add asarray, size documentation

This commit is contained in:
Zoltán Vörös 2022-01-14 21:06:55 +01:00
parent 1fc2f18358
commit d40672d946
4 changed files with 231 additions and 45 deletions

View file

@ -27,7 +27,7 @@ copyright = '2019-2022, Zoltán Vörös and contributors'
author = 'Zoltán Vörös'
# The full version, including alpha/beta/rc tags
release = '4.1.0'
release = '4.2.0'
# -- General configuration ---------------------------------------------------

View file

@ -11,37 +11,39 @@ the firmware was compiled with complex support.
3. `numpy.argmax <#argmax>`__
4. `numpy.argmin <#argmin>`__
5. `numpy.argsort <#argsort>`__
6. `numpy.clip <#clip>`__
7. `numpy.compress\* <#compress>`__
8. `numpy.conjugate\* <#conjugate>`__
9. `numpy.convolve\* <#convolve>`__
10. `numpy.delete <#delete>`__
11. `numpy.diff <#diff>`__
12. `numpy.dot <#dot>`__
13. `numpy.equal <#equal>`__
14. `numpy.flip\* <#flip>`__
15. `numpy.imag\* <#imag>`__
16. `numpy.interp <#interp>`__
17. `numpy.isfinite <#isfinite>`__
18. `numpy.isinf <#isinf>`__
19. `numpy.max <#max>`__
20. `numpy.maximum <#maximum>`__
21. `numpy.mean <#mean>`__
22. `numpy.median <#median>`__
23. `numpy.min <#min>`__
24. `numpy.minimum <#minimum>`__
25. `numpy.not_equal <#equal>`__
26. `numpy.polyfit <#polyfit>`__
27. `numpy.polyval <#polyval>`__
28. `numpy.real\* <#real>`__
29. `numpy.roll <#roll>`__
30. `numpy.sort <#sort>`__
31. `numpy.sort_complex\* <#sort_complex>`__
32. `numpy.std <#std>`__
33. `numpy.sum <#sum>`__
34. `numpy.trace <#trace>`__
35. `numpy.trapz <#trapz>`__
36. `numpy.where <#where>`__
6. `numpy.asarray <#asarray>`__
7. `numpy.clip <#clip>`__
8. `numpy.compress\* <#compress>`__
9. `numpy.conjugate\* <#conjugate>`__
10. `numpy.convolve\* <#convolve>`__
11. `numpy.delete <#delete>`__
12. `numpy.diff <#diff>`__
13. `numpy.dot <#dot>`__
14. `numpy.equal <#equal>`__
15. `numpy.flip\* <#flip>`__
16. `numpy.imag\* <#imag>`__
17. `numpy.interp <#interp>`__
18. `numpy.isfinite <#isfinite>`__
19. `numpy.isinf <#isinf>`__
20. `numpy.max <#max>`__
21. `numpy.maximum <#maximum>`__
22. `numpy.mean <#mean>`__
23. `numpy.median <#median>`__
24. `numpy.min <#min>`__
25. `numpy.minimum <#minimum>`__
26. `numpy.not_equal <#equal>`__
27. `numpy.polyfit <#polyfit>`__
28. `numpy.polyval <#polyval>`__
29. `numpy.real\* <#real>`__
30. `numpy.roll <#roll>`__
31. `numpy.size <#size>`__
32. `numpy.sort <#sort>`__
33. `numpy.sort_complex\* <#sort_complex>`__
34. `numpy.std <#std>`__
35. `numpy.sum <#sum>`__
36. `numpy.trace <#trace>`__
37. `numpy.trapz <#trapz>`__
38. `numpy.where <#where>`__
all
---
@ -269,6 +271,53 @@ example:
asarray
-------
``numpy``:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.asarray.html
The function takes a single positional argument, and an optional keyword
argument, ``dtype``, with a default value of ``None``.
If the positional argument is an ``ndarray``, and its ``dtypes`` is
identical to the value of the keyword argument, or if the keyword
argument is ``None``, then the positional argument is simply returned.
If the original ``dtype``, and the value of the keyword argument are
different, then a copy is returned, with appropriate ``dtype``
conversion.
If the positional argument is an iterable, then the function is simply
an alias for ``array``.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array(range(9), dtype=np.uint8)
b = np.asarray(a)
c = np.asarray(a, dtype=np.int8)
print('a:{}'.format(a))
print('b:{}'.format(b))
print('a == b: {}'.format(a is b))
print('\nc:{}'.format(c))
print('a == c: {}'.format(a is c))
.. parsed-literal::
a:array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)
b:array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)
a == b: True
c:array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=int8)
a == c: False
clip
----
@ -1381,6 +1430,39 @@ Vertical rolls require two internal copies of single columns.
size
----
The function takes a single positional argument, and an optional keyword
argument, ``axis``, with a default value of ``None``, and returns the
size of an array along that axis. If ``axis`` is ``None``, the total
length of the array (the product of the elements of its shape) is
returned.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.ones((2, 3))
print(a)
print('size(a, axis=0): ', np.size(a, axis=0))
print('size(a, axis=1): ', np.size(a, axis=1))
print('size(a, axis=None): ', np.size(a, axis=None))
.. parsed-literal::
array([[1.0, 1.0, 1.0],
[1.0, 1.0, 1.0]], dtype=float64)
size(a, axis=0): 2
size(a, axis=1): 3
size(a, axis=None): 6
sort
----

