// maximum of 4 size_t numbers plus the delimiters
io_read_(stream, stream_p, buffer, NULL, bytes_to_read, &error);
char *needle = buffer;
uint8_t ndim = 0;
// find out the number of dimensions by counting the commas in the string
while(1) {
if(*needle == ',') {
ndim++;
if(needle[1] == ')') {
break;
}
} else if((*needle == ')') && (ndim > 0)) {
ndim++;
break;
}
needle++;
}
needle = buffer;
for(uint8_t i = 0; i < ndim; i++) {
size_t number = 0;
// trivial number parsing here
while(1) {
if((*needle == ' ') || (*needle == '\t')) {
needle++;
}
if((*needle > 47) && (*needle < 58)) {
number = number * 10 + (*needle - 48);
} else if((*needle == ',') || (*needle == ')')) {
break;
}
else {
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
mp_raise_msg(&mp_type_RuntimeError, translate("corrupted file"));
}
needle++;
}
needle++;
shape[ULAB_MAX_DIMS - ndim + i] = number;
}
// strip the rest of the header
if((bytes_to_read + 51) < header_length) {
io_read_(stream, stream_p, buffer, NULL, header_length - (bytes_to_read + 51), &error);
}
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(ndim, shape, dtype);
char *array = (char *)ndarray->array;
size_t read = stream_p->read(stream, array, ndarray->len * ndarray->itemsize, &error);
if(read != ndarray->len * ndarray->itemsize) {
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
mp_raise_msg(&mp_type_RuntimeError, translate("corrupted file"));
}
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
m_del(char, buffer, ULAB_IO_BUFFER_SIZE);
// swap the bytes, if necessary
if((native_endianness != endianness) && (dtype != NDARRAY_UINT8) && (dtype != NDARRAY_INT8)) {
uint8_t sz = ndarray->itemsize;
char *tmpbuff = NULL;
#if ULAB_SUPPORTS_COMPLEX
if(dtype == NDARRAY_COMPLEX) {
// work with the floating point real and imaginary parts
sz /= 2;
tmpbuff = m_new(char, sz);
for(size_t i = 0; i < ndarray->len; i++) {
for(uint8_t k = 0; k < 2; k++) {
tmpbuff += sz;
for(uint8_t j = 0; j < sz; j++) {
memcpy(--tmpbuff, array++, 1);
}
memcpy(array-sz, tmpbuff, sz);
}
}
} else {
#endif
tmpbuff = m_new(char, sz);
for(size_t i = 0; i < ndarray->len; i++) {
tmpbuff += sz;
for(uint8_t j = 0; j < sz; j++) {
memcpy(--tmpbuff, array++, 1);
}
memcpy(array-sz, tmpbuff, sz);
}
#if ULAB_SUPPORTS_COMPLEX
}
#endif
m_del(char, tmpbuff, sz);
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_1(io_load_obj, io_load);
#endif /* ULAB_NUMPY_HAS_LOAD */
#if ULAB_NUMPY_HAS_SAVE
static mp_obj_t io_save(mp_obj_t file, mp_obj_t ndarray_) {
if(!mp_obj_is_str(file) || !mp_obj_is_type(ndarray_, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("wrong input type"));
}
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(ndarray_);
int error;
char *buffer = m_new(char, ULAB_IO_BUFFER_SIZE);
uint8_t offset = 0;
// test for endianness
uint16_t x = 1;
int8_t native_endiannes = (x >> 8) == 1 ? '>' : '<';
mp_obj_t open_args[2] = {
file,
MP_OBJ_NEW_QSTR(MP_QSTR_wb)
};
mp_obj_t stream = mp_builtin_open(2, open_args, (mp_map_t *)&mp_const_empty_map);
const mp_stream_p_t *stream_p = mp_get_stream(stream);
// write header;
// magic string + header length, which is always 128 - 10 = 118, represented as a little endian uint16 (0x76, 0x00)
// + beginning of the dictionary describing the array
memcpy(buffer, "\x93NUMPY\x01\x00\x76\x00{'descr': '", 21);
offset += 21;
buffer[offset] = native_endiannes;
if((ndarray->dtype == NDARRAY_UINT8) || (ndarray->dtype == NDARRAY_INT8)) {
// for single-byte data, the endianness doesn't matter
buffer[offset] = '|';
}
offset++;
switch(ndarray->dtype) {
case NDARRAY_UINT8:
memcpy(buffer+offset, "u1", 2);
break;
case NDARRAY_INT8:
memcpy(buffer+offset, "i1", 2);
break;
case NDARRAY_UINT16:
memcpy(buffer+offset, "u2", 2);
break;
case NDARRAY_INT16:
memcpy(buffer+offset, "i2", 2);
break;
case NDARRAY_FLOAT:
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
memcpy(buffer+offset, "f4", 2);
#else
memcpy(buffer+offset, "f8", 2);
#endif
break;
#if ULAB_SUPPORTS_COMPLEX
case NDARRAY_COMPLEX:
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
memcpy(buffer+offset, "c8", 2);
#else
memcpy(buffer+offset, "c16", 3);
offset++;
#endif
break;
#endif
}
offset += 2;
memcpy(buffer+offset, "', 'fortran_order': False, 'shape': (", 37);
offset += 37;
if(ndarray->ndim == 1) {
offset += sprintf(buffer+offset, "%zu,", ndarray->shape[ULAB_MAX_DIMS - 1]);
} else {
for(uint8_t i = ndarray->ndim; i > 1; i--) {
offset += sprintf(buffer+offset, "%zu, ", ndarray->shape[ULAB_MAX_DIMS - i]);
}
offset += sprintf(buffer+offset, "%zu", ndarray->shape[ULAB_MAX_DIMS - 1]);
}
memcpy(buffer+offset, "), }", 4);
offset += 4;
// pad with space till the very end
memset(buffer+offset, 32, ULAB_IO_BUFFER_SIZE - offset - 1);
buffer[ULAB_IO_BUFFER_SIZE - 1] = '\n';
stream_p->write(stream, buffer, ULAB_IO_BUFFER_SIZE, &error);
// write the array data
uint8_t sz = ndarray->itemsize;
offset = 0;
uint8_t *array = (uint8_t *)ndarray->array;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(buffer+offset, array, sz);
offset += sz;
if(offset == ULAB_IO_BUFFER_SIZE) {
stream_p->write(stream, buffer, offset, &error);
offset = 0;
}
array += ndarray->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < ndarray->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1];
array += ndarray->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < ndarray->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2];
array += ndarray->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < ndarray->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3];
array += ndarray->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < ndarray->shape[ULAB_MAX_DIMS - 4]);
#endif
stream_p->write(stream, buffer, offset, &error);
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
m_del(char, buffer, ULAB_IO_BUFFER_SIZE);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(io_save_obj, io_save);
#endif /* ULAB_NUMPY_HAS_SAVE */

