implemented cho_solve function in scipy.linalg

This commit is contained in:
vikas-udupa 2021-05-15 23:42:02 -04:00
parent d157fc2393
commit b0679e6d16
7 changed files with 160 additions and 1 deletions

View file

@ -147,6 +147,114 @@ static mp_obj_t solve_triangular(size_t n_args, const mp_obj_t *pos_args, mp_map
MP_DEFINE_CONST_FUN_OBJ_KW(linalg_solve_triangular_obj, 2, solve_triangular);
//| def cho_solve(L: ulab.numpy.ndarray, b: ulab.numpy.ndarray) -> ulab.numpy.ndarray:
//| """
//| :param ~ulab.numpy.ndarray L: the lower triangular, Cholesky factorization of A
//| :param ~ulab.numpy.ndarray b: right-hand-side vector b
//| :return: solution to the system A x = b. Shape of return matches b
//| :raises TypeError: if L and b are not of type ndarray and are not dense
//|
//| Solve the linear equations A x = b, given the Cholesky factorization of A as input"""
//| ...
//|
static mp_obj_t cho_solve(mp_obj_t _L, mp_obj_t _b) {
if(!mp_obj_is_type(_L, &ulab_ndarray_type) || !mp_obj_is_type(_b, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("first two arguments must be ndarrays"));
}
ndarray_obj_t *L = MP_OBJ_TO_PTR(_L);
ndarray_obj_t *b = MP_OBJ_TO_PTR(_b);
if(!ndarray_is_dense(L) || !ndarray_is_dense(b)) {
mp_raise_TypeError(translate("input must be a dense ndarray"));
}
mp_float_t (*get_L_ele)(void *) = ndarray_get_float_function(L->dtype);
mp_float_t (*get_b_ele)(void *) = ndarray_get_float_function(b->dtype);
void (*set_L_ele)(void *, mp_float_t) = ndarray_set_float_function(L->dtype);
size_t L_rows = L->shape[ULAB_MAX_DIMS - 2];
size_t L_cols = L->shape[ULAB_MAX_DIMS - 1];
// Obtain transpose of the input matrix L in L_t
size_t L_t_shape[ULAB_MAX_DIMS];
size_t L_t_rows = L_t_shape[ULAB_MAX_DIMS - 2] = L_cols;
size_t L_t_cols = L_t_shape[ULAB_MAX_DIMS - 1] = L_rows;
ndarray_obj_t *L_t = ndarray_new_dense_ndarray(L->ndim, L_t_shape, L->dtype);
uint8_t *L_arr = (uint8_t *)L->array;
uint8_t *L_t_arr = (uint8_t *)L_t->array;
uint8_t *b_arr = (uint8_t *)b->array;
size_t i, j;
uint8_t *L_ptr = L_arr;
uint8_t *L_t_ptr = L_t_arr;
for (i = 0; i < L_rows; i++) {
for (j = 0; j < L_cols; j++) {
set_L_ele(L_t_ptr, get_L_ele(L_ptr));
L_t_ptr += L_t->strides[ULAB_MAX_DIMS - 2];
L_ptr += L->strides[ULAB_MAX_DIMS - 1];
}
L_t_ptr -= j * L_t->strides[ULAB_MAX_DIMS - 2];
L_t_ptr += L_t->strides[ULAB_MAX_DIMS - 1];
L_ptr -= j * L->strides[ULAB_MAX_DIMS - 1];
L_ptr += L->strides[ULAB_MAX_DIMS - 2];
}
ndarray_obj_t *x = ndarray_new_dense_ndarray(b->ndim, b->shape, NDARRAY_FLOAT);
mp_float_t *x_arr = (mp_float_t *)x->array;
ndarray_obj_t *y = ndarray_new_dense_ndarray(b->ndim, b->shape, NDARRAY_FLOAT);
mp_float_t *y_arr = (mp_float_t *)y->array;
// solve L y = b to obtain y, where L_t x = y
for (i = 0; i < L_rows; i++) {
mp_float_t sum = 0.0;
for (j = 0; j < i; j++) {
sum += (get_L_ele(L_arr) * (*y_arr++));
L_arr += L->strides[ULAB_MAX_DIMS - 1];
}
sum = (get_b_ele(b_arr) - sum) / (get_L_ele(L_arr));
*y_arr = sum;
y_arr -= j;
L_arr -= L->strides[ULAB_MAX_DIMS - 1] * j;
L_arr += L->strides[ULAB_MAX_DIMS - 2];
b_arr += b->strides[ULAB_MAX_DIMS - 1];
}
// using y, solve L_t x = y to obtain x
L_t_arr += (L_t->strides[ULAB_MAX_DIMS - 2] * L_t_rows);
y_arr += L_t_cols;
x_arr += L_t_cols;
for (i = L_t_rows - 1; i < L_t_rows; i--) {
mp_float_t sum = 0.0;
for (j = i + 1; j < L_t_cols; j++) {
sum += (get_L_ele(L_t_arr) * (*x_arr++));
L_t_arr += L_t->strides[ULAB_MAX_DIMS - 1];
}
x_arr -= (j - i);
L_t_arr -= (L_t->strides[ULAB_MAX_DIMS - 1] * (j - i));
y_arr--;
sum = ((*y_arr) - sum) / get_L_ele(L_t_arr);
*x_arr = sum;
L_t_arr -= L_t->strides[ULAB_MAX_DIMS - 2];
}
return MP_OBJ_FROM_PTR(x);
}
MP_DEFINE_CONST_FUN_OBJ_2(linalg_cho_solve_obj, cho_solve);
#endif
static const mp_rom_map_elem_t ulab_scipy_linalg_globals_table[] = {
@ -155,6 +263,9 @@ static const mp_rom_map_elem_t ulab_scipy_linalg_globals_table[] = {
#if ULAB_SCIPY_LINALG_HAS_SOLVE_TRIANGULAR
{ MP_ROM_QSTR(MP_QSTR_solve_triangular), (mp_obj_t)&linalg_solve_triangular_obj },
#endif
#if ULAB_SCIPY_LINALG_HAS_CHO_SOLVE
{ MP_ROM_QSTR(MP_QSTR_cho_solve), (mp_obj_t)&linalg_cho_solve_obj },
#endif
#endif
};

