Compare commits

..

No commits in common. "master" and "6.5.2" have entirely different histories.

58 changed files with 1221 additions and 3709 deletions

View file

@ -16,11 +16,10 @@ on:
jobs:
micropython:
continue-on-error: true
strategy:
matrix:
os:
- ubuntu-24.04
- ubuntu-20.04
- macOS-latest
dims: [1, 2, 3, 4]
runs-on: ${{ matrix.os }}
@ -29,10 +28,10 @@ jobs:
env:
GITHUB_CONTEXT: ${{ toJson(github) }}
run: echo "$GITHUB_CONTEXT"
- name: Set up Python 3.12
uses: actions/setup-python@v5
- name: Set up Python 3.10
uses: actions/setup-python@v1
with:
python-version: "3.12"
python-version: "3.10"
- name: Install requirements
run: |
@ -45,10 +44,10 @@ jobs:
gcc --version
python3 --version
- name: Checkout ulab
uses: actions/checkout@v4
uses: actions/checkout@v1
- name: Checkout micropython repo
uses: actions/checkout@v4
uses: actions/checkout@v2
with:
repository: micropython/micropython
path: micropython
@ -57,11 +56,10 @@ jobs:
run: ./build.sh ${{ matrix.dims }}
circuitpython:
continue-on-error: true
strategy:
matrix:
os:
- ubuntu-24.04
- ubuntu-20.04
- macOS-latest
dims: [1, 2, 3, 4]
runs-on: ${{ matrix.os }}
@ -70,10 +68,10 @@ jobs:
env:
GITHUB_CONTEXT: ${{ toJson(github) }}
run: echo "$GITHUB_CONTEXT"
- name: Set up Python 3.12
uses: actions/setup-python@v5
- name: Set up Python 3.10
uses: actions/setup-python@v1
with:
python-version: "3.12"
python-version: "3.10"
- name: Versions
run: |
@ -81,7 +79,7 @@ jobs:
python3 --version
- name: Checkout ulab
uses: actions/checkout@v4
uses: actions/checkout@v1
- name: Install requirements
run: |

View file

@ -1,6 +1,6 @@
# ulab
[![Documentation Status](https://readthedocs.org/projects/micropython-ulab/badge/?version=latest)](https://micropython-ulab.readthedocs.io/en/latest/index.html)
[![Documentation Status](https://readthedocs.org/projects/micropython-ulab-robert/badge/?version=latest)](https://micropython-ulab-robert.readthedocs.io/en/latest/?badge=latest)
`ulab` is a `numpy`-like array manipulation library for [micropython](http://micropython.org/) and [CircuitPython](https://circuitpython.org/).
The module is written in C, defines compact containers (`ndarray`s) for numerical data of one to four
@ -36,7 +36,7 @@ detected and handled.
## ndarray methods
`ulab` implements `numpy`'s `ndarray` with the `==`, `!=`, `<`, `<=`, `>`, `>=`, `+`, `-`, `/`, `*`, `**`,
`%`, `+=`, `-=`, `*=`, `/=`, `**=`, `%=` binary operators, and the `len`, `~`, `-`, `+`, `abs` unary operators that
`+=`, `-=`, `*=`, `/=`, `**=` binary operators, and the `len`, `~`, `-`, `+`, `abs` unary operators that
operate element-wise. Type-aware `ndarray`s can be initialised from any `micropython` iterable, lists of
iterables via the `array` constructor, or by means of the `arange`, `concatenate`, `diag`, `eye`,
`frombuffer`, `full`, `linspace`, `logspace`, `ones`, or `zeros` functions.
@ -112,7 +112,7 @@ of the user manual.
1. `MaixPy` https://github.com/sipeed/MaixPy
1. `OpenMV` https://github.com/openmv/openmv
1. `pimoroni-pico` https://github.com/pimoroni/pimoroni-pico
1. `Tulip Creative Computer` https://github.com/shorepine/tulipcc
3. `pycom` https://pycom.io/
## Compiling

View file

@ -41,7 +41,8 @@ HERE="$(dirname -- "$(readlinkf_posix -- "${0}")" )"
rm -rf circuitpython/extmod/ulab; ln -s "$HERE" circuitpython/extmod/ulab
dims=${1-2}
make -C circuitpython/mpy-cross -j$NPROC
make -k -C circuitpython/ports/unix -j$NPROC DEBUG=1 MICROPY_PY_FFI=0 MICROPY_PY_BTREE=0 MICROPY_SSL_AXTLS=0 MICROPY_PY_USSL=0 CFLAGS_EXTRA="-Wno-tautological-constant-out-of-range-compare -Wno-unknown-pragmas -DULAB_MAX_DIMS=$dims" BUILD=build-$dims PROG=micropython-$dims
sed -e '/MICROPY_PY_UHASHLIB/s/1/0/' < circuitpython/ports/unix/mpconfigport.h > circuitpython/ports/unix/mpconfigport_ulab.h
make -k -C circuitpython/ports/unix -j$NPROC DEBUG=1 MICROPY_PY_FFI=0 MICROPY_PY_BTREE=0 MICROPY_SSL_AXTLS=0 MICROPY_PY_USSL=0 CFLAGS_EXTRA="-DMP_CONFIGFILE=\"<mpconfigport_ulab.h>\" -Wno-tautological-constant-out-of-range-compare -Wno-unknown-pragmas -DULAB_MAX_DIMS=$dims" BUILD=build-$dims PROG=micropython-$dims
# bash test-common.sh "${dims}" "circuitpython/ports/unix/micropython-$dims"

View file

@ -2,7 +2,6 @@
USERMODULES_DIR := $(USERMOD_DIR)
# Add all C files to SRC_USERMOD.
SRC_USERMOD += $(USERMODULES_DIR)/scipy/integrate/integrate.c
SRC_USERMOD += $(USERMODULES_DIR)/scipy/linalg/linalg.c
SRC_USERMOD += $(USERMODULES_DIR)/scipy/optimize/optimize.c
SRC_USERMOD += $(USERMODULES_DIR)/scipy/signal/signal.c

View file

@ -6,7 +6,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2024 Zoltán Vörös
* Copyright (c) 2019-2022 Zoltán Vörös
* 2020 Jeff Epler for Adafruit Industries
* 2020 Taku Fukada
*/
@ -509,9 +509,8 @@ static size_t multiply_size(size_t a, size_t b) {
return result;
}
ndarray_obj_t *ndarray_new_ndarray(uint8_t ndim, size_t *shape, int32_t *strides, uint8_t dtype, uint8_t *buffer) {
ndarray_obj_t *ndarray_new_ndarray(uint8_t ndim, size_t *shape, int32_t *strides, uint8_t dtype) {
// Creates the base ndarray with shape, and initialises the values to straight 0s
// optionally, values can be supplied via the last argument
ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
ndarray->base.type = &ulab_ndarray_type;
ndarray->dtype = dtype == NDARRAY_BOOL ? NDARRAY_UINT8 : dtype;
@ -537,13 +536,9 @@ ndarray_obj_t *ndarray_new_ndarray(uint8_t ndim, size_t *shape, int32_t *strides
// if the length is 0, still allocate a single item, so that contractions can be handled
size_t len = multiply_size(ndarray->itemsize, MAX(1, ndarray->len));
uint8_t *array;
array = buffer;
if(array == NULL) {
uint8_t *array = m_new0(byte, len);
// this should set all elements to 0, irrespective of the of the dtype (all bits are zero)
// we could, perhaps, leave this step out, and initialise the array only, when needed
array = m_new0(byte, len);
}
ndarray->array = array;
ndarray->origin = array;
return ndarray;
@ -552,20 +547,17 @@ ndarray_obj_t *ndarray_new_ndarray(uint8_t ndim, size_t *shape, int32_t *strides
ndarray_obj_t *ndarray_new_dense_ndarray(uint8_t ndim, size_t *shape, uint8_t dtype) {
// creates a dense array, i.e., one, where the strides are derived directly from the shapes
// the function should work in the general n-dimensional case
// int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
// strides[ULAB_MAX_DIMS - 1] = (int32_t)ulab_binary_get_size(dtype);
// for(size_t i = ULAB_MAX_DIMS; i > 1; i--) {
// strides[i-2] = strides[i-1] * MAX(1, shape[i-1]);
// }
return ndarray_new_ndarray(ndim, shape, NULL, dtype, NULL);
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
strides[ULAB_MAX_DIMS-1] = (int32_t)ulab_binary_get_size(dtype);
for(size_t i=ULAB_MAX_DIMS; i > 1; i--) {
strides[i-2] = strides[i-1] * MAX(1, shape[i-1]);
}
return ndarray_new_ndarray(ndim, shape, strides, dtype);
}
ndarray_obj_t *ndarray_new_ndarray_from_tuple(mp_obj_tuple_t *_shape, uint8_t dtype) {
// creates a dense array from a tuple
// the function should work in the general n-dimensional case
if(_shape->len > ULAB_MAX_DIMS) {
mp_raise_ValueError(MP_ERROR_TEXT("maximum number of dimensions is " MP_STRINGIFY(ULAB_MAX_DIMS)));
}
size_t *shape = m_new0(size_t, ULAB_MAX_DIMS);
for(size_t i = 0; i < _shape->len; i++) {
shape[ULAB_MAX_DIMS - 1 - i] = mp_obj_get_int(_shape->items[_shape->len - 1 - i]);
@ -586,10 +578,43 @@ void ndarray_copy_array(ndarray_obj_t *source, ndarray_obj_t *target, uint8_t sh
}
#endif
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(tarray, sarray, target->itemsize);
tarray += target->itemsize;
ITERATOR_TAIL(source, sarray);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
}
ndarray_obj_t *ndarray_new_view(ndarray_obj_t *source, uint8_t ndim, size_t *shape, int32_t *strides, int32_t offset) {
@ -625,7 +650,7 @@ ndarray_obj_t *ndarray_copy_view(ndarray_obj_t *source) {
if(source->boolean) {
dtype = NDARRAY_BOOL;
}
ndarray_obj_t *ndarray = ndarray_new_ndarray(source->ndim, source->shape, strides, dtype, NULL);
ndarray_obj_t *ndarray = ndarray_new_ndarray(source->ndim, source->shape, strides, dtype);
ndarray_copy_array(source, ndarray, 0);
return ndarray;
}
@ -643,7 +668,20 @@ ndarray_obj_t *ndarray_copy_view_convert_type(ndarray_obj_t *source, uint8_t dty
uint8_t complex_size = 2 * sizeof(mp_float_t);
#endif
ITERATOR_HEAD()
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_obj_t item;
#if ULAB_SUPPORTS_COMPLEX
if(source->dtype == NDARRAY_COMPLEX) {
@ -672,7 +710,27 @@ ndarray_obj_t *ndarray_copy_view_convert_type(ndarray_obj_t *source, uint8_t dty
ndarray_set_value(dtype, array, 0, item);
#endif
array += ndarray->itemsize;
ITERATOR_TAIL(source, sarray);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
return ndarray;
}
@ -699,7 +757,20 @@ mp_obj_t ndarray_byteswap(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_
return MP_OBJ_FROM_PTR(ndarray);
} else {
uint8_t *array = (uint8_t *)ndarray->array;
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
if(self->dtype == NDARRAY_FLOAT) {
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
SWAP(uint8_t, array[0], array[3]);
@ -713,7 +784,27 @@ mp_obj_t ndarray_byteswap(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_
} else {
SWAP(uint8_t, array[0], array[1]);
}
ITERATOR_TAIL(ndarray, array);
array += ndarray->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < ndarray->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1];
array += ndarray->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < ndarray->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2];
array += ndarray->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < ndarray->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3];
array += ndarray->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < ndarray->shape[ULAB_MAX_DIMS - 4]);
#endif
}
return MP_OBJ_FROM_PTR(ndarray);
}
@ -1342,10 +1433,43 @@ mp_obj_t ndarray_flatten(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_a
uint8_t *array = (uint8_t *)ndarray->array;
if(memcmp(order, "C", 1) == 0) { // C-type ordering
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(array, sarray, self->itemsize);
array += ndarray->strides[ULAB_MAX_DIMS - 1];
ITERATOR_TAIL(self, sarray);
sarray += self->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < self->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= self->strides[ULAB_MAX_DIMS - 1] * self->shape[ULAB_MAX_DIMS-1];
sarray += self->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < self->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= self->strides[ULAB_MAX_DIMS - 2] * self->shape[ULAB_MAX_DIMS-2];
sarray += self->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < self->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= self->strides[ULAB_MAX_DIMS - 3] * self->shape[ULAB_MAX_DIMS-3];
sarray += self->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < self->shape[ULAB_MAX_DIMS - 4]);
#endif
} else { // 'F', Fortran-type ordering
#if ULAB_MAX_DIMS > 3
size_t i = 0;
@ -1398,13 +1522,6 @@ mp_obj_t ndarray_itemsize(mp_obj_t self_in) {
}
#endif
#if NDARRAY_HAS_NDIM
mp_obj_t ndarray_ndim(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(self->ndim);
}
#endif
#if NDARRAY_HAS_SHAPE
mp_obj_t ndarray_shape(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
@ -1489,7 +1606,7 @@ ndarray_obj_t *ndarray_from_mp_obj(mp_obj_t obj, uint8_t other_type) {
if(mp_obj_is_int(obj)) {
int32_t ivalue = mp_obj_get_int(obj);
if((ivalue < -32768) || (ivalue > 65535)) {
if((ivalue < -32767) || (ivalue > 32767)) {
// the integer value clearly does not fit the ulab integer types, so move on to float
ndarray = ndarray_new_linear_array(1, NDARRAY_FLOAT);
mp_float_t *array = (mp_float_t *)ndarray->array;
@ -1497,7 +1614,7 @@ ndarray_obj_t *ndarray_from_mp_obj(mp_obj_t obj, uint8_t other_type) {
} else {
uint8_t dtype;
if(ivalue < 0) {
if(ivalue >= -128) {
if(ivalue > -128) {
dtype = NDARRAY_INT8;
} else {
dtype = NDARRAY_INT16;
@ -1648,12 +1765,6 @@ mp_obj_t ndarray_binary_op(mp_binary_op_t _op, mp_obj_t lobj, mp_obj_t robj) {
return ndarray_inplace_ams(lhs, rhs, rstrides, op);
break;
#endif
#if NDARRAY_HAS_INPLACE_MODULO
case MP_BINARY_OP_INPLACE_MODULO:
COMPLEX_DTYPE_NOT_IMPLEMENTED(lhs->dtype);
return ndarray_inplace_modulo(lhs, rhs, rstrides);
break;
#endif
#if NDARRAY_HAS_INPLACE_MULTIPLY
case MP_BINARY_OP_INPLACE_MULTIPLY:
COMPLEX_DTYPE_NOT_IMPLEMENTED(lhs->dtype);
@ -1709,12 +1820,6 @@ mp_obj_t ndarray_binary_op(mp_binary_op_t _op, mp_obj_t lobj, mp_obj_t robj) {
return ndarray_binary_add(lhs, rhs, ndim, shape, lstrides, rstrides);
break;
#endif
#if NDARRAY_HAS_BINARY_OP_MODULO
case MP_BINARY_OP_MODULO:
COMPLEX_DTYPE_NOT_IMPLEMENTED(lhs->dtype);
return ndarray_binary_modulo(lhs, rhs, ndim, shape, lstrides, rstrides);
break;
#endif
#if NDARRAY_HAS_BINARY_OP_MULTIPLY
case MP_BINARY_OP_MULTIPLY:
return ndarray_binary_multiply(lhs, rhs, ndim, shape, lstrides, rstrides);
@ -1779,7 +1884,7 @@ mp_obj_t ndarray_unary_op(mp_unary_op_t op, mp_obj_t self_in) {
#if ULAB_SUPPORTS_COMPLEX
if(self->dtype == NDARRAY_COMPLEX) {
int32_t *strides = strides_from_shape(self->shape, NDARRAY_FLOAT);
ndarray_obj_t *target = ndarray_new_ndarray(self->ndim, self->shape, strides, NDARRAY_FLOAT, NULL);
ndarray_obj_t *target = ndarray_new_ndarray(self->ndim, self->shape, strides, NDARRAY_FLOAT);
ndarray = MP_OBJ_TO_PTR(carray_abs(self, target));
} else {
#endif

View file

@ -188,7 +188,7 @@ int32_t *ndarray_contract_strides(ndarray_obj_t *, uint8_t );
ndarray_obj_t *ndarray_from_iterable(mp_obj_t , uint8_t );
ndarray_obj_t *ndarray_new_dense_ndarray(uint8_t , size_t *, uint8_t );
ndarray_obj_t *ndarray_new_ndarray_from_tuple(mp_obj_tuple_t *, uint8_t );
ndarray_obj_t *ndarray_new_ndarray(uint8_t , size_t *, int32_t *, uint8_t , uint8_t *);
ndarray_obj_t *ndarray_new_ndarray(uint8_t , size_t *, int32_t *, uint8_t );
ndarray_obj_t *ndarray_new_linear_array(size_t , uint8_t );
ndarray_obj_t *ndarray_new_view(ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t );
bool ndarray_is_dense(ndarray_obj_t *);
@ -232,10 +232,6 @@ mp_obj_t ndarray_dtype(mp_obj_t );
mp_obj_t ndarray_itemsize(mp_obj_t );
#endif
#if NDARRAY_HAS_NDIM
mp_obj_t ndarray_ndim(mp_obj_t );
#endif
#if NDARRAY_HAS_SIZE
mp_obj_t ndarray_size(mp_obj_t );
#endif
@ -713,89 +709,4 @@ ndarray_obj_t *ndarray_from_mp_obj(mp_obj_t , uint8_t );
#endif /* ULAB_MAX_DIMS == 4 */
#endif /* ULAB_HAS_FUNCTION_ITERATOR */
// iterator macro for traversing arrays over all dimensions
#if ULAB_MAX_DIMS == 1
#define ITERATOR_HEAD()\
size_t _l_ = 0;\
do {
#define ITERATOR_TAIL(_source_, _source_array_)\
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 1];\
_l_++;\
} while(_l_ < (_source_)->shape[ULAB_MAX_DIMS - 1]);
#endif /* ULAB_MAX_DIMS == 1 */
#if ULAB_MAX_DIMS == 2
#define ITERATOR_HEAD()\
size_t _k_ = 0;\
do {\
size_t _l_ = 0;\
do {
#define ITERATOR_TAIL(_source_, _source_array_)\
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 1];\
_l_++;\
} while(_l_ < (_source_)->shape[ULAB_MAX_DIMS - 1]);\
(_source_array_) -= (_source_)->strides[ULAB_MAX_DIMS - 1] * (_source_)->shape[ULAB_MAX_DIMS - 1];\
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 2];\
_k_++;\
} while(_k_ < (_source_)->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS == 2 */
#if ULAB_MAX_DIMS == 3
#define ITERATOR_HEAD()\
size_t _j_ = 0;\
do {\
size_t _k_ = 0;\
do {\
size_t _l_ = 0;\
do {
#define ITERATOR_TAIL(_source_, _source_array_)\
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 1];\
_l_++;\
} while(_l_ < (_source_)->shape[ULAB_MAX_DIMS - 1]);\
(_source_array_) -= (_source_)->strides[ULAB_MAX_DIMS - 1] * (_source_)->shape[ULAB_MAX_DIMS - 1];\
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 2];\
_k_++;\
} while(_k_ < (_source_)->shape[ULAB_MAX_DIMS - 2]);\
(_source_array_) -= (_source_)->strides[ULAB_MAX_DIMS - 2] * (_source_)->shape[ULAB_MAX_DIMS - 2];\
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 3];\
_j_++;\
} while(_j_ < (_source_)->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS == 3 */
#if ULAB_MAX_DIMS == 4
#define ITERATOR_HEAD()\
size_t _i_ = 0;\
do {\
size_t _j_ = 0;\
do {\
size_t _k_ = 0;\
do {\
size_t _l_ = 0;\
do {
#define ITERATOR_TAIL(_source_, _source_array_)\
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 1];\
_l_++;\
} while(_l_ < (_source_)->shape[ULAB_MAX_DIMS - 1]);\
(_source_array_) -= (_source_)->strides[ULAB_MAX_DIMS - 1] * (_source_)->shape[ULAB_MAX_DIMS - 1];\
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 2];\
_k_++;\
} while(_k_ < (_source_)->shape[ULAB_MAX_DIMS - 2]);\
(_source_array_) -= (_source_)->strides[ULAB_MAX_DIMS - 2] * (_source_)->shape[ULAB_MAX_DIMS - 2];\
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 3];\
_j_++;\
} while(_j_ < (_source_)->shape[ULAB_MAX_DIMS - 3]);\
(_source_array_) -= (_source_)->strides[ULAB_MAX_DIMS - 3] * (_source_)->shape[ULAB_MAX_DIMS - 3];\
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 4];\
_i_++;\
} while(_i_ < (_source_)->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS == 4 */
#endif