17
code/numpy/io/io.h Normal file
View file

@ -0,0 +1,17 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2022 Zoltán Vörös
*/
#ifndef _ULAB_IO_
#define _ULAB_IO_
MP_DECLARE_CONST_FUN_OBJ_2(io_save_obj);
MP_DECLARE_CONST_FUN_OBJ_1(io_load_obj);
#endif

View file

@ -23,6 +23,7 @@
#include "create.h"
#include "fft/fft.h"
#include "filter.h"
#include "io/io.h"
#include "linalg/linalg.h"
#include "numerical.h"
#include "stats.h"
@ -256,6 +257,9 @@ static const mp_rom_map_elem_t ulab_numpy_globals_table[] = {
#if ULAB_NUMPY_HAS_FLIP
{ MP_OBJ_NEW_QSTR(MP_QSTR_flip), (mp_obj_t)&numerical_flip_obj },
#endif
#if ULAB_NUMPY_HAS_LOAD
{ MP_OBJ_NEW_QSTR(MP_QSTR_load), (mp_obj_t)&io_load_obj },
#endif
#if ULAB_NUMPY_HAS_MINMAX
{ MP_OBJ_NEW_QSTR(MP_QSTR_max), (mp_obj_t)&numerical_max_obj },
#endif
@ -271,6 +275,9 @@ static const mp_rom_map_elem_t ulab_numpy_globals_table[] = {
#if ULAB_NUMPY_HAS_ROLL
{ MP_OBJ_NEW_QSTR(MP_QSTR_roll), (mp_obj_t)&numerical_roll_obj },
#endif
#if ULAB_NUMPY_HAS_SAVE
{ MP_OBJ_NEW_QSTR(MP_QSTR_save), (mp_obj_t)&io_save_obj },
#endif
#if ULAB_NUMPY_HAS_SIZE
{ MP_OBJ_NEW_QSTR(MP_QSTR_size), (mp_obj_t)&transform_size_obj },
#endif

