Compare commits

...

5 commits

Author SHA1 Message Date
Zoltán Vörös
774b821d11
Merge branch 'master' into keepdims 2024-12-30 22:22:15 +01:00
Zoltán Vörös
0c8c5f03fe remove out-commented code 2024-12-30 22:19:30 +01:00
Zoltán Vörös
a3fc235418 fux keepdims code 2024-12-30 22:17:25 +01:00
Zoltán Vörös
f013badcff preliminary keepdims fix 2024-12-26 16:11:38 +01:00
Zoltán Vörös
35c2b85e57 add function to deal with keepdims=True 2024-12-08 19:21:58 +01:00
7 changed files with 190 additions and 38 deletions

View file

@ -274,7 +274,7 @@ static mp_obj_t numerical_sum_mean_std_iterable(mp_obj_t oin, uint8_t optype, si
}
}
static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype, size_t ddof) {
static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, mp_obj_t keepdims, uint8_t optype, size_t ddof) {
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
uint8_t *array = (uint8_t *)ndarray->array;
shape_strides _shape_strides = tools_reduce_axes(ndarray, axis);
@ -380,7 +380,7 @@ static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t
bool isStd = optype == NUMERICAL_STD ? 1 : 0;
results = ndarray_new_dense_ndarray(_shape_strides.ndim, _shape_strides.shape, NDARRAY_FLOAT);
farray = (mp_float_t *)results->array;
// we can return the 0 array here, if the degrees of freedom is larger than the length of the axis
// we can return the 0 array here, if the degrees of freedom are larger than the length of the axis
if((optype == NUMERICAL_STD) && (_shape_strides.shape[0] <= ddof)) {
return MP_OBJ_FROM_PTR(results);
}
@ -397,11 +397,9 @@ static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t
RUN_MEAN_STD(mp_float_t, array, farray, _shape_strides, div, isStd);
}
}
if(results->ndim == 0) { // return a scalar here
return mp_binary_get_val_array(results->dtype, results->array, 0);
}
return MP_OBJ_FROM_PTR(results);
return ulab_tools_restore_dims(ndarray, results, keepdims, _shape_strides);
}
// we should never get to this point
return mp_const_none;
}
#endif
@ -441,7 +439,7 @@ static mp_obj_t numerical_argmin_argmax_iterable(mp_obj_t oin, uint8_t optype) {
}
}
static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype) {
static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t keepdims, mp_obj_t axis, uint8_t optype) {
// TODO: treat the flattened array
if(ndarray->len == 0) {
mp_raise_ValueError(MP_ERROR_TEXT("attempt to get (arg)min/(arg)max of empty sequence"));
@ -521,7 +519,9 @@ static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t
int32_t *strides = m_new0(int32_t, ULAB_MAX_DIMS);
numerical_reduce_axes(ndarray, ax, shape, strides);
uint8_t index = ULAB_MAX_DIMS - ndarray->ndim + ax;
shape_strides _shape_strides = tools_reduce_axes(ndarray, axis);
uint8_t index = _shape_strides.axis;
ndarray_obj_t *results = NULL;
@ -550,8 +550,9 @@ static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t
if(results->len == 1) {
return mp_binary_get_val_array(results->dtype, results->array, 0);
}
return MP_OBJ_FROM_PTR(results);
return ulab_tools_restore_dims(ndarray, results, keepdims, _shape_strides);
}
// we should never get to this point
return mp_const_none;
}
#endif
@ -560,6 +561,7 @@ static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE} } ,
{ MP_QSTR_axis, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_keepdims, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_FALSE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
@ -567,6 +569,8 @@ static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m
mp_obj_t oin = args[0].u_obj;
mp_obj_t axis = args[1].u_obj;
mp_obj_t keepdims = args[2].u_obj;
if((axis != mp_const_none) && (!mp_obj_is_int(axis))) {
mp_raise_TypeError(MP_ERROR_TEXT("axis must be None, or an integer"));
}
@ -598,11 +602,11 @@ static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m
case NUMERICAL_ARGMIN:
case NUMERICAL_ARGMAX:
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
return numerical_argmin_argmax_ndarray(ndarray, axis, optype);
return numerical_argmin_argmax_ndarray(ndarray, keepdims, axis, optype);
case NUMERICAL_SUM:
case NUMERICAL_MEAN:
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
return numerical_sum_mean_std_ndarray(ndarray, axis, optype, 0);
return numerical_sum_mean_std_ndarray(ndarray, axis, keepdims, optype, 0);
default:
mp_raise_NotImplementedError(MP_ERROR_TEXT("operation is not implemented on ndarrays"));
}
@ -1385,6 +1389,7 @@ mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } } ,
{ MP_QSTR_axis, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_ddof, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_keepdims, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_FALSE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
@ -1393,6 +1398,8 @@ mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg
mp_obj_t oin = args[0].u_obj;
mp_obj_t axis = args[1].u_obj;
size_t ddof = args[2].u_int;
mp_obj_t keepdims = args[2].u_obj;
if((axis != mp_const_none) && (mp_obj_get_int(axis) != 0) && (mp_obj_get_int(axis) != 1)) {
// this seems to pass with False, and True...
mp_raise_ValueError(MP_ERROR_TEXT("axis must be None, or an integer"));
@ -1401,7 +1408,7 @@ mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg
return numerical_sum_mean_std_iterable(oin, NUMERICAL_STD, ddof);
} else if(mp_obj_is_type(oin, &ulab_ndarray_type)) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
return numerical_sum_mean_std_ndarray(ndarray, axis, NUMERICAL_STD, ddof);
return numerical_sum_mean_std_ndarray(ndarray, axis, keepdims, NUMERICAL_STD, ddof);
} else {
mp_raise_TypeError(MP_ERROR_TEXT("input must be tuple, list, range, or ndarray"));
}