View file

@ -248,105 +248,6 @@ mp_obj_t ndarray_binary_add(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
}
#endif /* NDARRAY_HAS_BINARY_OP_ADD */
#if NDARRAY_HAS_BINARY_OP_MODULO
mp_obj_t ndarray_binary_modulo(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
ndarray_obj_t *results = NULL;
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT8);
BINARY_LOOP(results, uint8_t, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, uint8_t, int8_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
BINARY_LOOP(results, uint16_t, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, uint8_t, int16_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
MODULO_FLOAT_LOOP(results, mp_float_t, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int8_t, uint8_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT8);
BINARY_LOOP(results, int8_t, int8_t, int8_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int8_t, int16_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int8_t, int16_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
MODULO_FLOAT_LOOP(results, mp_float_t, int8_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT8);
BINARY_LOOP(results, uint16_t, uint16_t, uint8_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, uint16_t, int8_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
BINARY_LOOP(results, uint16_t, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, uint16_t, int16_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
MODULO_FLOAT_LOOP(results, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int16_t, uint8_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int16_t, int8_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
BINARY_LOOP(results, mp_float_t, int16_t, uint16_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
BINARY_LOOP(results, int16_t, int16_t, int16_t, larray, lstrides, rarray, rstrides, %);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
MODULO_FLOAT_LOOP(results, mp_float_t, int16_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_UINT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
MODULO_FLOAT_LOOP(results, mp_float_t, mp_float_t, uint8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT8) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
MODULO_FLOAT_LOOP(results, mp_float_t, mp_float_t, int8_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
MODULO_FLOAT_LOOP(results, mp_float_t, mp_float_t, uint16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
MODULO_FLOAT_LOOP(results, mp_float_t, mp_float_t, int16_t, larray, lstrides, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_FLOAT) {
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
MODULO_FLOAT_LOOP(results, mp_float_t, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides);
}
}
return MP_OBJ_FROM_PTR(results);
}
#endif /* NDARRAY_HAS_BINARY_OP_MODULO */
#if NDARRAY_HAS_BINARY_OP_MULTIPLY
mp_obj_t ndarray_binary_multiply(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
@ -1173,29 +1074,6 @@ mp_obj_t ndarray_inplace_ams(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rs
}
#endif /* NDARRAY_HAS_INPLACE_ADD || NDARRAY_HAS_INPLACE_MULTIPLY || NDARRAY_HAS_INPLACE_SUBTRACT */
#if NDARRAY_HAS_INPLACE_MODULO
mp_obj_t ndarray_inplace_modulo(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rstrides) {
if((lhs->dtype != NDARRAY_FLOAT) && (rhs->dtype == NDARRAY_FLOAT)) {
mp_raise_TypeError(MP_ERROR_TEXT("results cannot be cast to specified type"));
}
if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_UINT8) {
INLINE_MODULO_FLOAT_LOOP(lhs, uint8_t, larray, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT8) {
INLINE_MODULO_FLOAT_LOOP(lhs, int8_t, larray, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_UINT16) {
INLINE_MODULO_FLOAT_LOOP(lhs, uint16_t, larray, rarray, rstrides);
} else if(rhs->dtype == NDARRAY_INT16) {
INLINE_MODULO_FLOAT_LOOP(lhs, int16_t, larray, rarray, rstrides);
} else {
INLINE_MODULO_FLOAT_LOOP(lhs, mp_float_t, larray, rarray, rstrides);
}
}
return MP_OBJ_FROM_PTR(lhs);
}
#endif /* NDARRAY_HAS_INPLACE_MODULO */
#if NDARRAY_HAS_INPLACE_TRUE_DIVIDE
mp_obj_t ndarray_inplace_divide(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rstrides) {

View file

@ -12,7 +12,6 @@
mp_obj_t ndarray_binary_equality(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *, mp_binary_op_t );
mp_obj_t ndarray_binary_add(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t ndarray_binary_modulo(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t ndarray_binary_multiply(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t ndarray_binary_more(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *, mp_binary_op_t );
mp_obj_t ndarray_binary_power(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
@ -22,7 +21,6 @@ mp_obj_t ndarray_binary_logical(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size
mp_obj_t ndarray_binary_floor_divide(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
mp_obj_t ndarray_inplace_ams(ndarray_obj_t *, ndarray_obj_t *, int32_t *, uint8_t );
mp_obj_t ndarray_inplace_modulo(ndarray_obj_t *, ndarray_obj_t *, int32_t *);
mp_obj_t ndarray_inplace_power(ndarray_obj_t *, ndarray_obj_t *, int32_t *);
mp_obj_t ndarray_inplace_divide(ndarray_obj_t *, ndarray_obj_t *, int32_t *);
@ -539,176 +537,3 @@ mp_obj_t ndarray_inplace_divide(ndarray_obj_t *, ndarray_obj_t *, int32_t *);
} while(0)
#endif /* ULAB_MAX_DIMS == 4 */
#define MODULO_FLOAT1(results, array, type_left, type_right, larray, lstrides, rarray, rstrides)\
({\
size_t l = 0;\
do {\
*(array)++ = MICROPY_FLOAT_C_FUN(fmod)(*((type_left *)(larray)), *((type_right *)(rarray)));\
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
})
#if ULAB_MAX_DIMS == 1
#define MODULO_FLOAT_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
MODULO_FLOAT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
} while(0)
#endif /* ULAB_MAX_DIMS == 1 */
#if ULAB_MAX_DIMS == 2
#define MODULO_FLOAT_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
size_t l = 0;\
do {\
MODULO_FLOAT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 2 */
#if ULAB_MAX_DIMS == 3
#define MODULO_FLOAT_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
MODULO_FLOAT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 3 */
#if ULAB_MAX_DIMS == 4
#define MODULO_FLOAT_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
type_out *array = (type_out *)(results)->array;\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
MODULO_FLOAT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 4]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 4 */
#define INPLACE_MODULO_FLOAT1(results, type_right, larray, rarray, rstrides)\
({\
size_t l = 0;\
do {\
*((mp_float_t *)larray) = MICROPY_FLOAT_C_FUN(fmod)(*((mp_float_t *)(larray)), *((type_right *)(rarray)));\
(larray) += (results)->strides[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
})
#if ULAB_MAX_DIMS == 1
#define INPLACE_MODULO_FLOAT_LOOP(results, type_right, larray, rarray, rstrides) do {\
INPLACE_MODULO_FLOAT1((results), type_right, (larray), (rarray), (rstrides));\
} while(0)
#endif /* ULAB_MAX_DIMS == 1 */
#if ULAB_MAX_DIMS == 2
#define INLINE_MODULO_FLOAT_LOOP(results, type_right, larray, rarray, rstrides) do {\
size_t l = 0;\
do {\
INPLACE_MODULO_FLOAT1((results), type_right, (larray), (rarray), (rstrides));\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 2 */
#if ULAB_MAX_DIMS == 3
#define INLINE_MODULO_FLOAT_LOOP(results, type_right, larray, rarray, rstrides) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
INPLACE_MODULO_FLOAT1((results), type_right, (larray), (rarray), (rstrides));\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 3 */
#if ULAB_MAX_DIMS == 4
#define INLINE_MODULO_FLOAT_LOOP(results, type_right, larray, rarray, rstrides) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
INPLACE_MODULO_FLOAT1((results), type_right, (larray), (rarray), (rstrides));\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 3];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
(larray) -= (results)->strides[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(larray) += (results)->strides[ULAB_MAX_DIMS - 4];\
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
j++;\
} while(j < (results)->shape[ULAB_MAX_DIMS - 4]);\
} while(0)
#endif /* ULAB_MAX_DIMS == 4 */

View file

@ -6,7 +6,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2021-2025 Zoltán Vörös
* Copyright (c) 2021 Zoltán Vörös
*
*/
@ -42,11 +42,6 @@ void ndarray_properties_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
dest[0] = ndarray_itemsize(self_in);
break;
#endif
#if NDARRAY_HAS_NDIM
case MP_QSTR_ndim:
dest[0] = ndarray_ndim(self_in);
break;
#endif
#if NDARRAY_HAS_SHAPE
case MP_QSTR_shape:
dest[0] = ndarray_shape(self_in);

View file

@ -7,7 +7,7 @@
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2020-2025 Zoltán Vörös
* 2020-2021 Zoltán Vörös
*/
#ifndef _NDARRAY_PROPERTIES_
@ -36,10 +36,6 @@ MP_DEFINE_CONST_FUN_OBJ_1(ndarray_flatiter_make_new_obj, ndarray_flatiter_make_n
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_itemsize_obj, ndarray_itemsize);
#endif
#if NDARRAY_HAS_NDIM
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_ndim_obj, ndarray_ndim);
#endif
#if NDARRAY_HAS_SHAPE
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_shape_obj, ndarray_shape);
#endif

View file

@ -25,11 +25,9 @@
#if ULAB_SUPPORTS_COMPLEX
//| import builtins
//|
//| import ulab.numpy
//| def real(val: ulab.numpy.ndarray) -> ulab.numpy.ndarray:
//| def real(val):
//| """
//| Return the real part of the complex argument, which can be
//| either an ndarray, or a scalar."""
@ -56,7 +54,7 @@ mp_obj_t carray_real(mp_obj_t _source) {
MP_DEFINE_CONST_FUN_OBJ_1(carray_real_obj, carray_real);
//| def imag(val: ulab.numpy.ndarray) -> ulab.numpy.ndarray:
//| def imag(val):
//| """
//| Return the imaginary part of the complex argument, which can be
//| either an ndarray, or a scalar."""
@ -84,9 +82,7 @@ MP_DEFINE_CONST_FUN_OBJ_1(carray_imag_obj, carray_imag);
#if ULAB_NUMPY_HAS_CONJUGATE
//| def conjugate(
//| val: builtins.complex | ulab.numpy.ndarray
//| ) -> builtins.complex | ulab.numpy.ndarray:
//| def conjugate(val):
//| """
//| Return the conjugate of the complex argument, which can be
//| either an ndarray, or a scalar."""

View file

@ -260,14 +260,48 @@ static mp_obj_t compare_isinf_isfinite(mp_obj_t _x, uint8_t mask) {
}
uint8_t *xarray = (uint8_t *)x->array;
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t value = *(mp_float_t *)xarray;
if(isnan(value)) {
*rarray++ = 0;
} else {
*rarray++ = isinf(value) ? mask : 1 - mask;
}
ITERATOR_TAIL(x, xarray);
xarray += x->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < x->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
xarray -= x->strides[ULAB_MAX_DIMS - 1] * x->shape[ULAB_MAX_DIMS-1];
xarray += x->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < x->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
xarray -= x->strides[ULAB_MAX_DIMS - 2] * x->shape[ULAB_MAX_DIMS-2];
xarray += x->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < x->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
xarray -= x->strides[ULAB_MAX_DIMS - 3] * x->shape[ULAB_MAX_DIMS-3];
xarray += x->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < x->shape[ULAB_MAX_DIMS - 4]);
#endif
return MP_OBJ_FROM_PTR(results);
} else {
mp_raise_TypeError(MP_ERROR_TEXT("wrong input type"));

View file

@ -6,7 +6,7 @@
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
* 2019-2024 Zoltán Vörös
* 2019-2021 Zoltán Vörös
* 2020 Taku Fukada
*/
@ -776,235 +776,6 @@ mp_obj_t create_ones(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args)
MP_DEFINE_CONST_FUN_OBJ_KW(create_ones_obj, 0, create_ones);
#endif
#if ULAB_NUMPY_HAS_TAKE
//| def take(
//| a: ulab.numpy.ndarray,
//| indices: _ArrayLike,
//| axis: Optional[int] = None,
//| out: Optional[ulab.numpy.ndarray] = None,
//| mode: Optional[str] = None) -> ulab.numpy.ndarray:
//| """
//| .. param: a
//| The source array.
//| .. param: indices
//| The indices of the values to extract.
//| .. param: axis
//| The axis over which to select values. By default, the flattened input array is used.
//| .. param: out
//| If provided, the result will be placed in this array. It should be of the appropriate shape and dtype.
//| .. param: mode
//| Specifies how out-of-bounds indices will behave.
//| - `raise`: raise an error (default)
//| - `wrap`: wrap around
//| - `clip`: clip to the range
//| `clip` mode means that all indices that are too large are replaced by the
//| index that addresses the last element along that axis. Note that this disables
//| indexing with negative numbers.
//|
//| Return a new array."""
//| ...
//|
enum CREATE_TAKE_MODE {
CREATE_TAKE_RAISE,
CREATE_TAKE_WRAP,
CREATE_TAKE_CLIP,
};
mp_obj_t create_take(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_out, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(MP_ERROR_TEXT("input is not an array"));
}
ndarray_obj_t *a = MP_OBJ_TO_PTR(args[0].u_obj);
int8_t axis = 0;
int8_t axis_index = 0;
int32_t axis_len;
uint8_t mode = CREATE_TAKE_RAISE;
uint8_t ndim;
// axis keyword argument
if(args[2].u_obj == mp_const_none) {
// work with the flattened array
axis_len = a->len;
ndim = 1;
} else { // i.e., axis is an integer
// TODO: this pops up at quite a few places, write it as a function
axis = mp_obj_get_int(args[2].u_obj);
ndim = a->ndim;
if(axis < 0) axis += a->ndim;
if((axis < 0) || (axis > a->ndim - 1)) {
mp_raise_ValueError(MP_ERROR_TEXT("index out of range"));
}
axis_index = ULAB_MAX_DIMS - a->ndim + axis;
axis_len = (int32_t)a->shape[axis_index];
}
size_t _len;
// mode keyword argument
if(mp_obj_is_str(args[4].u_obj)) {
const char *_mode = mp_obj_str_get_data(args[4].u_obj, &_len);
if(memcmp(_mode, "raise", 5) == 0) {
mode = CREATE_TAKE_RAISE;
} else if(memcmp(_mode, "wrap", 4) == 0) {
mode = CREATE_TAKE_WRAP;
} else if(memcmp(_mode, "clip", 4) == 0) {
mode = CREATE_TAKE_CLIP;
} else {
mp_raise_ValueError(MP_ERROR_TEXT("mode should be raise, wrap or clip"));
}
}
size_t indices_len = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[1].u_obj));
size_t *indices = m_new(size_t, indices_len);
mp_obj_iter_buf_t buf;
mp_obj_t item, iterable = mp_getiter(args[1].u_obj, &buf);
size_t z = 0;
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
int32_t index = mp_obj_get_int(item);
if(mode == CREATE_TAKE_RAISE) {
if(index < 0) {
index += axis_len;
}
if((index < 0) || (index > axis_len - 1)) {
m_del(size_t, indices, indices_len);
mp_raise_ValueError(MP_ERROR_TEXT("index out of range"));
}
} else if(mode == CREATE_TAKE_WRAP) {
index %= axis_len;
} else { // mode == CREATE_TAKE_CLIP
if(index < 0) {
m_del(size_t, indices, indices_len);
mp_raise_ValueError(MP_ERROR_TEXT("index must not be negative"));
}
if(index > axis_len - 1) {
index = axis_len - 1;
}
}
indices[z++] = (size_t)index;
}
size_t *shape = m_new0(size_t, ULAB_MAX_DIMS);
if(args[2].u_obj == mp_const_none) { // flattened array
shape[ULAB_MAX_DIMS - 1] = indices_len;
} else {
for(uint8_t i = 0; i < ULAB_MAX_DIMS; i++) {
shape[i] = a->shape[i];
if(i == axis_index) {
shape[i] = indices_len;
}
}
}
ndarray_obj_t *out = NULL;
if(args[3].u_obj == mp_const_none) {
// no output was supplied
out = ndarray_new_dense_ndarray(ndim, shape, a->dtype);
} else {
// TODO: deal with last argument being false!
out = ulab_tools_inspect_out(args[3].u_obj, a->dtype, ndim, shape, true);
}
#if ULAB_MAX_DIMS > 1 // we can save the hassle, if there is only one possible dimension
if((args[2].u_obj == mp_const_none) || (a->ndim == 1)) { // flattened array
#endif
uint8_t *out_array = (uint8_t *)out->array;
for(size_t x = 0; x < indices_len; x++) {
uint8_t *a_array = (uint8_t *)a->array;
size_t remainder = indices[x];
uint8_t q = ULAB_MAX_DIMS - 1;
do {
size_t div = (remainder / a->shape[q]);
a_array += remainder * a->strides[q];
remainder -= div * a->shape[q];
q--;
} while(q > ULAB_MAX_DIMS - a->ndim);
// NOTE: for floats and complexes, this might be
// better with memcpy(out_array, a_array, a->itemsize)
for(uint8_t p = 0; p < a->itemsize; p++) {
out_array[p] = a_array[p];
}
out_array += a->itemsize;
}
#if ULAB_MAX_DIMS > 1
} else {
// move the axis shape/stride to the leftmost position:
SWAP(size_t, a->shape[0], a->shape[axis_index]);
SWAP(size_t, out->shape[0], out->shape[axis_index]);
SWAP(int32_t, a->strides[0], a->strides[axis_index]);
SWAP(int32_t, out->strides[0], out->strides[axis_index]);
for(size_t x = 0; x < indices_len; x++) {
uint8_t *a_array = (uint8_t *)a->array;
uint8_t *out_array = (uint8_t *)out->array;
a_array += indices[x] * a->strides[0];
out_array += x * out->strides[0];
#if ULAB_MAX_DIMS > 3
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t k = 0;
do {
#endif
size_t l = 0;
do {
// NOTE: for floats and complexes, this might be
// better with memcpy(out_array, a_array, a->itemsize)
for(uint8_t p = 0; p < a->itemsize; p++) {
out_array[p] = a_array[p];
}
out_array += out->strides[ULAB_MAX_DIMS - 1];
a_array += a->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < a->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 2
out_array -= out->strides[ULAB_MAX_DIMS - 1] * out->shape[ULAB_MAX_DIMS - 1];
out_array += out->strides[ULAB_MAX_DIMS - 2];
a_array -= a->strides[ULAB_MAX_DIMS - 1] * a->shape[ULAB_MAX_DIMS - 1];
a_array += a->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < a->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 3
out_array -= out->strides[ULAB_MAX_DIMS - 2] * out->shape[ULAB_MAX_DIMS - 2];
out_array += out->strides[ULAB_MAX_DIMS - 3];
a_array -= a->strides[ULAB_MAX_DIMS - 2] * a->shape[ULAB_MAX_DIMS - 2];
a_array += a->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < a->shape[ULAB_MAX_DIMS - 3]);
#endif
}
// revert back to the original order
SWAP(size_t, a->shape[0], a->shape[axis_index]);
SWAP(size_t, out->shape[0], out->shape[axis_index]);
SWAP(int32_t, a->strides[0], a->strides[axis_index]);
SWAP(int32_t, out->strides[0], out->strides[axis_index]);
}
#endif /* ULAB_MAX_DIMS > 1 */
m_del(size_t, indices, indices_len);
return MP_OBJ_FROM_PTR(out);
}
MP_DEFINE_CONST_FUN_OBJ_KW(create_take_obj, 2, create_take);
#endif /* ULAB_NUMPY_HAS_TAKE */
#if ULAB_NUMPY_HAS_ZEROS
//| def zeros(shape: Union[int, Tuple[int, ...]], *, dtype: _DType = ulab.numpy.float) -> ulab.numpy.ndarray:
//| """
@ -1067,10 +838,19 @@ mp_obj_t create_frombuffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw
len = count;
}
}
ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
ndarray->base.type = &ulab_ndarray_type;
ndarray->dtype = dtype == NDARRAY_BOOL ? NDARRAY_UINT8 : dtype;
ndarray->boolean = dtype == NDARRAY_BOOL ? NDARRAY_BOOLEAN : NDARRAY_NUMERIC;
ndarray->ndim = 1;
ndarray->len = len;
ndarray->itemsize = sz;
ndarray->shape[ULAB_MAX_DIMS - 1] = len;
ndarray->strides[ULAB_MAX_DIMS - 1] = sz;
size_t *shape = ndarray_shape_vector(0, 0, 0, len);
uint8_t *buffer = bufinfo.buf;
return ndarray_new_ndarray(1, shape, NULL, dtype, buffer + offset);
ndarray->array = buffer + offset;
return MP_OBJ_FROM_PTR(ndarray);
}
return mp_const_none;
}