View file

@ -34,8 +34,8 @@
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-12T16:41:02.299473Z",
"start_time": "2022-01-12T16:41:02.282389Z"
"end_time": "2022-01-14T19:55:15.200755Z",
"start_time": "2022-01-14T19:55:15.193656Z"
}
},
"outputs": [],
@ -52,8 +52,8 @@
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-12T16:41:02.475299Z",
"start_time": "2022-01-12T16:41:02.401569Z"
"end_time": "2022-01-14T19:55:17.871864Z",
"start_time": "2022-01-14T19:55:17.858935Z"
}
},
"outputs": [],
@ -237,6 +237,7 @@
"1. [numpy.argmax](#argmax)\n",
"1. [numpy.argmin](#argmin)\n",
"1. [numpy.argsort](#argsort)\n",
"1. [numpy.asarray](#asarray)\n",
"1. [numpy.clip](#clip)\n",
"1. [numpy.compress*](#compress)\n",
"1. [numpy.conjugate*](#conjugate)\n",
@ -261,6 +262,7 @@
"1. [numpy.polyval](#polyval)\n",
"1. [numpy.real*](#real)\n",
"1. [numpy.roll](#roll)\n",
"1. [numpy.size](#size)\n",
"1. [numpy.sort](#sort)\n",
"1. [numpy.sort_complex*](#sort_complex)\n",
"1. [numpy.std](#std)\n",
@ -543,6 +545,62 @@
"print('\\nthe original array:\\n', a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## asarray\n",
"\n",
"`numpy`: https://docs.scipy.org/doc/numpy/reference/generated/numpy.asarray.html\n",
"\n",
"The function takes a single positional argument, and an optional keyword argument, `dtype`, with a default value of `None`. \n",
"\n",
"If the positional argument is an `ndarray`, and its `dtypes` is identical to the value of the keyword argument, or if the keyword argument is `None`, then the positional argument is simply returned. If the original `dtype`, and the value of the keyword argument are different, then a copy is returned, with appropriate `dtype` conversion. \n",
"\n",
"If the positional argument is an iterable, then the function is simply an alias for `array`."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-14T20:05:22.017031Z",
"start_time": "2022-01-14T20:05:22.002463Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a:array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)\n",
"b:array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8)\n",
"a == b: True\n",
"\n",
"c:array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=int8)\n",
"a == c: False\n",
"\n",
"\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"\n",
"a = np.array(range(9), dtype=np.uint8)\n",
"b = np.asarray(a)\n",
"c = np.asarray(a, dtype=np.int8)\n",
"print('a:{}'.format(a))\n",
"print('b:{}'.format(b))\n",
"print('a == b: {}'.format(a is b))\n",
"\n",
"print('\\nc:{}'.format(c))\n",
"print('a == c: {}'.format(a is c))"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -1941,6 +1999,52 @@
"print(\"\\na rolled with None:\\n\", a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## size\n",
"\n",
"The function takes a single positional argument, and an optional keyword argument, `axis`, with a default value of `None`, and returns the size of an array along that axis. If `axis` is `None`, the total length of the array (the product of the elements of its shape) is returned."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-14T19:58:44.044501Z",
"start_time": "2022-01-14T19:58:44.034585Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"array([[1.0, 1.0, 1.0],\n",
" [1.0, 1.0, 1.0]], dtype=float64)\n",
"size(a, axis=0): 2\n",
"size(a, axis=1): 3\n",
"size(a, axis=None): 6\n",
"\n",
"\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"\n",
"a = np.ones((2, 3))\n",
"\n",
"print(a)\n",
"print('size(a, axis=0): ', np.size(a, axis=0))\n",
"print('size(a, axis=1): ', np.size(a, axis=1))\n",
"print('size(a, axis=None): ', np.size(a, axis=None))"
]
},
{
"cell_type": "markdown",
"metadata": {},

View file

@ -17,8 +17,8 @@
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-12T17:00:33.582729Z",
"start_time": "2022-01-12T17:00:33.566591Z"
"end_time": "2022-01-14T19:54:52.171096Z",
"start_time": "2022-01-14T19:54:52.162815Z"
}
},
"outputs": [
@ -61,7 +61,7 @@
"author = 'Zoltán Vörös'\n",
"\n",
"# The full version, including alpha/beta/rc tags\n",
"release = '4.1.0'\n",
"release = '4.2.0'\n",
"\n",
"\n",
"# -- General configuration ---------------------------------------------------\n",
@ -215,11 +215,11 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-12T17:03:49.038101Z",
"start_time": "2022-01-12T17:03:48.886617Z"
"end_time": "2022-01-14T20:05:37.425494Z",
"start_time": "2022-01-14T20:05:35.620545Z"
}
},
"outputs": [],
@ -256,11 +256,11 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-12T17:03:52.084601Z",
"start_time": "2022-01-12T17:03:50.354118Z"
"end_time": "2022-01-14T20:06:04.832792Z",
"start_time": "2022-01-14T20:06:00.259738Z"
}
},
"outputs": [],