View file

@ -33,7 +33,7 @@
#include "user/user.h"
#include "utils/utils.h"
#define ULAB_VERSION 6.7.0
#define ULAB_VERSION 6.7.1
#define xstr(s) str(s)
#define str(s) #s

View file

@ -162,6 +162,15 @@ void *ndarray_set_float_function(uint8_t dtype) {
}
#endif /* NDARRAY_BINARY_USES_FUN_POINTER */
int8_t tools_get_axis(mp_obj_t axis, uint8_t ndim) {
int8_t ax = mp_obj_get_int(axis);
if(ax < 0) ax += ndim;
if((ax < 0) || (ax > ndim - 1)) {
mp_raise_ValueError(MP_ERROR_TEXT("axis is out of bounds"));
}
return ax;
}
shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) {
// TODO: replace numerical_reduce_axes with this function, wherever applicable
// This function should be used, whenever a tensor is contracted;
@ -172,38 +181,36 @@ shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) {
}
shape_strides _shape_strides;
_shape_strides.increment = 0;
// this is the contracted dimension (won't be overwritten for axis == None)
_shape_strides.ndim = 0;
if(axis == mp_const_none) {
_shape_strides.shape = ndarray->shape;
_shape_strides.strides = ndarray->strides;
return _shape_strides;
}
size_t *shape = m_new(size_t, ULAB_MAX_DIMS + 1);
_shape_strides.shape = shape;
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS + 1);
_shape_strides.strides = strides;
_shape_strides.increment = 0;
// this is the contracted dimension (won't be overwritten for axis == None)
_shape_strides.ndim = 0;
memcpy(_shape_strides.shape, ndarray->shape, sizeof(size_t) * ULAB_MAX_DIMS);
memcpy(_shape_strides.strides, ndarray->strides, sizeof(int32_t) * ULAB_MAX_DIMS);
if(axis == mp_const_none) {
return _shape_strides;
}
uint8_t index = ULAB_MAX_DIMS - 1; // value of index for axis == mp_const_none (won't be overwritten)
_shape_strides.axis = ULAB_MAX_DIMS - 1; // value of index for axis == mp_const_none (won't be overwritten)
if(axis != mp_const_none) { // i.e., axis is an integer
int8_t ax = mp_obj_get_int(axis);
if(ax < 0) ax += ndarray->ndim;
if((ax < 0) || (ax > ndarray->ndim - 1)) {
mp_raise_ValueError(MP_ERROR_TEXT("index out of range"));
}
index = ULAB_MAX_DIMS - ndarray->ndim + ax;
int8_t ax = tools_get_axis(axis, ndarray->ndim);
_shape_strides.axis = ULAB_MAX_DIMS - ndarray->ndim + ax;
_shape_strides.ndim = ndarray->ndim - 1;
}
// move the value stored at index to the leftmost position, and align everything else to the right
_shape_strides.shape[0] = ndarray->shape[index];
_shape_strides.strides[0] = ndarray->strides[index];
for(uint8_t i = 0; i < index; i++) {
_shape_strides.shape[0] = ndarray->shape[_shape_strides.axis];
_shape_strides.strides[0] = ndarray->strides[_shape_strides.axis];
for(uint8_t i = 0; i < _shape_strides.axis; i++) {
// entries to the right of index must be shifted by one position to the left
_shape_strides.shape[i + 1] = ndarray->shape[i];
_shape_strides.strides[i + 1] = ndarray->strides[i];
@ -213,16 +220,37 @@ shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) {
_shape_strides.increment = 1;
}
if(_shape_strides.ndim == 0) {
_shape_strides.ndim = 1;
_shape_strides.shape[ULAB_MAX_DIMS - 1] = 1;
_shape_strides.strides[ULAB_MAX_DIMS - 1] = ndarray->itemsize;
}
return _shape_strides;
}
int8_t tools_get_axis(mp_obj_t axis, uint8_t ndim) {
int8_t ax = mp_obj_get_int(axis);
if(ax < 0) ax += ndim;
if((ax < 0) || (ax > ndim - 1)) {
mp_raise_ValueError(MP_ERROR_TEXT("axis is out of bounds"));
mp_obj_t ulab_tools_restore_dims(ndarray_obj_t *ndarray, ndarray_obj_t *results, mp_obj_t keepdims, shape_strides _shape_strides) {
// restores the contracted dimension, if keepdims is True
if((ndarray->ndim == 1) && (keepdims != mp_const_true)) {
// since the original array has already been contracted and
// we don't want to keep the dimensions here, we have to return a scalar
return mp_binary_get_val_array(results->dtype, results->array, 0);
}
return ax;
if(keepdims == mp_const_true) {
results->ndim += 1;
for(int8_t i = 0; i < ULAB_MAX_DIMS; i++) {
results->shape[i] = ndarray->shape[i];
}
results->shape[_shape_strides.axis] = 1;
results->strides[ULAB_MAX_DIMS - 1] = ndarray->itemsize;
for(uint8_t i = ULAB_MAX_DIMS; i > 1; i--) {
results->strides[i - 2] = results->strides[i - 1] * results->shape[i - 1];
}
}
return MP_OBJ_FROM_PTR(results);
}
#if ULAB_MAX_DIMS > 1