View file

@ -62,11 +62,6 @@ mp_obj_t create_ones(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_ones_obj);
#endif
#if ULAB_NUMPY_HAS_TAKE
mp_obj_t create_take(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_take_obj);
#endif
#if ULAB_NUMPY_HAS_ZEROS
mp_obj_t create_zeros(size_t , const mp_obj_t *, mp_map_t *);
MP_DECLARE_CONST_FUN_OBJ_KW(create_zeros_obj);

View file

@ -5,7 +5,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2024 Zoltán Vörös
* Copyright (c) 2019-2021 Zoltán Vörös
* 2020 Scott Shawcroft for Adafruit Industries
* 2020 Taku Fukada
*/
@ -43,16 +43,16 @@
//|
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
static mp_obj_t fft_fft(mp_obj_t arg) {
return fft_fft_ifft(arg, FFT_FFT);
return fft_fft_ifft_spectrogram(arg, FFT_FFT);
}
MP_DEFINE_CONST_FUN_OBJ_1(fft_fft_obj, fft_fft);
#else
static mp_obj_t fft_fft(size_t n_args, const mp_obj_t *args) {
if(n_args == 2) {
return fft_fft_ifft(n_args, args[0], args[1], FFT_FFT);
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_FFT);
} else {
return fft_fft_ifft(n_args, args[0], mp_const_none, FFT_FFT);
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_FFT);
}
}
@ -71,7 +71,7 @@ MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj, 1, 2, fft_fft);
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
static mp_obj_t fft_ifft(mp_obj_t arg) {
return fft_fft_ifft(arg, FFT_IFFT);
return fft_fft_ifft_spectrogram(arg, FFT_IFFT);
}
MP_DEFINE_CONST_FUN_OBJ_1(fft_ifft_obj, fft_ifft);
@ -79,9 +79,9 @@ MP_DEFINE_CONST_FUN_OBJ_1(fft_ifft_obj, fft_ifft);
static mp_obj_t fft_ifft(size_t n_args, const mp_obj_t *args) {
NOT_IMPLEMENTED_FOR_COMPLEX()
if(n_args == 2) {
return fft_fft_ifft(n_args, args[0], args[1], FFT_IFFT);
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_IFFT);
} else {
return fft_fft_ifft(n_args, args[0], mp_const_none, FFT_IFFT);
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_IFFT);
}
}

View file

@ -5,7 +5,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2024 Zoltán Vörös
* Copyright (c) 2019-2021 Zoltán Vörös
*/
#include <math.h>
@ -45,7 +45,7 @@
imag[i] = data[2i+1]
*/
void fft_kernel(mp_float_t *data, size_t n, int isign) {
void fft_kernel_complex(mp_float_t *data, size_t n, int isign) {
size_t j, m, mmax, istep;
mp_float_t tempr, tempi;
mp_float_t wtemp, wr, wpr, wpi, wi, theta;
@ -94,9 +94,9 @@ void fft_kernel(mp_float_t *data, size_t n, int isign) {
/*
* The following function is a helper interface to the python side.
* It has been factored out from fft.c, so that the same argument parsing
* routine can be called from utils.spectrogram.
* routine can be called from scipy.signal.spectrogram.
*/
mp_obj_t fft_fft_ifft(mp_obj_t data_in, uint8_t type) {
mp_obj_t fft_fft_ifft_spectrogram(mp_obj_t data_in, uint8_t type) {
if(!mp_obj_is_type(data_in, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(MP_ERROR_TEXT("FFT is defined for ndarrays only"));
}
@ -134,10 +134,20 @@ mp_obj_t fft_fft_ifft(mp_obj_t data_in, uint8_t type) {
}
data -= 2 * len;
if(type == FFT_FFT) {
fft_kernel(data, len, 1);
if((type == FFT_FFT) || (type == FFT_SPECTROGRAM)) {
fft_kernel_complex(data, len, 1);
if(type == FFT_SPECTROGRAM) {
ndarray_obj_t *spectrum = ndarray_new_linear_array(len, NDARRAY_FLOAT);
mp_float_t *sarray = (mp_float_t *)spectrum->array;
for(size_t i = 0; i < len; i++) {
*sarray++ = MICROPY_FLOAT_C_FUN(sqrt)(data[0] * data[0] + data[1] * data[1]);
data += 2;
}
m_del(mp_float_t, data, 2 * len);
return MP_OBJ_FROM_PTR(spectrum);
}
} else { // inverse transform
fft_kernel(data, len, -1);
fft_kernel_complex(data, len, -1);
// TODO: numpy accepts the norm keyword argument
for(size_t i = 0; i < 2 * len; i++) {
*data++ /= len;
@ -192,7 +202,7 @@ void fft_kernel(mp_float_t *real, mp_float_t *imag, size_t n, int isign) {
}
}
mp_obj_t fft_fft_ifft(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im, uint8_t type) {
mp_obj_t fft_fft_ifft_spectrogram(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im, uint8_t type) {
if(!mp_obj_is_type(arg_re, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(MP_ERROR_TEXT("FFT is defined for ndarrays only"));
}
@ -248,8 +258,15 @@ mp_obj_t fft_fft_ifft(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im, uint8_t t
data_im -= len;
}
if(type == FFT_FFT) {
if((type == FFT_FFT) || (type == FFT_SPECTROGRAM)) {
fft_kernel(data_re, data_im, len, 1);
if(type == FFT_SPECTROGRAM) {
for(size_t i=0; i < len; i++) {
*data_re = MICROPY_FLOAT_C_FUN(sqrt)(*data_re * *data_re + *data_im * *data_im);
data_re++;
data_im++;
}
}
} else { // inverse transform
fft_kernel(data_re, data_im, len, -1);
// TODO: numpy accepts the norm keyword argument
@ -258,9 +275,13 @@ mp_obj_t fft_fft_ifft(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im, uint8_t t
*data_im++ /= len;
}
}
if(type == FFT_SPECTROGRAM) {
return MP_OBJ_FROM_PTR(out_re);
} else {
mp_obj_t tuple[2];
tuple[0] = MP_OBJ_FROM_PTR(out_re);
tuple[1] = MP_OBJ_FROM_PTR(out_im);
return mp_obj_new_tuple(2, tuple);
}
}
#endif /* ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE */

View file

@ -14,14 +14,15 @@
enum FFT_TYPE {
FFT_FFT,
FFT_IFFT,
FFT_SPECTROGRAM,
};
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
void fft_kernel(mp_float_t *, size_t , int );
mp_obj_t fft_fft_ifft(mp_obj_t , uint8_t );
mp_obj_t fft_fft_ifft_spectrogram(mp_obj_t , uint8_t );
#else
void fft_kernel(mp_float_t *, mp_float_t *, size_t , int );
mp_obj_t fft_fft_ifft(size_t , mp_obj_t , mp_obj_t , uint8_t );
mp_obj_t fft_fft_ifft_spectrogram(size_t , mp_obj_t , mp_obj_t , uint8_t );
#endif /* ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE */
#endif /* _FFT_TOOLS_ */

View file

@ -338,7 +338,7 @@ static mp_obj_t io_loadtxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw
buffer[read] = '\0';
offset = buffer;
while(*offset != '\0') {
while(*offset == comment_char) {
if(*offset == comment_char) {
// clear the line till the end, or the buffer's end
while((*offset != '\0')) {
offset++;
@ -425,7 +425,7 @@ static mp_obj_t io_loadtxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw
offset = buffer;
while(*offset != '\0') {
while(*offset == comment_char) {
if(*offset == comment_char) {
// clear the line till the end, or the buffer's end
while((*offset != '\0')) {
offset++;
@ -619,14 +619,48 @@ static mp_obj_t io_save(mp_obj_t file, mp_obj_t ndarray_) {
uint8_t *array = (uint8_t *)ndarray->array;
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(buffer+offset, array, sz);
offset += sz;
if(offset == ULAB_IO_BUFFER_SIZE) {
stream_p->write(stream, buffer, offset, &error);
offset = 0;
}
ITERATOR_TAIL(ndarray, array);
array += ndarray->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < ndarray->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1];
array += ndarray->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < ndarray->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2];
array += ndarray->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < ndarray->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3];
array += ndarray->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < ndarray->shape[ULAB_MAX_DIMS - 4]);
#endif
stream_p->write(stream, buffer, offset, &error);
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
@ -717,32 +751,16 @@ static mp_obj_t io_savetxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw
char *buffer = m_new(char, ULAB_IO_BUFFER_SIZE);
int error;
size_t len_comment;
char *comments;
if(mp_obj_is_str(args[5].u_obj)) {
const char *_comments = mp_obj_str_get_data(args[5].u_obj, &len_comment);
comments = (char *)_comments;
} else {
len_comment = 2;
comments = m_new(char, len_comment);
comments[0] = '#';
comments[1] = ' ';
}
if(mp_obj_is_str(args[3].u_obj)) {
size_t _len;
if(mp_obj_is_str(args[5].u_obj)) {
const char *comments = mp_obj_str_get_data(args[5].u_obj, &_len);
stream_p->write(stream, comments, _len, &error);
} else {
stream_p->write(stream, "# ", 2, &error);
}
const char *header = mp_obj_str_get_data(args[3].u_obj, &_len);
stream_p->write(stream, comments, len_comment, &error);
// We can't write the header in the single chunk, for it might contain line breaks
for(size_t i = 0; i < _len; header++, i++) {
stream_p->write(stream, header, 1, &error);
if((*header == '\n') && (i < _len)) {
stream_p->write(stream, comments, len_comment, &error);
}
}
stream_p->write(stream, header, _len, &error);
stream_p->write(stream, "\n", 1, &error);
}
@ -781,19 +799,16 @@ static mp_obj_t io_savetxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw
} while(k < ndarray->shape[ULAB_MAX_DIMS - 2]);
#endif
if(mp_obj_is_str(args[4].u_obj)) { // footer string
if(mp_obj_is_str(args[4].u_obj)) {
size_t _len;
if(mp_obj_is_str(args[5].u_obj)) {
const char *comments = mp_obj_str_get_data(args[5].u_obj, &_len);
stream_p->write(stream, comments, _len, &error);
} else {
stream_p->write(stream, "# ", 2, &error);
}
const char *footer = mp_obj_str_get_data(args[4].u_obj, &_len);
stream_p->write(stream, comments, len_comment, &error);
// We can't write the header in the single chunk, for it might contain line breaks
for(size_t i = 0; i < _len; footer++, i++) {
stream_p->write(stream, footer, 1, &error);
if((*footer == '\n') && (i < _len)) {
stream_p->write(stream, comments, len_comment, &error);
}
}
stream_p->write(stream, footer, _len, &error);
stream_p->write(stream, "\n", 1, &error);
}

View file

@ -274,7 +274,7 @@ static mp_obj_t numerical_sum_mean_std_iterable(mp_obj_t oin, uint8_t optype, si
}
}
static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, mp_obj_t keepdims, uint8_t optype, size_t ddof) {
static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype, size_t ddof) {
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
uint8_t *array = (uint8_t *)ndarray->array;
shape_strides _shape_strides = tools_reduce_axes(ndarray, axis);
@ -372,7 +372,7 @@ static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t
mp_float_t norm = (mp_float_t)_shape_strides.shape[0];
// re-wind the array here
farray = (mp_float_t *)results->array;
for(size_t i = 0; i < results->len; i++) {
for(size_t i=0; i < results->len; i++) {
*farray++ *= norm;
}
}
@ -380,7 +380,7 @@ static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t
bool isStd = optype == NUMERICAL_STD ? 1 : 0;
results = ndarray_new_dense_ndarray(_shape_strides.ndim, _shape_strides.shape, NDARRAY_FLOAT);
farray = (mp_float_t *)results->array;
// we can return the 0 array here, if the degrees of freedom are larger than the length of the axis
// we can return the 0 array here, if the degrees of freedom is larger than the length of the axis
if((optype == NUMERICAL_STD) && (_shape_strides.shape[0] <= ddof)) {
return MP_OBJ_FROM_PTR(results);
}
@ -397,9 +397,11 @@ static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t
RUN_MEAN_STD(mp_float_t, array, farray, _shape_strides, div, isStd);
}
}
return ulab_tools_restore_dims(ndarray, results, keepdims, _shape_strides);
if(results->ndim == 0) { // return a scalar here
return mp_binary_get_val_array(results->dtype, results->array, 0);
}
return MP_OBJ_FROM_PTR(results);
}
// we should never get to this point
return mp_const_none;
}
#endif
@ -439,7 +441,7 @@ static mp_obj_t numerical_argmin_argmax_iterable(mp_obj_t oin, uint8_t optype) {
}
}
static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t keepdims, mp_obj_t axis, uint8_t optype) {
static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype) {
// TODO: treat the flattened array
if(ndarray->len == 0) {
mp_raise_ValueError(MP_ERROR_TEXT("attempt to get (arg)min/(arg)max of empty sequence"));
@ -519,9 +521,7 @@ static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t
int32_t *strides = m_new0(int32_t, ULAB_MAX_DIMS);
numerical_reduce_axes(ndarray, ax, shape, strides);
shape_strides _shape_strides = tools_reduce_axes(ndarray, axis);
uint8_t index = _shape_strides.axis;
uint8_t index = ULAB_MAX_DIMS - ndarray->ndim + ax;
ndarray_obj_t *results = NULL;
@ -546,9 +546,12 @@ static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t
}
m_del(int32_t, strides, ULAB_MAX_DIMS);
return ulab_tools_restore_dims(ndarray, results, keepdims, _shape_strides);
if(results->len == 1) {
return mp_binary_get_val_array(results->dtype, results->array, 0);
}
return MP_OBJ_FROM_PTR(results);
}
// we should never get to this point
return mp_const_none;
}
#endif
@ -557,7 +560,6 @@ static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE} } ,
{ MP_QSTR_axis, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_keepdims, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_FALSE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
@ -565,8 +567,6 @@ static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m
mp_obj_t oin = args[0].u_obj;
mp_obj_t axis = args[1].u_obj;
mp_obj_t keepdims = args[2].u_obj;
if((axis != mp_const_none) && (!mp_obj_is_int(axis))) {
mp_raise_TypeError(MP_ERROR_TEXT("axis must be None, or an integer"));
}
@ -598,12 +598,11 @@ static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m
case NUMERICAL_ARGMIN:
case NUMERICAL_ARGMAX:
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
return numerical_argmin_argmax_ndarray(ndarray, keepdims, axis, optype);
case NUMERICAL_MEAN:
case NUMERICAL_STD:
return numerical_argmin_argmax_ndarray(ndarray, axis, optype);
case NUMERICAL_SUM:
case NUMERICAL_MEAN:
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
return numerical_sum_mean_std_ndarray(ndarray, axis, keepdims, optype, 0);
return numerical_sum_mean_std_ndarray(ndarray, axis, optype, 0);
default:
mp_raise_NotImplementedError(MP_ERROR_TEXT("operation is not implemented on ndarrays"));
}
@ -747,7 +746,7 @@ mp_obj_t numerical_argsort(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw
numerical_reduce_axes(ndarray, ax, shape, strides);
// We could return an NDARRAY_UINT8 array, if all lengths are shorter than 256
ndarray_obj_t *indices = ndarray_new_ndarray(ndarray->ndim, ndarray->shape, NULL, NDARRAY_UINT16, NULL);
ndarray_obj_t *indices = ndarray_new_ndarray(ndarray->ndim, ndarray->shape, NULL, NDARRAY_UINT16);
int32_t *istrides = m_new0(int32_t, ULAB_MAX_DIMS);
numerical_reduce_axes(indices, ax, shape, istrides);
@ -1187,19 +1186,13 @@ mp_obj_t numerical_roll(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar
mp_raise_TypeError(MP_ERROR_TEXT("roll argument must be an ndarray"));
}
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
uint8_t *array = ndarray->array;
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndarray->ndim, ndarray->shape, ndarray->dtype);
int32_t shift = mp_obj_get_int(args[1].u_obj);
if(shift == 0) {
ndarray_copy_array(ndarray, results, 0);
return MP_OBJ_FROM_PTR(results);
}
int32_t _shift = shift < 0 ? -shift : shift;
size_t counter;
uint8_t *array = ndarray->array;
uint8_t *rarray = (uint8_t *)results->array;
if(args[2].u_obj == mp_const_none) { // roll the flattened array
@ -1386,7 +1379,6 @@ mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } } ,
{ MP_QSTR_axis, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_ddof, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_keepdims, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_FALSE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
@ -1395,8 +1387,6 @@ mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg
mp_obj_t oin = args[0].u_obj;
mp_obj_t axis = args[1].u_obj;
size_t ddof = args[2].u_int;
mp_obj_t keepdims = args[3].u_obj;
if((axis != mp_const_none) && (mp_obj_get_int(axis) != 0) && (mp_obj_get_int(axis) != 1)) {
// this seems to pass with False, and True...
mp_raise_ValueError(MP_ERROR_TEXT("axis must be None, or an integer"));
@ -1405,7 +1395,7 @@ mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg
return numerical_sum_mean_std_iterable(oin, NUMERICAL_STD, ddof);
} else if(mp_obj_is_type(oin, &ulab_ndarray_type)) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
return numerical_sum_mean_std_ndarray(ndarray, axis, keepdims, NUMERICAL_STD, ddof);
return numerical_sum_mean_std_ndarray(ndarray, axis, NUMERICAL_STD, ddof);
} else {
mp_raise_TypeError(MP_ERROR_TEXT("input must be tuple, list, range, or ndarray"));
}

View file

@ -57,9 +57,35 @@
(rarray) += (results)->itemsize;\
})
// The mean could be calculated by simply dividing the sum by
// the number of elements, but that method is numerically unstable
#define RUN_MEAN1(type, array, rarray, ss)\
({\
mp_float_t M = 0.0;\
for(size_t i=0; i < (ss).shape[0]; i++) {\
mp_float_t value = (mp_float_t)(*(type *)(array));\
M = M + (value - M) / (mp_float_t)(i+1);\
(array) += (ss).strides[0];\
}\
*(rarray)++ = M;\
})
// Instead of the straightforward implementation of the definition,
// we take the numerically stable Welford algorithm here
// https://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
#define RUN_STD1(type, array, rarray, ss, div)\
({\
mp_float_t M = 0.0, m = 0.0, S = 0.0;\
for(size_t i=0; i < (ss).shape[0]; i++) {\
mp_float_t value = (mp_float_t)(*(type *)(array));\
m = M + (value - M) / (mp_float_t)(i+1);\
S = S + (value - M) * (value - m);\
M = m;\
(array) += (ss).strides[0];\
}\
*(rarray)++ = MICROPY_FLOAT_C_FUN(sqrt)(S / (div));\
})
#define RUN_MEAN_STD1(type, array, rarray, ss, div, isStd)\
({\
mp_float_t M = 0.0, m = 0.0, S = 0.0;\
@ -167,6 +193,14 @@
RUN_SUM1(type, (array), (results), (rarray), (ss));\
} while(0)
#define RUN_MEAN(type, array, rarray, ss) do {\
RUN_MEAN1(type, (array), (rarray), (ss));\
} while(0)
#define RUN_STD(type, array, rarray, ss, div) do {\
RUN_STD1(type, (array), (results), (rarray), (ss), (div));\
} while(0)
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
RUN_MEAN_STD1(type, (array), (rarray), (ss), (div), (isStd));\
} while(0)
@ -200,6 +234,26 @@
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_MEAN(type, array, rarray, ss) do {\
size_t l = 0;\
do {\
RUN_MEAN1(type, (array), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_STD(type, array, rarray, ss, div) do {\
size_t l = 0;\
do {\
RUN_STD1(type, (array), (rarray), (ss), (div));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
size_t l = 0;\
do {\
@ -271,6 +325,38 @@
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_MEAN(type, array, rarray, ss) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_MEAN1(type, (array), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_STD(type, array, rarray, ss, div) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_STD1(type, (array), (rarray), (ss), (div));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
size_t k = 0;\
do {\
@ -381,6 +467,50 @@
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_MEAN(type, array, rarray, ss) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_MEAN1(type, (array), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 2] * (ss).shape[ULAB_MAX_DIMS - 2];\
(array) += (ss).strides[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_STD(type, array, rarray, ss, div) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_STD1(type, (array), (rarray), (ss), (div));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 2] * (ss).shape[ULAB_MAX_DIMS - 2];\
(array) += (ss).strides[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
size_t j = 0;\
do {\