View file

@ -33,7 +33,7 @@
#include "user/user.h"
#include "utils/utils.h"
#define ULAB_VERSION 4.2.1
#define ULAB_VERSION 4.3.0
#define xstr(s) str(s)
#define str(s) #s

View file

@ -462,6 +462,10 @@
#define ULAB_NUMPY_HAS_INTERP (1)
#endif
#ifndef ULAB_NUMPY_HAS_LOAD
#define ULAB_NUMPY_HAS_LOAD (1)
#endif
#ifndef ULAB_NUMPY_HAS_MEAN
#define ULAB_NUMPY_HAS_MEAN (1)
#endif
@ -486,6 +490,10 @@
#define ULAB_NUMPY_HAS_ROLL (1)
#endif
#ifndef ULAB_NUMPY_HAS_SAVE
#define ULAB_NUMPY_HAS_SAVE (1)
#endif
#ifndef ULAB_NUMPY_HAS_SIZE
#define ULAB_NUMPY_HAS_SIZE (1)
#endif

View file

@ -27,7 +27,7 @@ copyright = '2019-2022, Zoltán Vörös and contributors'
author = 'Zoltán Vörös'
# The full version, including alpha/beta/rc tags
release = '4.2.0'
release = '4.3.0'
# -- General configuration ---------------------------------------------------

View file

@ -11,7 +11,7 @@ the firmware was compiled with complex support.
3. `numpy.argmax <#argmax>`__
4. `numpy.argmin <#argmin>`__
5. `numpy.argsort <#argsort>`__
6. `numpy.asarray <#asarray>`__
6. `numpy.asarray\* <#asarray>`__
7. `numpy.clip <#clip>`__
8. `numpy.compress\* <#compress>`__
9. `numpy.conjugate\* <#conjugate>`__
@ -25,25 +25,27 @@ the firmware was compiled with complex support.
17. `numpy.interp <#interp>`__
18. `numpy.isfinite <#isfinite>`__
19. `numpy.isinf <#isinf>`__
20. `numpy.max <#max>`__
21. `numpy.maximum <#maximum>`__
22. `numpy.mean <#mean>`__
23. `numpy.median <#median>`__
24. `numpy.min <#min>`__
25. `numpy.minimum <#minimum>`__
26. `numpy.not_equal <#equal>`__
27. `numpy.polyfit <#polyfit>`__
28. `numpy.polyval <#polyval>`__
29. `numpy.real\* <#real>`__
30. `numpy.roll <#roll>`__
31. `numpy.size <#size>`__
32. `numpy.sort <#sort>`__
33. `numpy.sort_complex\* <#sort_complex>`__
34. `numpy.std <#std>`__
35. `numpy.sum <#sum>`__
36. `numpy.trace <#trace>`__
37. `numpy.trapz <#trapz>`__
38. `numpy.where <#where>`__
20. `numpy.load <#load>`__
21. `numpy.max <#max>`__
22. `numpy.maximum <#maximum>`__
23. `numpy.mean <#mean>`__
24. `numpy.median <#median>`__
25. `numpy.min <#min>`__
26. `numpy.minimum <#minimum>`__
27. `numpy.not_equal <#equal>`__
28. `numpy.polyfit <#polyfit>`__
29. `numpy.polyval <#polyval>`__
30. `numpy.real\* <#real>`__
31. `numpy.roll <#roll>`__
32. `numpy.save <#save>`__
33. `numpy.size <#size>`__
34. `numpy.sort <#sort>`__
35. `numpy.sort_complex\* <#sort_complex>`__
36. `numpy.std <#std>`__
37. `numpy.sum <#sum>`__
38. `numpy.trace <#trace>`__
39. `numpy.trapz <#trapz>`__
40. `numpy.where <#where>`__
all
---
@ -982,6 +984,39 @@ positions, where the input is infinite. Integer types return the
load
----
``numpy``:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html
The function reads data from a file in ``numpy``\ s
`platform-independent
format <https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html#module-numpy.lib.format>`__,
and returns the generated array. If the endianness of the data in the
file and the microcontroller differ, the bytes are automatically
swapped.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.load('a.npy')
print(a)
.. parsed-literal::
array([[0.0, 1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0, 9.0],
[10.0, 11.0, 12.0, 13.0, 14.0],
[15.0, 16.0, 17.0, 18.0, 19.0],
[20.0, 21.0, 22.0, 23.0, 24.0]], dtype=float64)
mean
----
@ -1430,6 +1465,25 @@ Vertical rolls require two internal copies of single columns.
save
----
``numpy``:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.save.html
With the help of this function, numerical array can be save in
``numpy``\ s `platform-independent
format <https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html#module-numpy.lib.format>`__.
The function takes two positional arguments, the name of the output
file, and the array.
.. code::
# code to be run in CPython
a = np.array(range(25)).reshape((5, 5))
np.save('a.npy', a)
size
----