View file

@ -16,5 +16,6 @@
extern mp_obj_module_t ulab_scipy_linalg_module;
MP_DECLARE_CONST_FUN_OBJ_KW(linalg_solve_triangular_obj);
MP_DECLARE_CONST_FUN_OBJ_2(linalg_cho_solve_obj);
#endif /* _SCIPY_LINALG_ */

View file

@ -34,7 +34,7 @@
#include "user/user.h"
#include "utils/utils.h"
#define ULAB_VERSION 2.7.1
#define ULAB_VERSION 2.8.0
#define xstr(s) str(s)
#define str(s) #s
#define ULAB_VERSION_STRING xstr(ULAB_VERSION) xstr(-) xstr(ULAB_MAX_DIMS) xstr(D)

View file

@ -565,6 +565,10 @@
#define ULAB_SCIPY_HAS_LINALG_MODULE (1)
#endif
#ifndef ULAB_SCIPY_LINALG_HAS_CHO_SOLVE
#define ULAB_SCIPY_LINALG_HAS_CHO_SOLVE (1)
#endif
#ifndef ULAB_SCIPY_LINALG_HAS_SOLVE_TRIANGULAR
#define ULAB_SCIPY_LINALG_HAS_SOLVE_TRIANGULAR (1)
#endif

View file

@ -1,3 +1,9 @@
Sun, 16 May 2021
version 2.8.0
added cho_solve function in scipy.linalg module
Thu, 13 May 2021
version 2.7.1

29
tests/scipy/cho_solve.py Normal file
View file

@ -0,0 +1,29 @@
import math
try:
from ulab import scipy, numpy as np
except ImportError:
import scipy
import numpy as np
## test cholesky solve
L = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 2, 1, 8]])
b = np.array([4, 2, 4, 2])
# L needs to be a lower triangular matrix
result = scipy.linalg.cho_solve(L, b)
ref_result = np.array([-0.01388888888888906, -0.6458333333333331, 2.677083333333333, -0.01041666666666667])
for i in range(4):
print(math.isclose(result[i], ref_result[i], rel_tol=1E-6, abs_tol=1E-6))
## test cholesky and cho_solve together
C = np.array([[18, 22, 54, 42], [22, 70, 86, 62], [54, 86, 174, 134], [42, 62, 134, 106]])
L = np.linalg.cholesky(C)
# L is a lower triangular matrix obtained by performing cholesky of positive-definite linear system
result = scipy.linalg.cho_solve(L, b)
ref_result = np.array([6.5625, 1.1875, -2.9375, 0.4375])
for i in range(4):
print(math.isclose(result[i], ref_result[i], rel_tol=1E-6, abs_tol=1E-6))

View file

@ -0,0 +1,8 @@
True
True
True
True
True
True
True
True