View file

@ -17,6 +17,7 @@
typedef struct _shape_strides_t {
uint8_t increment;
uint8_t axis;
uint8_t ndim;
size_t *shape;
int32_t *strides;
@ -34,6 +35,7 @@ void *ndarray_set_float_function(uint8_t );
shape_strides tools_reduce_axes(ndarray_obj_t *, mp_obj_t );
int8_t tools_get_axis(mp_obj_t , uint8_t );
mp_obj_t ulab_tools_restore_dims(ndarray_obj_t * , ndarray_obj_t * , mp_obj_t , shape_strides );
ndarray_obj_t *tools_object_is_square(mp_obj_t );
uint8_t ulab_binary_get_size(uint8_t );

View file

@ -1,3 +1,15 @@
Mon, 30 Dec 2024
version 6.7.1
add keepdims keyword argument to numerical functions
Sun, 15 Dec 2024
version 6.7.0
add scipy.integrate module
Sun, 24 Nov 2024
version 6.6.1

23
tests/2d/numpy/sum.py Normal file
View file

@ -0,0 +1,23 @@
try:
from ulab import numpy as np
except ImportError:
import numpy as np
for dtype in (np.uint8, np.int8, np.uint16, np.int8, np.float):
a = np.array(range(12), dtype=dtype)
b = a.reshape((3, 4))
print(a)
print(b)
print()
print(np.sum(a))
print(np.sum(a, axis=0))
print(np.sum(a, axis=0, keepdims=True))
print()
print(np.sum(b))
print(np.sum(b, axis=0))
print(np.sum(b, axis=1))
print(np.sum(b, axis=0, keepdims=True))
print(np.sum(b, axis=1, keepdims=True))

80
tests/2d/numpy/sum.py.exp Normal file
View file

@ -0,0 +1,80 @@
array([0, 1, 2, ..., 9, 10, 11], dtype=uint8)
array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=uint8)
66
66
array([66], dtype=uint8)
66
array([12, 15, 18, 21], dtype=uint8)
array([6, 22, 38], dtype=uint8)
array([[12, 15, 18, 21]], dtype=uint8)
array([[6],
[22],
[38]], dtype=uint8)
array([0, 1, 2, ..., 9, 10, 11], dtype=int8)
array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=int8)
66
66
array([66], dtype=int8)
66
array([12, 15, 18, 21], dtype=int8)
array([6, 22, 38], dtype=int8)
array([[12, 15, 18, 21]], dtype=int8)
array([[6],
[22],
[38]], dtype=int8)
array([0, 1, 2, ..., 9, 10, 11], dtype=uint16)
array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=uint16)
66
66
array([66], dtype=uint16)
66
array([12, 15, 18, 21], dtype=uint16)
array([6, 22, 38], dtype=uint16)
array([[12, 15, 18, 21]], dtype=uint16)
array([[6],
[22],
[38]], dtype=uint16)
array([0, 1, 2, ..., 9, 10, 11], dtype=int8)
array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=int8)
66
66
array([66], dtype=int8)
66
array([12, 15, 18, 21], dtype=int8)
array([6, 22, 38], dtype=int8)
array([[12, 15, 18, 21]], dtype=int8)
array([[6],
[22],
[38]], dtype=int8)
array([0.0, 1.0, 2.0, ..., 9.0, 10.0, 11.0], dtype=float64)
array([[0.0, 1.0, 2.0, 3.0],
[4.0, 5.0, 6.0, 7.0],
[8.0, 9.0, 10.0, 11.0]], dtype=float64)
66.0
66.0
array([66.0], dtype=float64)
66.0
array([12.0, 15.0, 18.0, 21.0], dtype=float64)
array([6.0, 22.0, 38.0], dtype=float64)
array([[12.0, 15.0, 18.0, 21.0]], dtype=float64)
array([[6.0],
[22.0],
[38.0]], dtype=float64)