View file

@ -291,9 +291,6 @@ static const mp_rom_map_elem_t ulab_numpy_globals_table[] = {
#if ULAB_NUMPY_HAS_SUM
{ MP_ROM_QSTR(MP_QSTR_sum), MP_ROM_PTR(&numerical_sum_obj) },
#endif
#if ULAB_NUMPY_HAS_TAKE
{ MP_ROM_QSTR(MP_QSTR_take), MP_ROM_PTR(&create_take_obj) },
#endif
// functions of the poly sub-module
#if ULAB_NUMPY_HAS_POLYFIT
{ MP_ROM_QSTR(MP_QSTR_polyfit), MP_ROM_PTR(&poly_polyfit_obj) },

View file

@ -121,7 +121,7 @@ mp_obj_t poly_polyfit(size_t n_args, const mp_obj_t *args) {
ndarray_obj_t *beta = ndarray_new_linear_array(deg+1, NDARRAY_FLOAT);
mp_float_t *betav = (mp_float_t *)beta->array;
// x[0..(deg+1)] contains now the product X^T * y; we can get rid of y
m_del(mp_float_t, y, leny);
m_del(float, y, leny);
// now, we calculate beta, i.e., we apply prod = (X^T * X)^(-1) on x = X^T * y; x is a column vector now
for(uint8_t i=0; i < deg+1; i++) {
@ -197,9 +197,42 @@ mp_obj_t poly_polyval(mp_obj_t o_p, mp_obj_t o_x) {
// TODO: these loops are really nothing, but the re-impplementation of
// ITERATE_VECTOR from vectorise.c. We could pass a function pointer here
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
*array++ = poly_eval(func(sarray), p, plen);
ITERATOR_TAIL(source, sarray);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
} else {
// o_x had better be a one-dimensional standard iterable
ndarray = ndarray_new_linear_array(mp_obj_get_int(mp_obj_len_maybe(o_x)), NDARRAY_FLOAT);

View file

@ -57,7 +57,7 @@ const mp_obj_type_t random_generator_type = {
void random_generator_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
(void)kind;
random_generator_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(MP_PYTHON_PRINTER, "Generator() at 0x%p", self);
mp_printf(MP_PYTHON_PRINTER, "Gnerator() at 0x%p", self);
}
mp_obj_t random_generator_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
@ -76,12 +76,11 @@ mp_obj_t random_generator_make_new(const mp_obj_type_t *type, size_t n_args, siz
if(args[0] == mp_const_none) {
#ifndef MICROPY_PY_RANDOM_SEED_INIT_FUNC
mp_raise_ValueError(MP_ERROR_TEXT("no default seed"));
#else
#endif
random_generator_obj_t *generator = m_new_obj(random_generator_obj_t);
generator->base.type = &random_generator_type;
generator->state = MICROPY_PY_RANDOM_SEED_INIT_FUNC;
return MP_OBJ_FROM_PTR(generator);
#endif
} else if(mp_obj_is_int(args[0])) {
random_generator_obj_t *generator = m_new_obj(random_generator_obj_t);
generator->base.type = &random_generator_type;
@ -149,9 +148,12 @@ static mp_obj_t random_normal(size_t n_args, const mp_obj_t *pos_args, mp_map_t
ndarray = ndarray_new_linear_array((size_t)mp_obj_get_int(size), NDARRAY_FLOAT);
} else if(mp_obj_is_type(size, &mp_type_tuple)) {
mp_obj_tuple_t *_shape = MP_OBJ_TO_PTR(size);
if(_shape->len > ULAB_MAX_DIMS) {
mp_raise_ValueError(MP_ERROR_TEXT("maximum number of dimensions is " MP_STRINGIFY(ULAB_MAX_DIMS)));
}
ndarray = ndarray_new_ndarray_from_tuple(_shape, NDARRAY_FLOAT);
} else { // input type not supported
mp_raise_TypeError(MP_ERROR_TEXT("shape must be None, an integer or a tuple of integers"));
mp_raise_TypeError(MP_ERROR_TEXT("shape must be None, and integer or a tuple of integers"));
}
} else {
// return single value
@ -218,16 +220,27 @@ static mp_obj_t random_random(size_t n_args, const mp_obj_t *pos_args, mp_map_t
mp_obj_t out = args[2].u_obj;
ndarray_obj_t *ndarray = NULL;
size_t *shape = m_new0(size_t, ULAB_MAX_DIMS);
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
uint8_t ndim = 1;
if(size != mp_const_none) {
if(mp_obj_is_int(size)) {
shape[ULAB_MAX_DIMS - 1] = (size_t)mp_obj_get_int(size);
} else if(mp_obj_is_type(size, &mp_type_tuple)) {
mp_obj_tuple_t *_shape = MP_OBJ_TO_PTR(size);
ndarray = ndarray_new_ndarray_from_tuple(_shape, NDARRAY_FLOAT);
if(_shape->len > ULAB_MAX_DIMS) {
mp_raise_ValueError(MP_ERROR_TEXT("maximum number of dimensions is " MP_STRINGIFY(ULAB_MAX_DIMS)));
}
ndim = _shape->len;
for(size_t i = 0; i < ULAB_MAX_DIMS; i++) {
if(i >= ndim) {
shape[ULAB_MAX_DIMS - 1 - i] = 0;
} else {
shape[ULAB_MAX_DIMS - 1 - i] = mp_obj_get_int(_shape->items[i]);
}
}
} else { // input type not supported
mp_raise_TypeError(MP_ERROR_TEXT("shape must be None, an integer or a tuple of integers"));
mp_raise_TypeError(MP_ERROR_TEXT("shape must be None, and integer or a tuple of integers"));
}
}
@ -253,8 +266,7 @@ static mp_obj_t random_random(size_t n_args, const mp_obj_t *pos_args, mp_map_t
}
} else { // out == None
if(size != mp_const_none) {
mp_obj_tuple_t *_shape = MP_OBJ_TO_PTR(size);
ndarray = ndarray_new_ndarray_from_tuple(_shape, NDARRAY_FLOAT);
ndarray = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
} else {
// return single value
mp_float_t value;
@ -323,9 +335,13 @@ static mp_obj_t random_uniform(size_t n_args, const mp_obj_t *pos_args, mp_map_t
return mp_obj_new_float(value);
} else if(mp_obj_is_type(size, &mp_type_tuple)) {
mp_obj_tuple_t *_shape = MP_OBJ_TO_PTR(size);
// TODO: this could be reduced, if the inspection was in the ndarray_new_ndarray_from_tuple function
if(_shape->len > ULAB_MAX_DIMS) {
mp_raise_ValueError(MP_ERROR_TEXT("maximum number of dimensions is " MP_STRINGIFY(ULAB_MAX_DIMS)));
}
ndarray = ndarray_new_ndarray_from_tuple(_shape, NDARRAY_FLOAT);
} else { // input type not supported
mp_raise_TypeError(MP_ERROR_TEXT("shape must be None, an integer or a tuple of integers"));
mp_raise_TypeError(MP_ERROR_TEXT("shape must be None, and integer or a tuple of integers"));
}
mp_float_t *array = (mp_float_t *)ndarray->array;
@ -359,3 +375,4 @@ const mp_obj_module_t ulab_numpy_random_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_numpy_random_globals,
};

View file

@ -91,10 +91,43 @@ static mp_obj_t vector_generic_vector(size_t n_args, const mp_obj_t *pos_args, m
mp_float_t (*func)(void *) = ndarray_get_float_function(source->dtype);
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t value = func(sarray);
*tarray++ = f(value);
ITERATOR_TAIL(source, sarray);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
#else
if(source->dtype == NDARRAY_UINT8) {
ITERATE_VECTOR(uint8_t, target, tarray, tstrides, source, sarray);
@ -138,10 +171,43 @@ static mp_obj_t vector_generic_vector(mp_obj_t o_in, mp_float_t (*f)(mp_float_t)
mp_float_t (*func)(void *) = ndarray_get_float_function(source->dtype);
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t value = func(sarray);
*array++ = f(value);
ITERATOR_TAIL(source, sarray);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
#else
if(source->dtype == NDARRAY_UINT8) {
ITERATE_VECTOR(uint8_t, array, source, sarray);
@ -261,11 +327,43 @@ mp_obj_t vector_around(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg
mp_float_t (*func)(void *) = ndarray_get_float_function(source->dtype);
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t f = func(sarray);
*narray++ = MICROPY_FLOAT_C_FUN(round)(f * mul) / mul;
ITERATOR_TAIL(source, sarray);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
return MP_OBJ_FROM_PTR(ndarray);
}
@ -533,13 +631,46 @@ static mp_obj_t vector_exp(mp_obj_t o_in) {
mp_float_t *array = (mp_float_t *)ndarray->array;
uint8_t itemsize = sizeof(mp_float_t);
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t real = *(mp_float_t *)sarray;
mp_float_t imag = *(mp_float_t *)(sarray + itemsize);
mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real);
*array++ = exp_real * MICROPY_FLOAT_C_FUN(cos)(imag);
*array++ = exp_real * MICROPY_FLOAT_C_FUN(sin)(imag);
ITERATOR_TAIL(source, sarray);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
return MP_OBJ_FROM_PTR(ndarray);
}
}
@ -790,7 +921,20 @@ mp_obj_t vector_sqrt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args)
mp_float_t *array = (mp_float_t *)ndarray->array;
uint8_t itemsize = sizeof(mp_float_t);
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t real = *(mp_float_t *)sarray;
mp_float_t imag = *(mp_float_t *)(sarray + itemsize);
mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(sqrt)(real * real + imag * imag);
@ -798,15 +942,47 @@ mp_obj_t vector_sqrt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args)
mp_float_t theta = MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(atan2)(imag, real);
*array++ = sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta);
*array++ = sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta);
ITERATOR_TAIL(source, sarray);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
return MP_OBJ_FROM_PTR(ndarray);
} else if(source->dtype == NDARRAY_FLOAT) {
uint8_t *sarray = (uint8_t *)source->array;
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_COMPLEX);
mp_float_t *array = (mp_float_t *)ndarray->array;
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t value = *(mp_float_t *)sarray;
if(value >= MICROPY_FLOAT_CONST(0.0)) {
*array++ = MICROPY_FLOAT_C_FUN(sqrt)(value);
@ -815,8 +991,27 @@ mp_obj_t vector_sqrt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args)
array++;
*array++ = MICROPY_FLOAT_C_FUN(sqrt)(-value);
}
ITERATOR_TAIL(source, sarray);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
return MP_OBJ_FROM_PTR(ndarray);
} else {
mp_raise_TypeError(MP_ERROR_TEXT("input dtype must be float or complex"));
@ -876,12 +1071,45 @@ static mp_obj_t vector_vectorized_function_call(mp_obj_t self_in, size_t n_args,
uint8_t *sarray = (uint8_t *)source->array;
uint8_t *narray = (uint8_t *)ndarray->array;
ITERATOR_HEAD();
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
avalue[0] = mp_binary_get_val_array(source->dtype, sarray, 0);
fvalue = MP_OBJ_TYPE_GET_SLOT(self->type, call)(self->fun, 1, 0, avalue);
ndarray_set_value(self->otypes, narray, 0, fvalue);
sarray += source->strides[ULAB_MAX_DIMS - 1];
narray += ndarray->itemsize;
ITERATOR_TAIL(source, sarray);
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS - 1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS - 2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS - 3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
return MP_OBJ_FROM_PTR(ndarray);
} else if(mp_obj_is_type(args[0], &mp_type_tuple) || mp_obj_is_type(args[0], &mp_type_list) ||