View file

@ -34,8 +34,8 @@
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-14T19:55:15.200755Z",
"start_time": "2022-01-14T19:55:15.193656Z"
"end_time": "2022-01-15T08:50:03.152522Z",
"start_time": "2022-01-15T08:50:03.141317Z"
}
},
"outputs": [],
@ -52,8 +52,8 @@
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-14T19:55:17.871864Z",
"start_time": "2022-01-14T19:55:17.858935Z"
"end_time": "2022-01-15T08:50:04.183008Z",
"start_time": "2022-01-15T08:50:04.162758Z"
}
},
"outputs": [],
@ -237,7 +237,7 @@
"1. [numpy.argmax](#argmax)\n",
"1. [numpy.argmin](#argmin)\n",
"1. [numpy.argsort](#argsort)\n",
"1. [numpy.asarray](#asarray)\n",
"1. [numpy.asarray*](#asarray)\n",
"1. [numpy.clip](#clip)\n",
"1. [numpy.compress*](#compress)\n",
"1. [numpy.conjugate*](#conjugate)\n",
@ -251,6 +251,7 @@
"1. [numpy.interp](#interp)\n",
"1. [numpy.isfinite](#isfinite)\n",
"1. [numpy.isinf](#isinf)\n",
"1. [numpy.load](#load)\n",
"1. [numpy.max](#max)\n",
"1. [numpy.maximum](#maximum)\n",
"1. [numpy.mean](#mean)\n",
@ -262,6 +263,7 @@
"1. [numpy.polyval](#polyval)\n",
"1. [numpy.real*](#real)\n",
"1. [numpy.roll](#roll)\n",
"1. [numpy.save](#save)\n",
"1. [numpy.size](#size)\n",
"1. [numpy.sort](#sort)\n",
"1. [numpy.sort_complex*](#sort_complex)\n",
@ -1418,6 +1420,50 @@
"print('\\nisinf(c):\\n', np.isinf(c))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## load\n",
"\n",
"`numpy`: https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html\n",
"\n",
"The function reads data from a file in `numpy`'s [platform-independent format](https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html#module-numpy.lib.format), and returns the generated array. If the endianness of the data in the file and the microcontroller differ, the bytes are automatically swapped."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-12T19:11:10.361592Z",
"start_time": "2022-01-12T19:11:10.342439Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"array([[0.0, 1.0, 2.0, 3.0, 4.0],\n",
" [5.0, 6.0, 7.0, 8.0, 9.0],\n",
" [10.0, 11.0, 12.0, 13.0, 14.0],\n",
" [15.0, 16.0, 17.0, 18.0, 19.0],\n",
" [20.0, 21.0, 22.0, 23.0, 24.0]], dtype=float64)\n",
"\n",
"\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"\n",
"a = np.load('a.npy')\n",
"print(a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -1999,6 +2045,34 @@
"print(\"\\na rolled with None:\\n\", a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## save\n",
"\n",
"`numpy`: https://docs.scipy.org/doc/numpy/reference/generated/numpy.save.html\n",
"\n",
"With the help of this function, numerical array can be save in `numpy`'s [platform-independent format](https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html#module-numpy.lib.format).\n",
"\n",
"The function takes two positional arguments, the name of the output file, and the array. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-15T08:51:08.827144Z",
"start_time": "2022-01-15T08:51:08.813813Z"
}
},
"outputs": [],
"source": [
"a = np.array(range(25)).reshape((5, 5))\n",
"np.save('a.npy', a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -2013,8 +2087,8 @@
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-14T19:58:44.044501Z",
"start_time": "2022-01-14T19:58:44.034585Z"
"end_time": "2022-01-15T08:50:57.254168Z",
"start_time": "2022-01-15T08:50:57.245772Z"
}
},
"outputs": [