View file

@ -1,701 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2024 Harald Milz <hm@seneca.muc.de>
*
* References:
* - Dr. Robert van Engelen, Improving the mp_float_t Exponential Quadrature Tanh-Sinh, Sinh-Sinh and Exp-Sinh Formulas,
* 2021, https://www.genivia.com/qthsh.html
* - Borwein, Bailey & Girgensohn, "Experimentation in Mathematics - Computational Paths to Discovery", A K Peters,
* 2003, pages 312-313
* - Joren Vanherck, Bart Sorée, Wim Magnus, Tanh-sinh quadrature for single and multiple integration using
* floating-point arithmetic, 2020, https://arxiv.org/abs/2007.15057
* - Tanh-Sinh quadrature, Wikipedia, https://en.wikipedia.org/wiki/Tanh-sinh_quadrature
* - Romberg's method, Wikipedia, https://en.wikipedia.org/wiki/Romberg%27s_method
* - Adaptive Simpson's method, Wikipedia, https://en.wikipedia.org/wiki/Adaptive_Simpson%27s_method
* - GaussKronrod quadrature formula, Wikipedia, https://en.wikipedia.org/wiki/Gauss%E2%80%93Kronrod_quadrature_formula
*
* This module provides four integration methods, and thus deviates from scipy.integrate a bit.
* As for the pros and cons of the different methods please consult the literature above.
* The code was ported to Micropython from Dr. Engelen's paper and used with his written kind permission
* - quad - Tanh-Sinh, Sinh-Sinh and Exp-Sinh quadrature
* - romberg - Romberg quadrature
* - simpson - Adaptive Simpson quadrature
* - quadgk - Adaptive Gauss-Kronrod (G10,K21) quadrature
*/
#include <math.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "py/objtuple.h"
#include "../../ndarray.h"
#include "../../ulab.h"
#include "../../ulab_tools.h"
#include "integrate.h"
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
ULAB_DEFINE_FLOAT_CONST(etolerance, MICROPY_FLOAT_CONST(1e-14), 0x283424dcUL, 0x3e901b2b29a4692bULL);
#define ULAB_MACHEPS MICROPY_FLOAT_CONST(1e-17)
#else
ULAB_DEFINE_FLOAT_CONST(etolerance, MICROPY_FLOAT_CONST(1e-8), 0x358637cfUL, 0x3e7010c6f7d42d18ULL);
#define ULAB_MACHEPS MICROPY_FLOAT_CONST(1e-8)
#endif
#define ULAB_ZERO MICROPY_FLOAT_CONST(0.0)
#define ULAB_POINT_TWO_FIVE MICROPY_FLOAT_CONST(0.25)
#define ULAB_ONE MICROPY_FLOAT_CONST(1.0)
#define ULAB_TWO MICROPY_FLOAT_CONST(2.0)
#define ULAB_FOUR MICROPY_FLOAT_CONST(4.0)
#define ULAB_SIX MICROPY_FLOAT_CONST(6.0)
#define ULAB_TEN MICROPY_FLOAT_CONST(10.0)
#define ULAB_FIFTEEN MICROPY_FLOAT_CONST(15.0)
#define ULAB_EPSILON_5 MICROPY_FLOAT_CONST(1e-5)
static mp_float_t integrate_python_call(const mp_obj_type_t *type, mp_obj_t fun, mp_float_t x, mp_obj_t *fargs, uint8_t nparams) {
// Helper function for calculating the value of f(x, a, b, c, ...),
// where f is defined in python. Takes a float, returns a float.
// The array of mp_obj_t type must be supplied, as must the number of parameters (a, b, c...) in nparams
fargs[0] = mp_obj_new_float(x);
return mp_obj_get_float(MP_OBJ_TYPE_GET_SLOT(type, call)(fun, nparams+1, 0, fargs));
}
// sign helper function
int sign(mp_float_t x) {
if (x >= ULAB_ZERO)
return 1;
else
return -1;
}
#if ULAB_INTEGRATE_HAS_TANHSINH
// Tanh-Sinh, Sinh-Sinh and Exp-Sinh quadrature
// https://www.genivia.com/qthsh.html
// return optimized Exp-Sinh integral split point d
mp_float_t exp_sinh_opt_d(mp_float_t (*fun)(mp_float_t), mp_float_t a, mp_float_t eps, mp_float_t d) {
const mp_obj_type_t *type = mp_obj_get_type(fun);
mp_obj_t fargs[1];
mp_float_t h2 = integrate_python_call(type, fun, a + d/2, fargs, 0) - integrate_python_call(type, fun, (a + d*2)*4, fargs, 0);
int i = 1, j = 32; // j=32 is optimal to find r
if (isfinite(h2) && MICROPY_FLOAT_C_FUN(fabs)(h2) > ULAB_EPSILON_5) { // if |h2| > 2^-16
mp_float_t r, fl, fr, h, s = 0, lfl, lfr, lr = 2;
do { // find max j such that fl and fr are finite
j /= 2;
r = 1 << (i + j);
fl = integrate_python_call(type, fun, a + d/r, fargs, 0);
fr = integrate_python_call(type, fun, (a + d*r)*r*r, fargs, 0);
h = fl - fr;
} while (j > 1 && !isfinite(h));
if (j > 1 && isfinite(h) && sign(h) != sign(h2)) {
lfl = fl; // last fl=f(a+d/r)
lfr = fr; // last fr=f(a+d*r)*r*r
do { // bisect in 4 iterations
j /= 2;
r = 1 << (i + j);
fl = integrate_python_call(type, fun, a + d/r, fargs, 0);
fr = integrate_python_call(type, fun, (a + d*r)*r*r, fargs, 0);
h = fl - fr;
if (isfinite(h)) {
s += MICROPY_FLOAT_C_FUN(fabs)(h); // sum |h| to remove noisy cases
if (sign(h) == sign(h2)) {
i += j; // search right half
}
else { // search left half
lfl = fl; // record last fl=f(a+d/r)
lfr = fr; // record last fl=f(a+d*r)*r*r
lr = r; // record last r
}
}
} while (j > 1);
if (s > eps) { // if sum of |h| > eps
h = lfl - lfr; // use last fl and fr before the sign change
r = lr; // use last r before the sign change
if (h != ULAB_ZERO) // if last diff != 0, back up r by one step
r /= ULAB_TWO;
if (MICROPY_FLOAT_C_FUN(fabs)(lfl) < MICROPY_FLOAT_C_FUN(fabs)(lfr))
d /= r; // move d closer to the finite endpoint
else
d *= r; // move d closer to the infinite endpoint
}
}
}
return d;
}
// integrate function f, range a..b, max levels n, error tolerance eps
mp_float_t tanhsinh(mp_float_t (*fun)(mp_float_t), mp_float_t a, mp_float_t b, uint16_t n, mp_float_t eps, mp_float_t *e) {
const mp_obj_type_t *type = mp_obj_get_type(fun);
mp_obj_t fargs[1];
const mp_float_t tol = ULAB_TEN * eps;
mp_float_t c = ULAB_ZERO, d = ULAB_ONE, s, sign = ULAB_ONE, v, h = ULAB_TWO;
int k = 0, mode = 0; // Tanh-Sinh = 0, Exp-Sinh = 1, Sinh-Sinh = 2
if (b < a) { // swap bounds
v = b;
b = a;
a = v;
sign = -1;
}
if (isfinite(a) && isfinite(b)) {
c = (a+b) / ULAB_TWO;
d = (b-a) / ULAB_TWO;
v = c;
}
else if (isfinite(a)) {
mode = 1; // Exp-Sinh
d = exp_sinh_opt_d(fun, a, eps, d);
c = a;
v = a+d;
}
else if (isfinite(b)) {
mode = 1; // Exp-Sinh
// d = -d;
d = exp_sinh_opt_d(fun, b, eps, -d);
sign = -sign;
c = b;
v = b+d;
}
else {
mode = 2; // Sinh-Sinh
v = ULAB_ZERO;
}
s = integrate_python_call(type, fun, v, fargs, 0);
do {
mp_float_t p = ULAB_ZERO, q, fp = ULAB_ZERO, fm = ULAB_ZERO, t, eh;
h /= ULAB_TWO;
t = eh = MICROPY_FLOAT_C_FUN(exp)(h);
if (k > ULAB_ZERO)
eh *= eh;
if (mode == 0) { // Tanh-Sinh
do {
mp_float_t u = MICROPY_FLOAT_C_FUN(exp)(ULAB_ONE / t - t); // = exp(-2*sinh(j*h)) = 1/exp(sinh(j*h))^2
mp_float_t r = ULAB_TWO * u / (ULAB_ONE + u); // = 1 - tanh(sinh(j*h))
mp_float_t w = (t + ULAB_ONE / t) * r / (ULAB_ONE + u); // = cosh(j*h)/cosh(sinh(j*h))^2
mp_float_t x = d*r;
if (a+x > a) { // if too close to a then reuse previous fp
mp_float_t y = integrate_python_call(type, fun, a+x, fargs, 0);
if (isfinite(y))
fp = y; // if f(x) is finite, add to local sum
}
if (b-x < b) { // if too close to a then reuse previous fp
mp_float_t y = integrate_python_call(type, fun, b-x, fargs, 0);
if (isfinite(y))
fm = y; // if f(x) is finite, add to local sum
}
q = w*(fp+fm);
p += q;
t *= eh;
} while (MICROPY_FLOAT_C_FUN(fabs)(q) > eps*MICROPY_FLOAT_C_FUN(fabs)(p));
}
else {
t /= ULAB_TWO;
do {
mp_float_t r = MICROPY_FLOAT_C_FUN(exp)(t - ULAB_POINT_TWO_FIVE / t); // = exp(sinh(j*h))
mp_float_t x, y, w = r;
q = ULAB_ZERO;
if (mode == 1) { // Exp-Sinh
x = c + d/r;
if (x == c) // if x hit the finite endpoint then break
break;
y = integrate_python_call(type, fun, x, fargs, 0);
if (isfinite(y)) // if f(x) is finite, add to local sum
q += y/w;
}
else { // Sinh-Sinh
r = (r - ULAB_ONE / r) / ULAB_TWO; // = sinh(sinh(j*h))
w = (w + ULAB_ONE / w) / ULAB_TWO; // = cosh(sinh(j*h))
x = c - d*r;
y = integrate_python_call(type, fun, x, fargs, 0);
if (isfinite(y)) // if f(x) is finite, add to local sum
q += y*w;
}
x = c + d*r;
y = integrate_python_call(type, fun, x, fargs, 0);
if (isfinite(y)) // if f(x) is finite, add to local sum
q += y*w;
q *= t + ULAB_POINT_TWO_FIVE / t; // q *= cosh(j*h)
p += q;
t *= eh;
} while (MICROPY_FLOAT_C_FUN(fabs)(q) > eps*MICROPY_FLOAT_C_FUN(fabs)(p));
}
v = s-p;
s += p;
++k;
} while (MICROPY_FLOAT_C_FUN(fabs)(v) > tol*MICROPY_FLOAT_C_FUN(fabs)(s) && k <= n);
// return the error estimate by reference
*e = MICROPY_FLOAT_C_FUN(fabs)(v)/(MICROPY_FLOAT_C_FUN(fabs)(s)+eps);
return sign*d*s*h; // result with estimated relative error e
}
//| def tanhsinh(
//| fun: Callable[[float], float],
//| a: float,
//| b: float,
//| *,
//| levels: int = 6
//| eps: float = etolerance
//| ) -> float:
//| """
//| :param callable f: The function to integrate
//| :param float a: The lower integration limit
//| :param float b: The upper integration limit
//| :param float levels: The number of levels to perform (6..7 is optimal)
//| :param float eps: The error tolerance value
//|
//| Find a quadrature of the function ``f(x)`` on the interval
//| (``a``..``b``) using an optimized double exponential. The result is accurate to within
//| ``eps`` unless more than ``levels`` levels are required."""
//|
static mp_obj_t integrate_tanhsinh(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_levels, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 6} },
{ MP_QSTR_eps, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(etolerance)} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t fun = args[0].u_obj;
const mp_obj_type_t *type = mp_obj_get_type(fun);
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a callable"));
}
// iterate over args 1, 2, and 4
// arg 3 will be handled by MP_ARG_INT above.
for (int i=1; i<=4; i*=2) {
type = mp_obj_get_type(args[i].u_obj);
if (type != &mp_type_float && type != &mp_type_int) {
mp_raise_msg_varg(&mp_type_TypeError,
MP_ERROR_TEXT("can't convert arg %d from %s to float"), i, mp_obj_get_type_str(args[i].u_obj));
}
}
mp_float_t a = mp_obj_get_float(args[1].u_obj);
mp_float_t b = mp_obj_get_float(args[2].u_obj);
uint16_t n = (uint16_t)args[3].u_int;
if (n < 1) {
mp_raise_ValueError(MP_ERROR_TEXT("levels needs to be a positive integer"));
}
mp_float_t eps = mp_obj_get_float(args[4].u_obj);
mp_obj_t res[2];
mp_float_t e;
res[0] = mp_obj_new_float(tanhsinh(fun, a, b, n, eps, &e));
res[1] = mp_obj_new_float(e);
return mp_obj_new_tuple(2, res);
}
MP_DEFINE_CONST_FUN_OBJ_KW(integrate_tanhsinh_obj, 2, integrate_tanhsinh);
#endif /* ULAB_INTEGRATE_HAS_TANHSINH */
#if ULAB_INTEGRATE_HAS_ROMBERG
// Romberg quadrature
// This function is deprecated as of SciPy 1.12.0 and will be removed in SciPy 1.15.0. Please use scipy.integrate.quad instead.
// https://en.wikipedia.org/wiki/Romberg%27s_method, https://www.genivia.com/qthsh.html,
// https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romberg.html (which is different
// insofar as the latter expects an array of function values).
mp_float_t qromb(mp_float_t (*fun)(mp_float_t), mp_float_t a, mp_float_t b, uint16_t n, mp_float_t eps) {
const mp_obj_type_t *type = mp_obj_get_type(fun);
mp_obj_t fargs[1];
mp_float_t R1[n], R2[n];
mp_float_t *Ro = &R1[0], *Ru = &R2[0];
mp_float_t h = b-a;
uint16_t i, j;
Ro[0] = (integrate_python_call(type, fun, a, fargs, 0) + integrate_python_call(type, fun, b, fargs, 0)) * h/2;
for (i = 1; i < n; ++i) {
unsigned long long k = 1UL << i;
unsigned long long s = 1;
mp_float_t sum = ULAB_ZERO;
mp_float_t *Rt;
h /= ULAB_TWO;
for (j = 1; j < k; j += 2)
sum += integrate_python_call(type, fun, a+j*h, fargs, 0);
Ru[0] = h*sum + Ro[0] / ULAB_TWO;
for (j = 1; j <= i; ++j) {
s <<= 2;
Ru[j] = (s*Ru[j-1] - Ro[j-1])/(s-1);
}
if (i > 2 && MICROPY_FLOAT_C_FUN(fabs)(Ro[i-1]-Ru[i]) <= eps*MICROPY_FLOAT_C_FUN(fabs)(Ru[i])+eps)
return Ru[i];
Rt = Ro;
Ro = Ru;
Ru = Rt;
}
return Ro[n-1];
}
//| def romberg(
//| fun: Callable[[float], float],
//| a: float,
//| b: float,
//| *,
//| steps: int = 100
//| eps: float = etolerance
//| ) -> float:
//| """
//| :param callable f: The function to integrate
//| :param float a: The lower integration limit
//| :param float b: The upper integration limit
//| :param float steps: The number of equidistant steps
//| :param float eps: The tolerance value
//|
//| Find a quadrature of the function ``f(x)`` on the interval
//| (``a``..``b``) using the Romberg method. The result is accurate to within
//| ``eps`` unless more than ``steps`` steps are required."""
//| ...
//|
static mp_obj_t integrate_romberg(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_steps, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 100} },
{ MP_QSTR_eps, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(etolerance)} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t fun = args[0].u_obj;
const mp_obj_type_t *type = mp_obj_get_type(fun);
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a callable"));
}
// iterate over args 1, 2, and 4
// arg 3 will be handled by MP_ARG_INT above.
for (int i=1; i<=4; i*=2) {
type = mp_obj_get_type(args[i].u_obj);
if (type != &mp_type_float && type != &mp_type_int) {
mp_raise_msg_varg(&mp_type_TypeError,
MP_ERROR_TEXT("can't convert arg %d from %s to float"), i, mp_obj_get_type_str(args[i].u_obj));
}
}
mp_float_t a = mp_obj_get_float(args[1].u_obj);
mp_float_t b = mp_obj_get_float(args[2].u_obj);
uint16_t steps = (uint16_t)args[3].u_int;
if (steps < 1) {
mp_raise_ValueError(MP_ERROR_TEXT("steps needs to be a positive integer"));
}
mp_float_t eps = mp_obj_get_float(args[4].u_obj);
return mp_obj_new_float(qromb(fun, a, b, steps, eps));
}
MP_DEFINE_CONST_FUN_OBJ_KW(integrate_romberg_obj, 2, integrate_romberg);
#endif /* ULAB_INTEGRATE_HAS_ROMBERG */
#if ULAB_INTEGRATE_HAS_SIMPSON
// Adaptive Simpson quadrature
// https://en.wikipedia.org/wiki/Adaptive_Simpson%27s_method, https://www.genivia.com/qthsh.html
mp_float_t as(mp_float_t (*fun)(mp_float_t), mp_float_t a, mp_float_t b, mp_float_t fa, mp_float_t fm,
mp_float_t fb, mp_float_t v, mp_float_t eps, int n, mp_float_t t) {
const mp_obj_type_t *type = mp_obj_get_type(fun);
mp_obj_t fargs[1];
mp_float_t h = (b-a) / ULAB_TWO;
mp_float_t f1 = integrate_python_call(type, fun, a + h / ULAB_TWO, fargs, 0);
mp_float_t f2 = integrate_python_call(type, fun, b - h / ULAB_TWO, fargs, 0);
mp_float_t sl = h*(fa + ULAB_FOUR * f1 + fm) / ULAB_SIX;
mp_float_t sr = h*(fm + ULAB_FOUR * f2 + fb) / ULAB_SIX;
mp_float_t s = sl+sr;
mp_float_t d = (s-v) / ULAB_FIFTEEN;
mp_float_t m = a+h;
if (n <= 0 || MICROPY_FLOAT_C_FUN(fabs)(d) < eps)
return t + s + d; // note: fabs(d) can be used as error estimate
eps /= ULAB_TWO;
--n;
t = as(fun, a, m, fa, f1, fm, sl, eps, n, t);
return as(fun, m, b, fm, f2, fb, sr, eps, n, t);
}
mp_float_t qasi(mp_float_t (*fun)(mp_float_t), mp_float_t a, mp_float_t b, int n, mp_float_t eps) {
const mp_obj_type_t *type = mp_obj_get_type(fun);
mp_obj_t fargs[1];
mp_float_t fa = integrate_python_call(type, fun, a, fargs, 0);
mp_float_t fm = integrate_python_call(type, fun, (a+b)/2, fargs, 0);
mp_float_t fb = integrate_python_call(type, fun, b, fargs, 0);
mp_float_t v = (fa + ULAB_FOUR * fm + fb) * (b-a) / ULAB_SIX;
return as(fun, a, b, fa, fm, fb, v, eps, n, 0);
}
//| def simpson(
//| fun: Callable[[float], float],
//| a: float,
//| b: float,
//| *,
//| steps: int = 100
//| eps: float = etolerance
//| ) -> float:
//| """
//| :param callable f: The function to integrate
//| :param float a: The lower integration limit
//| :param float b: The upper integration limit
//| :param float steps: The number of equidistant steps
//| :param float eps: The tolerance value
//|
//| Find a quadrature of the function ``f(x)`` on the interval
//| (``a``..``b``) using the Adaptive Simpson's method. The result is accurate to within
//| ``eps`` unless more than ``steps`` steps are required."""
//| ...
//|
static mp_obj_t integrate_simpson(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_steps, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 100} },
{ MP_QSTR_eps, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(etolerance)} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t fun = args[0].u_obj;
const mp_obj_type_t *type = mp_obj_get_type(fun);
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a function"));
}
// iterate over args 1, 2, and 4
// arg 3 will be handled by MP_ARG_INT above.
for (int i=1; i<=4; i*=2) {
type = mp_obj_get_type(args[i].u_obj);
if (type != &mp_type_float && type != &mp_type_int) {
mp_raise_msg_varg(&mp_type_TypeError,
MP_ERROR_TEXT("can't convert arg %d from %s to float"), i, mp_obj_get_type_str(args[i].u_obj));
}
}
mp_float_t a = mp_obj_get_float(args[1].u_obj);
mp_float_t b = mp_obj_get_float(args[2].u_obj);
uint16_t steps = (uint16_t)args[3].u_int;
if (steps < 1) {
mp_raise_ValueError(MP_ERROR_TEXT("steps needs to be a positive integer"));
}
mp_float_t eps = mp_obj_get_float(args[4].u_obj);
return mp_obj_new_float(qasi(fun, a, b, steps, eps));
}
MP_DEFINE_CONST_FUN_OBJ_KW(integrate_simpson_obj, 2, integrate_simpson);
#endif /* ULAB_INTEGRATE_HAS_SIMPSON */
#if ULAB_INTEGRATE_HAS_QUAD
// Adaptive Gauss-Kronrod (G10,K21) quadrature
// https://en.wikipedia.org/wiki/Gauss%E2%80%93Kronrod_quadrature_formula, https://www.genivia.com/qthsh.html
mp_float_t gk(mp_float_t (*fun)(mp_float_t), mp_float_t c, mp_float_t d, mp_float_t *err) {
// abscissas and weights pre-calculated with Legendre Stieltjes polynomials
static const mp_float_t abscissas[21] = {
MICROPY_FLOAT_CONST(0.00000000000000000e+00),
MICROPY_FLOAT_CONST(7.65265211334973338e-02),
MICROPY_FLOAT_CONST(1.52605465240922676e-01),
MICROPY_FLOAT_CONST(2.27785851141645078e-01),
MICROPY_FLOAT_CONST(3.01627868114913004e-01),
MICROPY_FLOAT_CONST(3.73706088715419561e-01),
MICROPY_FLOAT_CONST(4.43593175238725103e-01),
MICROPY_FLOAT_CONST(5.10867001950827098e-01),
MICROPY_FLOAT_CONST(5.75140446819710315e-01),
MICROPY_FLOAT_CONST(6.36053680726515025e-01),
MICROPY_FLOAT_CONST(6.93237656334751385e-01),
MICROPY_FLOAT_CONST(7.46331906460150793e-01),
MICROPY_FLOAT_CONST(7.95041428837551198e-01),
MICROPY_FLOAT_CONST(8.39116971822218823e-01),
MICROPY_FLOAT_CONST(8.78276811252281976e-01),
MICROPY_FLOAT_CONST(9.12234428251325906e-01),
MICROPY_FLOAT_CONST(9.40822633831754754e-01),
MICROPY_FLOAT_CONST(9.63971927277913791e-01),
MICROPY_FLOAT_CONST(9.81507877450250259e-01),
MICROPY_FLOAT_CONST(9.93128599185094925e-01),
MICROPY_FLOAT_CONST(9.98859031588277664e-01),
};
static const mp_float_t weights[21] = {
MICROPY_FLOAT_CONST(7.66007119179996564e-02),
MICROPY_FLOAT_CONST(7.63778676720807367e-02),
MICROPY_FLOAT_CONST(7.57044976845566747e-02),
MICROPY_FLOAT_CONST(7.45828754004991890e-02),
MICROPY_FLOAT_CONST(7.30306903327866675e-02),
MICROPY_FLOAT_CONST(7.10544235534440683e-02),
MICROPY_FLOAT_CONST(6.86486729285216193e-02),
MICROPY_FLOAT_CONST(6.58345971336184221e-02),
MICROPY_FLOAT_CONST(6.26532375547811680e-02),
MICROPY_FLOAT_CONST(5.91114008806395724e-02),
MICROPY_FLOAT_CONST(5.51951053482859947e-02),
MICROPY_FLOAT_CONST(5.09445739237286919e-02),
MICROPY_FLOAT_CONST(4.64348218674976747e-02),
MICROPY_FLOAT_CONST(4.16688733279736863e-02),
MICROPY_FLOAT_CONST(3.66001697582007980e-02),
MICROPY_FLOAT_CONST(3.12873067770327990e-02),
MICROPY_FLOAT_CONST(2.58821336049511588e-02),
MICROPY_FLOAT_CONST(2.03883734612665236e-02),
MICROPY_FLOAT_CONST(1.46261692569712530e-02),
MICROPY_FLOAT_CONST(8.60026985564294220e-03),
MICROPY_FLOAT_CONST(3.07358371852053150e-03),
};
static const mp_float_t gauss_weights[10] = {
MICROPY_FLOAT_CONST(1.52753387130725851e-01),
MICROPY_FLOAT_CONST(1.49172986472603747e-01),
MICROPY_FLOAT_CONST(1.42096109318382051e-01),
MICROPY_FLOAT_CONST(1.31688638449176627e-01),
MICROPY_FLOAT_CONST(1.18194531961518417e-01),
MICROPY_FLOAT_CONST(1.01930119817240435e-01),
MICROPY_FLOAT_CONST(8.32767415767047487e-02),
MICROPY_FLOAT_CONST(6.26720483341090636e-02),
MICROPY_FLOAT_CONST(4.06014298003869413e-02),
MICROPY_FLOAT_CONST(1.76140071391521183e-02),
};
const mp_obj_type_t *type = mp_obj_get_type(fun);
mp_obj_t fargs[1];
mp_float_t p = ULAB_ZERO; // kronrod quadrature sum
mp_float_t q = ULAB_ZERO; // gauss quadrature sum
mp_float_t fp, fm;
mp_float_t e;
int i;
fp = integrate_python_call(type, fun, c, fargs, 0);
p = fp * weights[0];
for (i = 1; i < 21; i += 2) {
fp = integrate_python_call(type, fun, c + d * abscissas[i], fargs, 0);
fm = integrate_python_call(type, fun, c - d * abscissas[i], fargs, 0);
p += (fp + fm) * weights[i];
q += (fp + fm) * gauss_weights[i/2];
}
for (i = 2; i < 21; i += 2) {
fp = integrate_python_call(type, fun, c + d * abscissas[i], fargs, 0);
fm = integrate_python_call(type, fun, c - d * abscissas[i], fargs, 0);
p += (fp + fm) * weights[i];
}
*err = MICROPY_FLOAT_C_FUN(fabs)(p - q);
e = MICROPY_FLOAT_C_FUN(fabs)(2 * p * ULAB_MACHEPS); // optional, to take 1e-17 MachEps prec. into account
if (*err < e)
*err = e;
return p;
}
mp_float_t qakro(mp_float_t (*fun)(mp_float_t), mp_float_t a, mp_float_t b, int n, mp_float_t tol, mp_float_t eps, mp_float_t *err) {
mp_float_t c = (a+b) / ULAB_TWO;
mp_float_t d = (b-a) / ULAB_TWO;
mp_float_t e;
mp_float_t r = gk(fun, c, d, &e);
mp_float_t s = d*r;
mp_float_t t = MICROPY_FLOAT_C_FUN(fabs)(s*tol);
if (tol == ULAB_ZERO)
tol = t;
if (n > 0 && t < e && tol < e) {
s = qakro(fun, a, c, n-1, t / ULAB_TWO, eps, err);
s += qakro(fun, c, b, n-1, t / ULAB_TWO, eps, &e);
*err += e;
return s;
}
*err = e;
return s;
}
//| def quad(
//| fun: Callable[[float], float],
//| a: float,
//| b: float,
//| *,
//| order: int = 5
//| eps: float = etolerance
//| ) -> float:
//| """
//| :param callable f: The function to integrate
//| :param float a: The lower integration limit
//| :param float b: The upper integration limit
//| :param float order: Order of quadrature integration. Default is 5.
//| :param float eps: The tolerance value
//|
//| Find a quadrature of the function ``f(x)`` on the interval
//| (``a``..``b``) using the Adaptive Gauss-Kronrod method. The result is accurate to within
//| ``eps`` unless a higher order than ``order`` is required."""
//| ...
//|
static mp_obj_t integrate_quad(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_order, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5} },
{ MP_QSTR_eps, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(etolerance)} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t fun = args[0].u_obj;
const mp_obj_type_t *type = mp_obj_get_type(fun);
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a callable"));
}
// iterate over args 1, 2, and 4
// arg 3 will be handled by MP_ARG_INT above.
for (int i=1; i<=4; i*=2) {
type = mp_obj_get_type(args[i].u_obj);
if (type != &mp_type_float && type != &mp_type_int) {
mp_raise_msg_varg(&mp_type_TypeError,
MP_ERROR_TEXT("can't convert arg %d from %s to float"), i, mp_obj_get_type_str(args[i].u_obj));
}
}
mp_float_t a = mp_obj_get_float(args[1].u_obj);
mp_float_t b = mp_obj_get_float(args[2].u_obj);
uint16_t order = (uint16_t)args[3].u_int;
if (order < 1) {
mp_raise_ValueError(MP_ERROR_TEXT("order needs to be a positive integer"));
}
mp_float_t eps = mp_obj_get_float(args[4].u_obj);
mp_obj_t res[2];
mp_float_t e;
res[0] = mp_obj_new_float(qakro(fun, a, b, order, 0, eps, &e));
res[1] = mp_obj_new_float(e);
return mp_obj_new_tuple(2, res);
}
MP_DEFINE_CONST_FUN_OBJ_KW(integrate_quad_obj, 2, integrate_quad);
#endif /* ULAB_INTEGRATE_HAS_QUAD */
static const mp_rom_map_elem_t ulab_scipy_integrate_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_integrate) },
#if ULAB_INTEGRATE_HAS_TANHSINH
{ MP_ROM_QSTR(MP_QSTR_tanhsinh), MP_ROM_PTR(&integrate_tanhsinh_obj) },
#endif
#if ULAB_INTEGRATE_HAS_ROMBERG
{ MP_ROM_QSTR(MP_QSTR_romberg), MP_ROM_PTR(&integrate_romberg_obj) },
#endif
#if ULAB_INTEGRATE_HAS_SIMPSON
{ MP_ROM_QSTR(MP_QSTR_simpson), MP_ROM_PTR(&integrate_simpson_obj) },
#endif
#if ULAB_INTEGRATE_HAS_QUAD
{ MP_ROM_QSTR(MP_QSTR_quad), MP_ROM_PTR(&integrate_quad_obj) },
#endif
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_scipy_integrate_globals, ulab_scipy_integrate_globals_table);
const mp_obj_module_t ulab_scipy_integrate_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_integrate_globals,
};
#if CIRCUITPY_ULAB
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_integrate, ulab_scipy_integrate_module);
#endif

View file

@ -1,34 +0,0 @@
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2024 Harald Milz <hm@seneca.muc.de>
*
*/
#ifndef _SCIPY_INTEGRATE_
#define _SCIPY_INTEGRATE_
#include "../../ulab_tools.h"
extern const mp_obj_module_t ulab_scipy_integrate_module;
#if ULAB_INTEGRATE_HAS_TANHSINH
MP_DECLARE_CONST_FUN_OBJ_KW(optimize_tanhsinh_obj);
#endif
#if ULAB_INTEGRATE_HAS_ROMBERG
MP_DECLARE_CONST_FUN_OBJ_KW(optimize_romberg_obj);
#endif
#if ULAB_INTEGRATE_HAS_SIMPSON
MP_DECLARE_CONST_FUN_OBJ_KW(optimize_simpson_obj);
#endif
#if ULAB_INTEGRATE_HAS_QUAD
MP_DECLARE_CONST_FUN_OBJ_KW(optimize_quad_obj);
#endif
#endif /* _SCIPY_INTEGRATE_ */

View file

@ -1,3 +1,4 @@
/*
* This file is part of the micropython-ulab project,
*
@ -19,8 +20,6 @@
#include "signal/signal.h"
#include "special/special.h"
#include "linalg/linalg.h"
#include "integrate/integrate.h"
#if ULAB_HAS_SCIPY
@ -29,9 +28,6 @@
static const mp_rom_map_elem_t ulab_scipy_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_scipy) },
#if ULAB_SCIPY_HAS_INTEGRATE_MODULE
{ MP_ROM_QSTR(MP_QSTR_integrate), MP_ROM_PTR(&ulab_scipy_integrate_module) },
#endif
#if ULAB_SCIPY_HAS_LINALG_MODULE
{ MP_ROM_QSTR(MP_QSTR_linalg), MP_ROM_PTR(&ulab_scipy_linalg_module) },
#endif

View file

@ -33,7 +33,7 @@
#include "user/user.h"
#include "utils/utils.h"
#define ULAB_VERSION 6.9.0
#define ULAB_VERSION 6.5.2
#define xstr(s) str(s)
#define str(s) #s

View file

@ -117,10 +117,6 @@
#define NDARRAY_HAS_BINARY_OP_LESS_EQUAL (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_MODULO
#define NDARRAY_HAS_BINARY_OP_MODULO (1)
#endif
#ifndef NDARRAY_HAS_BINARY_OP_MORE
#define NDARRAY_HAS_BINARY_OP_MORE (1)
#endif
@ -165,10 +161,6 @@
#define NDARRAY_HAS_INPLACE_ADD (1)
#endif
#ifndef NDARRAY_HAS_INPLACE_MODULO
#define NDARRAY_HAS_INPLACE_MODU (1)
#endif
#ifndef NDARRAY_HAS_INPLACE_MULTIPLY
#define NDARRAY_HAS_INPLACE_MULTIPLY (1)
#endif
@ -253,10 +245,6 @@
#define NDARRAY_HAS_ITEMSIZE (1)
#endif
#ifndef NDARRAY_HAS_NDIM
#define NDARRAY_HAS_NDIM (1)
#endif
#ifndef NDARRAY_HAS_RESHAPE
#define NDARRAY_HAS_RESHAPE (1)
#endif
@ -410,28 +398,6 @@
#define ULAB_NUMPY_HAS_WHERE (1)
#endif
// the integrate module; functions of the integrate module still have
// to be defined separately
#ifndef ULAB_SCIPY_HAS_INTEGRATE_MODULE
#define ULAB_SCIPY_HAS_INTEGRATE_MODULE (1)
#endif
#ifndef ULAB_INTEGRATE_HAS_TANHSINH
#define ULAB_INTEGRATE_HAS_TANHSINH (1)
#endif
#ifndef ULAB_INTEGRATE_HAS_ROMBERG
#define ULAB_INTEGRATE_HAS_ROMBERG (1)
#endif
#ifndef ULAB_INTEGRATE_HAS_SIMPSON
#define ULAB_INTEGRATE_HAS_SIMPSON (1)
#endif
#ifndef ULAB_INTEGRATE_HAS_QUAD
#define ULAB_INTEGRATE_HAS_QUAD (1)
#endif
// the linalg module; functions of the linalg module still have
// to be defined separately
#ifndef ULAB_NUMPY_HAS_LINALG_MODULE
@ -474,7 +440,7 @@
// Note that in this case, the input also must be numpythonic,
// i.e., the real an imaginary parts cannot be passed as two arguments
#ifndef ULAB_FFT_IS_NUMPY_COMPATIBLE
#define ULAB_FFT_IS_NUMPY_COMPATIBLE (1)
#define ULAB_FFT_IS_NUMPY_COMPATIBLE (0)
#endif
#ifndef ULAB_FFT_HAS_FFT
@ -593,10 +559,6 @@
#define ULAB_NUMPY_HAS_SUM (1)
#endif
#ifndef ULAB_NUMPY_HAS_TAKE
#define ULAB_NUMPY_HAS_TAKE (1)
#endif
#ifndef ULAB_NUMPY_HAS_TRACE
#define ULAB_NUMPY_HAS_TRACE (1)
#endif

View file

@ -162,15 +162,6 @@ void *ndarray_set_float_function(uint8_t dtype) {
}
#endif /* NDARRAY_BINARY_USES_FUN_POINTER */
int8_t tools_get_axis(mp_obj_t axis, uint8_t ndim) {
int8_t ax = mp_obj_get_int(axis);
if(ax < 0) ax += ndim;
if((ax < 0) || (ax > ndim - 1)) {
mp_raise_ValueError(MP_ERROR_TEXT("axis is out of bounds"));
}
return ax;
}
shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) {
// TODO: replace numerical_reduce_axes with this function, wherever applicable
// This function should be used, whenever a tensor is contracted;
@ -181,36 +172,38 @@ shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) {
}
shape_strides _shape_strides;
_shape_strides.increment = 0;
// this is the contracted dimension (won't be overwritten for axis == None)
_shape_strides.ndim = 0;
if(axis == mp_const_none) {
_shape_strides.shape = ndarray->shape;
_shape_strides.strides = ndarray->strides;
return _shape_strides;
}
size_t *shape = m_new(size_t, ULAB_MAX_DIMS + 1);
_shape_strides.shape = shape;
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS + 1);
_shape_strides.strides = strides;
_shape_strides.increment = 0;
// this is the contracted dimension (won't be overwritten for axis == None)
_shape_strides.ndim = 0;
memcpy(_shape_strides.shape, ndarray->shape, sizeof(size_t) * ULAB_MAX_DIMS);
memcpy(_shape_strides.strides, ndarray->strides, sizeof(int32_t) * ULAB_MAX_DIMS);
_shape_strides.axis = ULAB_MAX_DIMS - 1; // value of index for axis == mp_const_none (won't be overwritten)
if(axis == mp_const_none) {
return _shape_strides;
}
uint8_t index = ULAB_MAX_DIMS - 1; // value of index for axis == mp_const_none (won't be overwritten)
if(axis != mp_const_none) { // i.e., axis is an integer
int8_t ax = tools_get_axis(axis, ndarray->ndim);
_shape_strides.axis = ULAB_MAX_DIMS - ndarray->ndim + ax;
int8_t ax = mp_obj_get_int(axis);
if(ax < 0) ax += ndarray->ndim;
if((ax < 0) || (ax > ndarray->ndim - 1)) {
mp_raise_ValueError(MP_ERROR_TEXT("index out of range"));
}
index = ULAB_MAX_DIMS - ndarray->ndim + ax;
_shape_strides.ndim = ndarray->ndim - 1;
}
// move the value stored at index to the leftmost position, and align everything else to the right
_shape_strides.shape[0] = ndarray->shape[_shape_strides.axis];
_shape_strides.strides[0] = ndarray->strides[_shape_strides.axis];
for(uint8_t i = 0; i < _shape_strides.axis; i++) {
_shape_strides.shape[0] = ndarray->shape[index];
_shape_strides.strides[0] = ndarray->strides[index];
for(uint8_t i = 0; i < index; i++) {
// entries to the right of index must be shifted by one position to the left
_shape_strides.shape[i + 1] = ndarray->shape[i];
_shape_strides.strides[i + 1] = ndarray->strides[i];
@ -220,37 +213,16 @@ shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) {
_shape_strides.increment = 1;
}
if(_shape_strides.ndim == 0) {
_shape_strides.ndim = 1;
_shape_strides.shape[ULAB_MAX_DIMS - 1] = 1;
_shape_strides.strides[ULAB_MAX_DIMS - 1] = ndarray->itemsize;
}
return _shape_strides;
}
mp_obj_t ulab_tools_restore_dims(ndarray_obj_t *ndarray, ndarray_obj_t *results, mp_obj_t keepdims, shape_strides _shape_strides) {
// restores the contracted dimension, if keepdims is True
if((ndarray->ndim == 1) && (keepdims != mp_const_true)) {
// since the original array has already been contracted and
// we don't want to keep the dimensions here, we have to return a scalar
return mp_binary_get_val_array(results->dtype, results->array, 0);
int8_t tools_get_axis(mp_obj_t axis, uint8_t ndim) {
int8_t ax = mp_obj_get_int(axis);
if(ax < 0) ax += ndim;
if((ax < 0) || (ax > ndim - 1)) {
mp_raise_ValueError(MP_ERROR_TEXT("axis is out of bounds"));
}
if(keepdims == mp_const_true) {
results->ndim += 1;
for(int8_t i = 0; i < ULAB_MAX_DIMS; i++) {
results->shape[i] = ndarray->shape[i];
}
results->shape[_shape_strides.axis] = 1;
results->strides[ULAB_MAX_DIMS - 1] = ndarray->itemsize;
for(uint8_t i = ULAB_MAX_DIMS; i > 1; i--) {
results->strides[i - 2] = results->strides[i - 1] * results->shape[i - 1];
}
}
return MP_OBJ_FROM_PTR(results);
return ax;
}
#if ULAB_MAX_DIMS > 1
@ -302,31 +274,3 @@ bool ulab_tools_mp_obj_is_scalar(mp_obj_t obj) {
}
#endif
}
ndarray_obj_t *ulab_tools_inspect_out(mp_obj_t out, uint8_t dtype, uint8_t ndim, size_t *shape, bool dense_only) {
if(!mp_obj_is_type(out, &ulab_ndarray_type)) {
mp_raise_TypeError(MP_ERROR_TEXT("out has wrong type"));
}
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(out);
if(ndarray->dtype != dtype) {
mp_raise_ValueError(MP_ERROR_TEXT("out array has wrong dtype"));
}
if(ndarray->ndim != ndim) {
mp_raise_ValueError(MP_ERROR_TEXT("out array has wrong dimension"));
}
for(uint8_t i = 0; i < ULAB_MAX_DIMS; i++) {
if(ndarray->shape[i] != shape[i]) {
mp_raise_ValueError(MP_ERROR_TEXT("out array has wrong shape"));
}
}
if(dense_only) {
if(!ndarray_is_dense(ndarray)) {
mp_raise_ValueError(MP_ERROR_TEXT("output array must be contiguous"));
}
}
return ndarray;
}

View file

@ -17,7 +17,6 @@
typedef struct _shape_strides_t {
uint8_t increment;
uint8_t axis;
uint8_t ndim;
size_t *shape;
int32_t *strides;
@ -35,7 +34,6 @@ void *ndarray_set_float_function(uint8_t );
shape_strides tools_reduce_axes(ndarray_obj_t *, mp_obj_t );
int8_t tools_get_axis(mp_obj_t , uint8_t );
mp_obj_t ulab_tools_restore_dims(ndarray_obj_t * , ndarray_obj_t * , mp_obj_t , shape_strides );
ndarray_obj_t *tools_object_is_square(mp_obj_t );
uint8_t ulab_binary_get_size(uint8_t );
@ -46,6 +44,7 @@ void ulab_rescale_float_strides(int32_t *);
bool ulab_tools_mp_obj_is_scalar(mp_obj_t );
ndarray_obj_t *ulab_tools_inspect_out(mp_obj_t , uint8_t , uint8_t , size_t *, bool );
#if ULAB_NUMPY_HAS_RANDOM_MODULE
ndarray_obj_t *ulab_tools_create_out(mp_obj_tuple_t , mp_obj_t , uint8_t , bool );
#endif
#endif

View file

@ -5,7 +5,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2024 Zoltán Vörös
* Copyright (c) 2020-2021 Zoltán Vörös
*/
#include <math.h>
@ -16,7 +16,6 @@
#include "py/misc.h"
#include "utils.h"
#include "../ulab_tools.h"
#include "../numpy/fft/fft_tools.h"
#if ULAB_HAS_UTILS_MODULE
@ -204,180 +203,23 @@ MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_uint32_buffer_obj, 1, utils_from_uint32_bu
//| ...
//|
mp_obj_t utils_spectrogram(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE }} ,
#if !ULAB_FFT_IS_NUMPY_COMPATIBLE
{ MP_QSTR_, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
#endif
{ MP_QSTR_scratchpad, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_out, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_log, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_FALSE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(MP_ERROR_TEXT("spectrogram is defined for ndarrays only"));
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(args[0].u_obj);
#if ULAB_MAX_DIMS > 1
if(in->ndim != 1) {
mp_raise_TypeError(MP_ERROR_TEXT("spectrogram is implemented for 1D arrays only"));
}
#endif
size_t len = in->len;
// Check if input is of length of power of 2
if((len & (len-1)) != 0) {
mp_raise_ValueError(MP_ERROR_TEXT("input array length must be power of 2"));
}
ndarray_obj_t *out = NULL;
#if ULAB_FFT_IS_NUMPY_COMPATIBLE
mp_obj_t scratchpad_object = args[1].u_obj;
mp_obj_t out_object = args[2].u_obj;
mp_obj_t log_object = args[3].u_obj;
mp_obj_t utils_spectrogram(size_t n_args, const mp_obj_t *args) {
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
return fft_fft_ifft_spectrogram(args[0], FFT_SPECTROGRAM);
#else
mp_obj_t scratchpad_object = args[2].u_obj;
mp_obj_t out_object = args[3].u_obj;
mp_obj_t log_object = args[4].u_obj;
#endif
if(out_object != mp_const_none) {
if(!mp_obj_is_type(out_object, &ulab_ndarray_type)) {
mp_raise_TypeError(MP_ERROR_TEXT("out must be an ndarray"));
}
out = MP_OBJ_TO_PTR(out_object);
if((out->dtype != NDARRAY_FLOAT) || (out->ndim != 1)){
mp_raise_TypeError(MP_ERROR_TEXT("out array must be a 1D array of float type"));
}
if(len != out->len) {
mp_raise_ValueError(MP_ERROR_TEXT("input and out arrays must have same length"));
}
} else {
out = ndarray_new_linear_array(len, NDARRAY_FLOAT);
}
ndarray_obj_t *scratchpad = NULL;
mp_float_t *tmp = NULL;
if(scratchpad_object != mp_const_none) {
if(!mp_obj_is_type(scratchpad_object, &ulab_ndarray_type)) {
mp_raise_TypeError(MP_ERROR_TEXT("scratchpad must be an ndarray"));
}
scratchpad = MP_OBJ_TO_PTR(scratchpad_object);
if(!ndarray_is_dense(scratchpad) || (scratchpad->ndim != 1) || (scratchpad->dtype != NDARRAY_FLOAT)) {
mp_raise_ValueError(MP_ERROR_TEXT("scratchpad must be a 1D dense float array"));
}
if(scratchpad->len != 2 * len) {
mp_raise_ValueError(MP_ERROR_TEXT("scratchpad must be twice as long as input"));
}
tmp = (mp_float_t *)scratchpad->array;
} else {
tmp = m_new0(mp_float_t, 2 * len);
}
uint8_t *array = (uint8_t *)in->array;
#if ULAB_FFT_IS_NUMPY_COMPATIBLE & ULAB_SUPPORTS_COMPLEX
if(in->dtype == NDARRAY_COMPLEX) {
uint8_t sz = 2 * sizeof(mp_float_t);
for(size_t i = 0; i < len; i++) {
memcpy(tmp, array, sz);
tmp += 2;
array += in->strides[ULAB_MAX_DIMS - 1];
}
} else {
mp_float_t (*func)(void *) = ndarray_get_float_function(in->dtype);
for(size_t i = 0; i < len; i++) {
*tmp++ = func(array); // real part
*tmp++ = 0; // imaginary part, clear
array += in->strides[ULAB_MAX_DIMS - 1];
}
}
tmp -= 2 * len;
fft_kernel(tmp, len, 1);
#else // we might have two real input vectors
ndarray_obj_t *in2 = NULL;
if(n_args == 2) {
if(!mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(MP_ERROR_TEXT("spectrogram is defined for ndarrays only"));
}
in2 = MP_OBJ_TO_PTR(args[1].u_obj);
#if ULAB_MAX_DIMS > 1
if(in2->ndim != 1) {
mp_raise_TypeError(MP_ERROR_TEXT("spectrogram is implemented for 1D arrays only"));
}
#endif
if(len != in2->len) {
mp_raise_TypeError(MP_ERROR_TEXT("input arrays are not compatible"));
}
}
mp_float_t (*func)(void *) = ndarray_get_float_function(in->dtype);
for(size_t i = 0; i < len; i++) {
*tmp++ = func(array); // real part; imageinary will be cleared later
array += in->strides[ULAB_MAX_DIMS - 1];
}
if(n_args == 2) {
mp_float_t (*func2)(void *) = ndarray_get_float_function(in2->dtype);
array = (uint8_t *)in2->array;
for(size_t i = 0; i < len; i++) {
*tmp++ = func2(array);
array += in2->strides[ULAB_MAX_DIMS - 1];
}
tmp -= len;
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_SPECTROGRAM);
} else {
// if there is only one input argument, clear the imaginary part
memset(tmp, 0, len * sizeof(mp_float_t));
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_SPECTROGRAM);
}
tmp -= len;
fft_kernel(tmp, tmp + len, len, 1);
#endif /* ULAB_FFT_IS_NUMPY_COMPATIBLE */
mp_float_t *spectrum = (mp_float_t *)out->array;
uint8_t spectrum_sz = out->strides[ULAB_MAX_DIMS - 1] / sizeof(mp_float_t);
for(size_t i = 0; i < len; i++) {
#if ULAB_FFT_IS_NUMPY_COMPATIBLE
*spectrum = MICROPY_FLOAT_C_FUN(sqrt)(*tmp * *tmp + *(tmp + 1) * *(tmp + 1));
tmp += 2;
#else
*spectrum = MICROPY_FLOAT_C_FUN(sqrt)(*tmp * *tmp + *(tmp + len) * *(tmp + len));
tmp++;
#endif
if(log_object == mp_const_true) {
*spectrum = MICROPY_FLOAT_C_FUN(log)(*spectrum);
}
spectrum += spectrum_sz;
}
if(scratchpad_object == mp_const_none) {
tmp -= len;
#if ULAB_FFT_IS_NUMPY_COMPATIBLE
tmp -= len;
#endif
m_del(mp_float_t, tmp, 2 * len);
}
return MP_OBJ_FROM_PTR(out);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_spectrogram_obj, 1, utils_spectrogram);
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(utils_spectrogram_obj, 1, 1, utils_spectrogram);
#else
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(utils_spectrogram_obj, 1, 2, utils_spectrogram);
#endif
#endif /* ULAB_UTILS_HAS_SPECTROGRAM */