View file

@ -1,3 +1,9 @@
Wed, 19 Jan 2022
version 4.3.0
implement numpy.save, numpy.load
Tue, 18 Jan 2022
version 4.2.1
@ -10,6 +16,12 @@ version 4.2.0
add numpy.size, asarray
Wed, 12 Jan 2022
version 4.2.0
implement numpy.save, numpy.load
Wed, 12 Jan 2022
version 4.1.1

View file

@ -17,8 +17,8 @@
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-14T19:54:52.171096Z",
"start_time": "2022-01-14T19:54:52.162815Z"
"end_time": "2022-01-15T08:48:23.883953Z",
"start_time": "2022-01-15T08:48:23.877040Z"
}
},
"outputs": [
@ -61,7 +61,7 @@
"author = 'Zoltán Vörös'\n",
"\n",
"# The full version, including alpha/beta/rc tags\n",
"release = '4.2.0'\n",
"release = '4.3.0'\n",
"\n",
"\n",
"# -- General configuration ---------------------------------------------------\n",
@ -218,8 +218,8 @@
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-14T20:05:37.425494Z",
"start_time": "2022-01-14T20:05:35.620545Z"
"end_time": "2022-01-15T08:48:32.207113Z",
"start_time": "2022-01-15T08:48:32.051714Z"
}
},
"outputs": [],
@ -256,11 +256,11 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-14T20:06:04.832792Z",
"start_time": "2022-01-14T20:06:00.259738Z"
"end_time": "2022-01-15T08:52:20.686225Z",
"start_time": "2022-01-15T08:52:16.125014Z"
}
},
"outputs": [],

View file

@ -0,0 +1,14 @@
try:
from ulab import numpy as np
except:
import numpy as np
dtypes = (np.uint8, np.int8, np.uint16, np.int16, np.float)
for dtype in dtypes:
a = np.array(range(25), dtype=dtype)
b = a.reshape((5, 5))
np.save('out.npy', a)
print(np.load('out.npy'))
np.save('out.npy', b)
print(np.load('out.npy'))

View file

@ -0,0 +1,30 @@
array([0, 1, 2, ..., 22, 23, 24], dtype=uint8)
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]], dtype=uint8)
array([0, 1, 2, ..., 22, 23, 24], dtype=int8)
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]], dtype=int8)
array([0, 1, 2, ..., 22, 23, 24], dtype=uint16)
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]], dtype=uint16)
array([0, 1, 2, ..., 22, 23, 24], dtype=int16)
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]], dtype=int16)
array([0.0, 1.0, 2.0, ..., 22.0, 23.0, 24.0], dtype=float64)
array([[0.0, 1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0, 9.0],
[10.0, 11.0, 12.0, 13.0, 14.0],
[15.0, 16.0, 17.0, 18.0, 19.0],
[20.0, 21.0, 22.0, 23.0, 24.0]], dtype=float64)