View file

@ -23,11 +23,11 @@ from sphinx import addnodes
# -- Project information -----------------------------------------------------
project = 'The ulab book'
copyright = '2019-2025, Zoltán Vörös and contributors'
copyright = '2019-2024, Zoltán Vörös and contributors'
author = 'Zoltán Vörös'
# The full version, including alpha/beta/rc tags
release = '6.9.0'
release = '6.5.0'
# -- General configuration ---------------------------------------------------

View file

@ -23,7 +23,6 @@ Welcome to the ulab book!
numpy-fft
numpy-linalg
numpy-random
scipy-integrate
scipy-linalg
scipy-optimize
scipy-signal

View file

@ -3,8 +3,8 @@ Numpy functions
===============
This section of the manual discusses those functions that were adapted
from ``numpy``. Functions with an asterisk accept complex arrays as
arguments, if the firmware was compiled with complex support.
from ``numpy``. Starred functions accept complex arrays as arguments, if
the firmware was compiled with complex support.
1. `numpy.all\* <#all>`__
2. `numpy.any\* <#any>`__
@ -51,10 +51,9 @@ arguments, if the firmware was compiled with complex support.
43. `numpy.sort_complex\* <#sort_complex>`__
44. `numpy.std <#std>`__
45. `numpy.sum <#sum>`__
46. `numpy.take\* <#take>`__
47. `numpy.trace <#trace>`__
48. `numpy.trapz <#trapz>`__
49. `numpy.where <#where>`__
46. `numpy.trace <#trace>`__
47. `numpy.trapz <#trapz>`__
48. `numpy.where <#where>`__
all
---
@ -1986,66 +1985,6 @@ array. Otherwise, the calculation is along the given axis.
take
----
``numpy``:
https://numpy.org/doc/stable/reference/generated/numpy.take.html
The ``take`` method takes elements from an array along an axis. The
function accepts two positional arguments, the array, and the indices,
which is either a ``python`` iterable, or a one-dimensional ``ndarray``,
as well as three keyword arguments, the ``axis``, which can be ``None``,
or an integer, ``out``, which can be ``None``, or an ``ndarray`` with
the proper dimensions, and ``mode``, which can be one of the strings
``raise``, ``wrap``, or ``clip``. This last argument determines how
out-of-bounds indices will be treated. The default value is ``raise``,
which raises an exception. ``wrap`` takes the indices modulo the length
of the ``axis``, while ``clip`` pegs the values at the 0, and the length
of the ``axis``. If ``axis`` is ``None``, then ``take`` operates on the
flattened array.
The function can be regarded as a method of advanced slicing: as opposed
to standard slicing, where the indices are distributed uniformly and in
either increasing or decreasing order, ``take`` can take indices in an
arbitrary order.
.. code::
# code to be run in micropython
from ulab import numpy as np
a = np.array(range(12)).reshape((3, 4))
print('\na:', a)
print('\nslices taken along first axis')
print(np.take(a, (0, 2, 2, 1), axis=0))
print('\nslices taken along second axis')
print(np.take(a, (0, 2, 2, 1), axis=1))
.. parsed-literal::
a: array([[0.0, 1.0, 2.0, 3.0],
[4.0, 5.0, 6.0, 7.0],
[8.0, 9.0, 10.0, 11.0]], dtype=float64)
slices taken along first axis
array([[0.0, 1.0, 2.0, 3.0],
[8.0, 9.0, 10.0, 11.0],
[8.0, 9.0, 10.0, 11.0],
[4.0, 5.0, 6.0, 7.0]], dtype=float64)
slices taken along second axis
array([[0.0, 2.0, 2.0, 1.0],
[2.0, 3.0, 4.0, 5.0],
[6.0, 7.0, 8.0, 9.0]], dtype=float64)
trace
-----

View file

@ -1,220 +0,0 @@
scipy.integrate
===============
This module provides a simplified subset of CPythons
``scipy.integrate`` module. The algorithms were not ported from
CPythons ``scipy.integrate`` for the sake of resource usage, but
derived from a paper found in https://www.genivia.com/qthsh.html. There
are four numerical integration algorithms:
1. `scipy.integrate.quad <#quad>`__
2. `scipy.integrate.romberg <#romberg>`__
3. `scipy.integrate.simpson <#simpson>`__
4. `scipy.integrate.tanhsinh <#tanhsinh>`__
Introduction
------------
Numerical integration works best with float64 math enabled. If you
require float64 math, be sure to set ``MICROPY_OBJ_REPR_A`` and
``MICROPY_FLOAT_IMPL_DOUBLE``. This being said, the modules work equally
well using float32, albeit with reduced precision. The required error
tolerance can be specified for each of the function calls using the
“eps=” option, defaulting to the compiled in ``etolerance`` value (1e-14
for fp64, 1e-8 for fp32).
The submodule can be enabled by setting
``ULAB_SCIPY_HAS_INTEGRATE_MODULE`` in ``code/ulab.h``. As for the
individual integration algorithms, you can select which to include by
setting one or more of ``ULAB_INTEGRATE_HAS_QUAD``,
``ULAB_INTEGRATE_HAS_ROMBERG``, ``ULAB_INTEGRATE_HAS_SIMPSON``, and
``ULAB_INTEGRATE_HAS_TANHSINH``.
Also note that these algorithms do not support complex numbers, although
it is certainly possible to implement complex integration in MicroPython
on top of this module, e.g. as in
https://stackoverflow.com/questions/5965583/use-scipy-integrate-quad-to-integrate-complex-numbers.
quad
----
``scipy``:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
In CPython ``scipy.integrate``, ``quad`` is a wrapper implementing many
algorithms based on the Fortran QUADPACK package. Gauss-Kronrod is just
one of them, and it is useful for most general-purpose tasks. This
particular function implements an Adaptive Gauss-Kronrod (G10,K21)
quadrature algorithm. The GaussKronrod quadrature formula is a variant
of Gaussian quadrature, in which the evaluation points are chosen so
that an accurate approximation can be computed by re-using the
information produced by the computation of a less accurate approximation
(https://en.wikipedia.org/wiki/Gauss%E2%80%93Kronrod_quadrature_formula).
The function takes three to five arguments:
- f, a callable,
- a and b, the lower and upper integration limit,
- order=, the order of integration (default 5),
- eps=, the error tolerance (default etolerance)
The function returns the result and the error estimate as a tuple of
floats.
.. code::
# code to be run in micropython
from ulab import scipy
f = lambda x: x**2 + 2*x + 1
result = scipy.integrate.quad(f, 0, 5, order=5, eps=1e-10)
print (f"result = {result}")
.. parsed-literal::
UsageError: Cell magic `%%micropython` not found.
romberg
-------
``scipy``:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romberg.html
This function implements the Romberg quadrature algorithm. Rombergs
method is a NewtonCotes formula it evaluates the integrand at equally
spaced points. The integrand must have continuous derivatives, though
fairly good results may be obtained if only a few derivatives exist. If
it is possible to evaluate the integrand at unequally spaced points,
then other methods such as Gaussian quadrature and ClenshawCurtis
quadrature are generally more accurate
(https://en.wikipedia.org/wiki/Romberg%27s_method).
Please note: This function is deprecated as of SciPy 1.12.0 and will be
removed in SciPy 1.15.0. Please use ``scipy.integrate.quad`` instead.
The function takes three to five arguments:
- f, a callable,
- a and b, the lower and upper integration limit,
- steps=, the number of steps taken to calculate (default 100),
- eps=, the error tolerance (default etolerance)
The function returns the result as a float.
.. code::
# code to be run in micropython
from ulab import scipy
f = lambda x: x**2 + 2*x + 1
result = scipy.integrate.romberg(f, 0, 5)
print (f"result = {result}")
.. parsed-literal::
UsageError: Cell magic `%%micropython` not found.
simpson
-------
``scipy``:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html
This function is different from CPythons ``simpson`` method in that it
does not take an array of function values but determines the optimal
spacing of samples itself. Adaptive Simpsons method, also called
adaptive Simpsons rule, is a method of numerical integration proposed
by G.F. Kuncir in 1962. It is probably the first recursive adaptive
algorithm for numerical integration to appear in print, although more
modern adaptive methods based on GaussKronrod quadrature and
ClenshawCurtis quadrature are now generally preferred
(https://en.wikipedia.org/wiki/Adaptive_Simpson%27s_method).
The function takes three to five arguments:
- f, a callable,
- a and b, the lower and upper integration limit,
- steps=, the number of steps taken to calculate (default 100),
- eps=, the error tolerance (default etolerance)
The function returns the result as a float.
.. code::
# code to be run in micropython
from ulab import scipy
f = lambda x: x**2 + 2*x + 1
result = scipy.integrate.simpson(f, 0, 5)
print (f"result = {result}")
.. parsed-literal::
UsageError: Cell magic `%%micropython` not found.
tanhsinh
--------
``scipy``:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
In CPython ``scipy.integrate``, ``tanhsinh`` is written in Python
(https://github.com/scipy/scipy/blob/main/scipy/integrate/\_tanhsinh.py).
It is used in cases where Newton-Cotes, Gauss-Kronrod, and other
formulae do not work due to properties of the integrand or the
integration limits. (In SciPy v1.14.1, it is not a public function but
it has been marked as public in SciPy v1.15.0rc1).
This particular function implements an optimized Tanh-Sinh, Sinh-Sinh
and Exp-Sinh quadrature algorithm. It is especially applied where
singularities or infinite derivatives exist at one or both endpoints.
The method uses hyperbolic functions in a change of variables to
transform an integral on the interval x ∈ (1, 1) to an integral on the
entire real line t ∈ (−∞, ∞), the two integrals having the same value.
After this transformation, the integrand decays with a double
exponential rate, and thus, this method is also known as the double
exponential (DE) formula
(https://en.wikipedia.org/wiki/Tanh-sinh_quadrature).
As opposed to the three algorithms mentioned before, it also supports
integrals with infinite limits like the Gaussian integral
(https://en.wikipedia.org/wiki/Gaussian_integral), as shown below.
The function takes three to five arguments:
- f, a callable,
- a and b, the lower and upper integration limit,
- levels=, the number of loops taken to calculate (default 6),
- eps=, the error tolerance (default: etolerance)
The function returns the result and the error estimate as a tuple of
floats.
.. code::
# code to be run in micropython
from ulab import scipy, numpy as np
from math import *
f = lambda x: exp(- x**2)
result = scipy.integrate.tanhsinh(f, -np.inf, np.inf)
print (f"result = {result}")
exact = sqrt(pi) # which is the exact value
print (f"exact value = {exact}")
.. parsed-literal::
UsageError: Cell magic `%%micropython` not found.
.. code::
# code to be run in CPython

View file

@ -8,10 +8,9 @@ Enter ulab
``ulab`` is a ``numpy``-like module for ``micropython`` and its
derivatives, meant to simplify and speed up common mathematical
operations on arrays. ``ulab`` implements a small subset of ``numpy``
and ``scipy``, as well as a number of functions manipulating byte
arrays. The functions were chosen such that they might be useful in the
context of a microcontroller. However, the project is a living one, and
suggestions for new features are always welcome.
and ``scipy``. The functions were chosen such that they might be useful
in the context of a microcontroller. However, the project is a living
one, and suggestions for new features are always welcome.
This document discusses how you can use the library, starting from
building your own firmware, through questions like what affects the
@ -266,9 +265,9 @@ functions that are part of ``numpy``, you have to import ``numpy`` as
p = np.array([1, 2, 3])
np.polyval(p, x)
There are a couple of exceptions to this rule, namely ``fft``,
``linalg``, and ``random``, which are sub-modules even in ``numpy``,
thus you have to write them out as
There are a couple of exceptions to this rule, namely ``fft``, and
``linalg``, which are sub-modules even in ``numpy``, thus you have to
write them out as
.. code:: python

View file

@ -1814,12 +1814,12 @@ array.
Binary operators
================
``ulab`` implements the ``+``, ``-``, ``*``, ``/``, ``**``, ``%``,
``<``, ``>``, ``<=``, ``>=``, ``==``, ``!=``, ``+=``, ``-=``, ``*=``,
``/=``, ``**=``, ``%=`` binary operators, as well as the ``AND``,
``OR``, ``XOR`` bit-wise operators that work element-wise. Note that the
bit-wise operators will raise an exception, if either of the operands is
of ``float`` or ``complex`` type.
``ulab`` implements the ``+``, ``-``, ``*``, ``/``, ``**``, ``<``,
``>``, ``<=``, ``>=``, ``==``, ``!=``, ``+=``, ``-=``, ``*=``, ``/=``,
``**=`` binary operators, as well as the ``AND``, ``OR``, ``XOR``
bit-wise operators that work element-wise. Note that the bit-wise
operators will raise an exception, if either of the operands is of
``float`` or ``complex`` type.
Broadcasting is available, meaning that the two operands do not even
have to have the same shape. If the lengths along the respective axes
@ -2330,12 +2330,12 @@ future version of ``ulab``.
a = np.array(range(9), dtype=np.float)
print("a:\t", a)
print("a[a < 5]:\t", a[a < 5])
print("a < 5:\t", a[a < 5])
.. parsed-literal::
a: array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float)
a[a < 5]: array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
a < 5: array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)

View file

@ -52,9 +52,7 @@ Here is an example without keyword arguments
a = bytearray([1, 1, 0, 0, 0, 0, 0, 255])
print('a: ', a)
print()
print('unsigned integers: ', utils.from_uint32_buffe
print('original vector:\n', y)
print('\nspectrum:\n', a)r(a))
print('unsigned integers: ', utils.from_uint32_buffer(a))
b = bytearray([1, 1, 0, 0, 0, 0, 0, 255])
print('\nb: ', b)
@ -146,53 +144,9 @@ In addition to the Fourier transform and its inverse, ``ulab`` also
sports a function called ``spectrogram``, which returns the absolute
value of the Fourier transform, also known as the power spectrum. This
could be used to find the dominant spectral component in a time series.
The positional arguments are treated in the same way as in ``fft``, and
``ifft``. This means that, if the firmware was compiled with complex
support and ``ULAB_FFT_IS_NUMPY_COMPATIBLE`` is defined to be 1 in
``ulab.h``, the input can also be a complex array.
And easy way to find out if the FFT is ``numpy``-compatible is to check
the number of values ``fft.fft`` returns, when called with a single real
argument of length other than 2:
.. code::
# code to be run in micropython
from ulab import numpy as np
if len(np.fft.fft(np.zeros(4))) == 2:
print('FFT is NOT numpy compatible (real and imaginary parts are treated separately)')
else:
print('FFT is numpy compatible (complex inputs/outputs)')
.. parsed-literal::
FFT is numpy compatible (complex inputs/outputs)
Depending on the ``numpy``-compatibility of the FFT, the ``spectrogram``
function takes one or two positional arguments, and three keyword
arguments. If the FFT is ``numpy`` compatible, one positional argument
is allowed, and it is a 1D real or complex ``ndarray``. If the FFT is
not ``numpy``-compatible, if a single argument is supplied, it will be
treated as the real part of the input, and if two positional arguments
are supplied, they are treated as the real and imaginary parts of the
signal.
The keyword arguments are as follows:
1. ``scratchpad = None``: must be a 1D, dense, floating point array,
twice as long as the input array; the ``scratchpad`` will be used as
a temporary internal buffer to perform the Fourier transform; the
``scratchpad`` can repeatedly be re-used.
2. ``out = None``: must be a 1D, not necessarily dense, floating point
array that will store the results
3. ``log = False``: must be either ``True``, or ``False``; if ``True``,
the ``spectrogram`` returns the logarithm of the absolute values of
the Fourier transform.
The arguments are treated in the same way as in ``fft``, and ``ifft``.
This means that, if the firmware was compiled with complex support, the
input can also be a complex array.
.. code::
@ -215,24 +169,17 @@ The keyword arguments are as follows:
array([0.0, 0.009775015390171337, 0.01954909674625918, ..., -0.5275140569487312, -0.5357931822978732, -0.5440211108893697], dtype=float64)
spectrum:
array([187.8635087634578, 315.3112063607119, 347.8814873399375, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)
array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)
As such, ``spectrogram`` is really just a shorthand for
``np.abs(np.fft.fft(signal))``, if the FFT is ``numpy``-compatible, or
``np.sqrt(a*a + b*b)`` if the FFT returns the real (``a``) and imaginary
(``b``) parts separately. However, ``spectrogram`` saves significant
amounts of RAM: the expression ``a*a + b*b`` has to allocate memory for
``a*a``, ``b*b``, and finally, their sum. Similarly, ``np.abs`` returns
a new array. This issue is compounded even more, if ``np.log()`` is used
on the absolute value.
In contrast, ``spectrogram`` handles all calculations in the same
internal arrays, and allows one to re-use previously reserved RAM. This
can be especially useful in cases, when ``spectogram`` is called
repeatedly, as in the snippet below.
``np.sqrt(a*a + b*b)``, however, it saves significant amounts of RAM:
the expression ``a*a + b*b`` has to allocate memory for ``a*a``,
``b*b``, and finally, their sum. In contrast, ``spectrogram`` calculates
the spectrum internally, and stores it in the memory segment that was
reserved for the real part of the Fourier transform.
.. code::
@ -241,34 +188,25 @@ repeatedly, as in the snippet below.
from ulab import numpy as np
from ulab import utils as utils
n = 1024
t = np.linspace(0, 2 * np.pi, num=1024)
scratchpad = np.zeros(2 * n)
x = np.linspace(0, 10, num=1024)
y = np.sin(x)
for _ in range(10):
signal = np.sin(t)
utils.spectrogram(signal, out=signal, scratchpad=scratchpad, log=True)
a, b = np.fft.fft(y)
print('signal: ', signal)
print('\nspectrum calculated the hard way:\n', np.sqrt(a*a + b*b))
for _ in range(10):
signal = np.sin(t)
out = np.log(utils.spectrogram(signal))
a = utils.spectrogram(y)
print('out: ', out)
print('\nspectrum calculated the lazy way:\n', a)
.. parsed-literal::
signal: array([-27.38260169844543, 6.237834411021073, -0.4038327279002965, ..., -0.9795967096969854, -0.4038327279002969, 6.237834411021073], dtype=float64)
out: array([-27.38260169844543, 6.237834411021073, -0.4038327279002965, ..., -0.9795967096969854, -0.4038327279002969, 6.237834411021073], dtype=float64)
spectrum calculated the hard way:
array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)
spectrum calculated the lazy way:
array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)
Note that ``scratchpad`` is reserved only once, and then is re-used in
the first loop. By assigning ``signal`` to the output, we save
additional RAM. This approach avoids the usual problem of memory
fragmentation, which would happen in the second loop, where both
``spectrogram``, and ``np.log`` must reserve RAM in each iteration.

View file

@ -31,7 +31,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2022-02-01T17:37:25.505687Z",
@ -49,7 +49,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2022-02-01T17:37:25.717714Z",
@ -230,7 +230,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"This section of the manual discusses those functions that were adapted from `numpy`. Functions with an asterisk accept complex arrays as arguments, if the firmware was compiled with complex support.\n",
"This section of the manual discusses those functions that were adapted from `numpy`. Starred functions accept complex arrays as arguments, if the firmware was compiled with complex support.\n",
"\n",
"1. [numpy.all*](#all)\n",
"1. [numpy.any*](#any)\n",
@ -277,7 +277,6 @@
"1. [numpy.sort_complex*](#sort_complex)\n",
"1. [numpy.std](#std)\n",
"1. [numpy.sum](#sum)\n",
"1. [numpy.take*](#take)\n",
"1. [numpy.trace](#trace)\n",
"1. [numpy.trapz](#trapz)\n",
"1. [numpy.where](#where)"
@ -2683,63 +2682,6 @@
"print('std, vertical: ', np.sum(a, axis=0))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## take\n",
"\n",
"`numpy`: https://numpy.org/doc/stable/reference/generated/numpy.take.html\n",
"\n",
"The `take` method takes elements from an array along an axis. The function accepts two positional arguments, the array, and the indices, which is either a `python` iterable, or a one-dimensional `ndarray`, as well as three keyword arguments, the `axis`, which can be `None`, or an integer, `out`, which can be `None`, or an `ndarray` with the proper dimensions, and `mode`, which can be one of the strings `raise`, `wrap`, or `clip`. This last argument determines how out-of-bounds indices will be treated. The default value is `raise`, which raises an exception. `wrap` takes the indices modulo the length of the `axis`, while `clip` pegs the values at the 0, and the length of the `axis`. If `axis` is `None`, then `take` operates on the flattened array.\n",
"\n",
"The function can be regarded as a method of advanced slicing: as opposed to standard slicing, where the indices are distributed uniformly and in either increasing or decreasing order, `take` can take indices in an arbitrary order."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"a: array([[0.0, 1.0, 2.0, 3.0],\n",
" [4.0, 5.0, 6.0, 7.0],\n",
" [8.0, 9.0, 10.0, 11.0]], dtype=float64)\n",
"\n",
"slices taken along first axis\n",
"array([[0.0, 1.0, 2.0, 3.0],\n",
" [8.0, 9.0, 10.0, 11.0],\n",
" [8.0, 9.0, 10.0, 11.0],\n",
" [4.0, 5.0, 6.0, 7.0]], dtype=float64)\n",
"\n",
"slices taken along second axis\n",
"array([[0.0, 2.0, 2.0, 1.0],\n",
" [2.0, 3.0, 4.0, 5.0],\n",
" [6.0, 7.0, 8.0, 9.0]], dtype=float64)\n",
"\n",
"\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"\n",
"a = np.array(range(12)).reshape((3, 4))\n",
"print('\\na:', a)\n",
"\n",
"print('\\nslices taken along first axis')\n",
"print(np.take(a, (0, 2, 2, 1), axis=0))\n",
"\n",
"print('\\nslices taken along second axis')\n",
"print(np.take(a, (0, 2, 2, 1), axis=1))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -2958,7 +2900,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
"version": "3.9.13"
},
"toc": {
"base_numbering": 1,

View file

@ -1,510 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2021-01-12T16:11:12.111639Z",
"start_time": "2021-01-12T16:11:11.914041Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"source": [
"%pylab inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Notebook magic"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-29T20:50:20.813162Z",
"start_time": "2022-01-29T20:50:20.794562Z"
}
},
"outputs": [],
"source": [
"from IPython.core.magic import Magics, magics_class, line_cell_magic\n",
"from IPython.core.magic import cell_magic, register_cell_magic, register_line_magic\n",
"from IPython.core.magic_arguments import argument, magic_arguments, parse_argstring\n",
"import subprocess\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-29T20:50:21.613220Z",
"start_time": "2022-01-29T20:50:21.557819Z"
}
},
"outputs": [],
"source": [
"@magics_class\n",
"class PyboardMagic(Magics):\n",
" @cell_magic\n",
" @magic_arguments()\n",
" @argument('-skip')\n",
" @argument('-unix')\n",
" @argument('-pyboard')\n",
" @argument('-file')\n",
" @argument('-data')\n",
" @argument('-time')\n",
" @argument('-memory')\n",
" def micropython(self, line='', cell=None):\n",
" args = parse_argstring(self.micropython, line)\n",
" if args.skip: # doesn't care about the cell's content\n",
" print('skipped execution')\n",
" return None # do not parse the rest\n",
" if args.unix: # tests the code on the unix port. Note that this works on unix only\n",
" with open('/dev/shm/micropython.py', 'w') as fout:\n",
" fout.write(cell)\n",
" proc = subprocess.Popen([\"../micropython/ports/unix/micropython-2\", \"/dev/shm/micropython.py\"], \n",
" stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n",
" print(proc.stdout.read().decode(\"utf-8\"))\n",
" print(proc.stderr.read().decode(\"utf-8\"))\n",
" return None\n",
" if args.file: # can be used to copy the cell content onto the pyboard's flash\n",
" spaces = \" \"\n",
" try:\n",
" with open(args.file, 'w') as fout:\n",
" fout.write(cell.replace('\\t', spaces))\n",
" printf('written cell to {}'.format(args.file))\n",
" except:\n",
" print('Failed to write to disc!')\n",
" return None # do not parse the rest\n",
" if args.data: # can be used to load data from the pyboard directly into kernel space\n",
" message = pyb.exec(cell)\n",
" if len(message) == 0:\n",
" print('pyboard >>>')\n",
" else:\n",
" print(message.decode('utf-8'))\n",
" # register new variable in user namespace\n",
" self.shell.user_ns[args.data] = string_to_matrix(message.decode(\"utf-8\"))\n",
" \n",
" if args.time: # measures the time of executions\n",
" pyb.exec('import utime')\n",
" message = pyb.exec('t = utime.ticks_us()\\n' + cell + '\\ndelta = utime.ticks_diff(utime.ticks_us(), t)' + \n",
" \"\\nprint('execution time: {:d} us'.format(delta))\")\n",
" print(message.decode('utf-8'))\n",
" \n",
" if args.memory: # prints out memory information \n",
" message = pyb.exec('from micropython import mem_info\\nprint(mem_info())\\n')\n",
" print(\"memory before execution:\\n========================\\n\", message.decode('utf-8'))\n",
" message = pyb.exec(cell)\n",
" print(\">>> \", message.decode('utf-8'))\n",
" message = pyb.exec('print(mem_info())')\n",
" print(\"memory after execution:\\n========================\\n\", message.decode('utf-8'))\n",
"\n",
" if args.pyboard:\n",
" message = pyb.exec(cell)\n",
" print(message.decode('utf-8'))\n",
"\n",
"ip = get_ipython()\n",
"ip.register_magics(PyboardMagic)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## pyboard"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"ExecuteTime": {
"end_time": "2020-05-07T07:35:35.126401Z",
"start_time": "2020-05-07T07:35:35.105824Z"
}
},
"outputs": [],
"source": [
"import pyboard\n",
"pyb = pyboard.Pyboard('/dev/ttyACM0')\n",
"pyb.enter_raw_repl()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"ExecuteTime": {
"end_time": "2020-05-19T19:11:18.145548Z",
"start_time": "2020-05-19T19:11:18.137468Z"
}
},
"outputs": [],
"source": [
"pyb.exit_raw_repl()\n",
"pyb.close()"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"ExecuteTime": {
"end_time": "2020-05-07T07:35:38.725924Z",
"start_time": "2020-05-07T07:35:38.645488Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"%%micropython -pyboard 1\n",
"\n",
"import utime\n",
"import ulab as np\n",
"\n",
"def timeit(n=1000):\n",
" def wrapper(f, *args, **kwargs):\n",
" func_name = str(f).split(' ')[1]\n",
" def new_func(*args, **kwargs):\n",
" run_times = np.zeros(n, dtype=np.uint16)\n",
" for i in range(n):\n",
" t = utime.ticks_us()\n",
" result = f(*args, **kwargs)\n",
" run_times[i] = utime.ticks_diff(utime.ticks_us(), t)\n",
" print('{}() execution times based on {} cycles'.format(func_name, n, (delta2-delta1)/n))\n",
" print('\\tbest: %d us'%np.min(run_times))\n",
" print('\\tworst: %d us'%np.max(run_times))\n",
" print('\\taverage: %d us'%np.mean(run_times))\n",
" print('\\tdeviation: +/-%.3f us'%np.std(run_times)) \n",
" return result\n",
" return new_func\n",
" return wrapper\n",
"\n",
"def timeit(f, *args, **kwargs):\n",
" func_name = str(f).split(' ')[1]\n",
" def new_func(*args, **kwargs):\n",
" t = utime.ticks_us()\n",
" result = f(*args, **kwargs)\n",
" print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')\n",
" return result\n",
" return new_func"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__END_OF_DEFS__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# scipy.integrate\n",
"\n",
"This module provides a simplified subset of CPython's `scipy.integrate` module. The algorithms were not ported from CPython's `scipy.integrate` for the sake of resource usage, but derived from a paper found in https://www.genivia.com/qthsh.html. There are four numerical integration algorithms:\n",
"\n",
"1. [scipy.integrate.quad](#quad)\n",
"2. [scipy.integrate.romberg](#romberg)\n",
"3. [scipy.integrate.simpson](#simpson)\n",
"4. [scipy.integrate.tanhsinh](#tanhsinh)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"Numerical integration works best with float64 math enabled. If you require float64 math, be sure to set `MICROPY_OBJ_REPR_A` and `MICROPY_FLOAT_IMPL_DOUBLE`. This being said, the modules work equally well using float32, albeit with reduced precision. The required error tolerance can be specified for each of the function calls using the \"eps=\" option, defaulting to the compiled in `etolerance` value (1e-14 for fp64, 1e-8 for fp32).\n",
"\n",
"The submodule can be enabled by setting `ULAB_SCIPY_HAS_INTEGRATE_MODULE` in `code/ulab.h`. As for the individual integration algorithms, you can select which to include by setting one or more of `ULAB_INTEGRATE_HAS_QUAD`, `ULAB_INTEGRATE_HAS_ROMBERG`, `ULAB_INTEGRATE_HAS_SIMPSON`, and `ULAB_INTEGRATE_HAS_TANHSINH`.\n",
"\n",
"Also note that these algorithms do not support complex numbers, although it is certainly possible to implement complex integration in MicroPython on top of this module, e.g. as in https://stackoverflow.com/questions/5965583/use-scipy-integrate-quad-to-integrate-complex-numbers. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## quad\n",
"\n",
"`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html \n",
"\n",
"In CPython `scipy.integrate`, `quad` is a wrapper implementing many algorithms based on the Fortran QUADPACK package. Gauss-Kronrod is just one of them, and it is useful for most general-purpose tasks. This particular function implements an Adaptive Gauss-Kronrod (G10,K21) quadrature algorithm. The GaussKronrod quadrature formula is a variant of Gaussian quadrature, in which the evaluation points are chosen so that an accurate approximation can be computed by re-using the information produced by the computation of a less accurate approximation (https://en.wikipedia.org/wiki/Gauss%E2%80%93Kronrod_quadrature_formula). \n",
"\n",
"The function takes three to five arguments: \n",
"\n",
"* f, a callable,\n",
"* a and b, the lower and upper integration limit, \n",
"* order=, the order of integration (default 5),\n",
"* eps=, the error tolerance (default etolerance) \n",
"\n",
"The function returns the result and the error estimate as a tuple of floats. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2020-06-19T20:24:10.529668Z",
"start_time": "2020-06-19T20:24:10.520389Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"UsageError: Cell magic `%%micropython` not found.\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import scipy\n",
"\n",
"f = lambda x: x**2 + 2*x + 1\n",
"result = scipy.integrate.quad(f, 0, 5, order=5, eps=1e-10)\n",
"print (f\"result = {result}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## romberg\n",
"\n",
"`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romberg.html \n",
"\n",
"This function implements the Romberg quadrature algorithm. Romberg's method is a NewtonCotes formula it evaluates the integrand at equally spaced points. The integrand must have continuous derivatives, though fairly good results may be obtained if only a few derivatives exist. If it is possible to evaluate the integrand at unequally spaced points, then other methods such as Gaussian quadrature and ClenshawCurtis quadrature are generally more accurate (https://en.wikipedia.org/wiki/Romberg%27s_method). \n",
"\n",
"Please note: This function is deprecated as of SciPy 1.12.0 and will be removed in SciPy 1.15.0. Please use `scipy.integrate.quad` instead. \n",
"\n",
"The function takes three to five arguments: \n",
"\n",
"* f, a callable,\n",
"* a and b, the lower and upper integration limit, \n",
"* steps=, the number of steps taken to calculate (default 100),\n",
"* eps=, the error tolerance (default etolerance) \n",
"\n",
"The function returns the result as a float.\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"UsageError: Cell magic `%%micropython` not found.\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import scipy\n",
"\n",
"f = lambda x: x**2 + 2*x + 1\n",
"result = scipy.integrate.romberg(f, 0, 5)\n",
"print (f\"result = {result}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## simpson\n",
"\n",
"`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html \n",
"\n",
"This function is different from CPython's `simpson` method in that it does not take an array of function values but determines the optimal spacing of samples itself. Adaptive Simpson's method, also called adaptive Simpson's rule, is a method of numerical integration proposed by G.F. Kuncir in 1962. It is probably the first recursive adaptive algorithm for numerical integration to appear in print, although more modern adaptive methods based on GaussKronrod quadrature and ClenshawCurtis quadrature are now generally preferred (https://en.wikipedia.org/wiki/Adaptive_Simpson%27s_method). \n",
"\n",
"The function takes three to five arguments: \n",
"\n",
"* f, a callable,\n",
"* a and b, the lower and upper integration limit, \n",
"* steps=, the number of steps taken to calculate (default 100),\n",
"* eps=, the error tolerance (default etolerance) \n",
"\n",
"The function returns the result as a float."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"UsageError: Cell magic `%%micropython` not found.\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import scipy\n",
"\n",
"f = lambda x: x**2 + 2*x + 1\n",
"result = scipy.integrate.simpson(f, 0, 5)\n",
"print (f\"result = {result}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## tanhsinh\n",
"\n",
"`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html \n",
"\n",
"In CPython `scipy.integrate`, `tanhsinh` is written in Python (https://github.com/scipy/scipy/blob/main/scipy/integrate/_tanhsinh.py). It is used in cases where Newton-Cotes, Gauss-Kronrod, and other formulae do not work due to properties of the integrand or the integration limits. (In SciPy v1.14.1, it is not a public function but it has been marked as public in SciPy v1.15.0rc1). \n",
"\n",
"This particular function implements an optimized Tanh-Sinh, Sinh-Sinh and Exp-Sinh quadrature algorithm. It is especially applied where singularities or infinite derivatives exist at one or both endpoints. The method uses hyperbolic functions in a change of variables to transform an integral on the interval x ∈ (1, 1) to an integral on the entire real line t ∈ (−∞, ∞), the two integrals having the same value. After this transformation, the integrand decays with a double exponential rate, and thus, this method is also known as the double exponential (DE) formula (https://en.wikipedia.org/wiki/Tanh-sinh_quadrature). \n",
"\n",
"As opposed to the three algorithms mentioned before, it also supports integrals with infinite limits like the Gaussian integral (https://en.wikipedia.org/wiki/Gaussian_integral), as shown below. \n",
"\n",
"The function takes three to five arguments: \n",
"\n",
"* f, a callable,\n",
"* a and b, the lower and upper integration limit, \n",
"* levels=, the number of loops taken to calculate (default 6),\n",
"* eps=, the error tolerance (default: etolerance)\n",
"\n",
"The function returns the result and the error estimate as a tuple of floats.\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"UsageError: Cell magic `%%micropython` not found.\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import scipy, numpy as np\n",
"from math import *\n",
"f = lambda x: exp(- x**2)\n",
"result = scipy.integrate.tanhsinh(f, -np.inf, np.inf)\n",
"print (f\"result = {result}\")\n",
"exact = sqrt(pi) # which is the exact value\n",
"print (f\"exact value = {exact}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "382.797px"
},
"toc_section_display": true,
"toc_window_display": true
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View file

@ -1,81 +1,3 @@
Fri, 06 Jun 2025
version 6.8.0
expose ndim property
Fri, 06 Jun 2025
version 6.7.7
fix ndarray type inference for micropython objects
Thu, 29 May 2025
version 6.7.6
loadtxt can deal with multi-line comments
Thu, 29 May 2025
version 6.7.5
fix typo and shape in radnom module
Sun, 16 Mar 2025
version 6.7.4
re-name integration constants to avoid name clash with EPS ports
Sun, 26 Jan 2025
version 6.7.3
fix keepdims for min, max, argmin, argmax
Sun, 19 Jan 2025
version 6.7.2
fix keepdims for std, remove redundant macros from numerical.h, update documentation
Mon, 30 Dec 2024
version 6.7.1
add keepdims keyword argument to numerical functions
Sun, 15 Dec 2024
version 6.7.0
add scipy.integrate module
Sun, 24 Nov 2024
version 6.6.1
fix compilation error, for complexes
Wed, 9 Oct 2024
version 6.6.0
add numpy.take
Sat, 14 Sep 2024
version 6.5.5
add scratchpad, out, log keyword arguments to spectrum
Sat, 14 Sep 2024
version 6.5.4
fix roll, when shift is 0
Wed, 6 Mar 2024
version 6.5.2

View file

@ -14,7 +14,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2022-02-09T06:27:15.118699Z",
@ -57,11 +57,11 @@
"# -- Project information -----------------------------------------------------\n",
"\n",
"project = 'The ulab book'\n",
"copyright = '2019-2025, Zoltán Vörös and contributors'\n",
"copyright = '2019-2022, Zoltán Vörös and contributors'\n",
"author = 'Zoltán Vörös'\n",
"\n",
"# The full version, including alpha/beta/rc tags\n",
"release = '6.9.0'\n",
"release = '5.1.0'\n",
"\n",
"\n",
"# -- General configuration ---------------------------------------------------\n",
@ -190,8 +190,6 @@
" numpy-universal\n",
" numpy-fft\n",
" numpy-linalg\n",
" numpy-random\n",
" scipy-integrate\n",
" scipy-linalg\n",
" scipy-optimize\n",
" scipy-signal\n",
@ -217,7 +215,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2022-02-09T06:27:21.647179Z",
@ -258,51 +256,14 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2022-02-09T06:27:42.024028Z",
"start_time": "2022-02-09T06:27:36.109093Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n",
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
" _, nbc = validator.normalize(nbc)\n"
]
}
],
"outputs": [],
"source": [
"files = ['ulab-intro',\n",
" 'ulab-ndarray',\n",
@ -310,8 +271,6 @@
" 'numpy-universal',\n",
" 'numpy-fft',\n",
" 'numpy-linalg',\n",
" 'numpy-random',\n",
" 'scipy-integrate',\n",
" 'scipy-linalg',\n",
" 'scipy-optimize',\n",
" 'scipy-signal',\n",
@ -476,7 +435,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "base",
"display_name": "Python 3.8.5 ('base')",
"language": "python",
"name": "python3"
},
@ -490,7 +449,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
"version": "3.8.5"
},
"toc": {
"base_numbering": 1,
@ -538,6 +497,11 @@
"_Feature"
],
"window_display": false
},
"vscode": {
"interpreter": {
"hash": "9e4ec6f642f986afcc9e252c165e44859a62defc5c697cae6f82c2943465ec10"
}
}
},
"nbformat": 4,

View file

@ -10,6 +10,13 @@
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Matplotlib is building the font cache; this may take a moment.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
@ -31,7 +38,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-07T18:13:14.590799Z",
@ -232,7 +239,7 @@
"source": [
"## Enter ulab\n",
"\n",
"`ulab` is a `numpy`-like module for `micropython` and its derivatives, meant to simplify and speed up common mathematical operations on arrays. `ulab` implements a small subset of `numpy` and `scipy`, as well as a number of functions manipulating byte arrays. The functions were chosen such that they might be useful in the context of a microcontroller. However, the project is a living one, and suggestions for new features are always welcome. \n",
"`ulab` is a `numpy`-like module for `micropython` and its derivatives, meant to simplify and speed up common mathematical operations on arrays. `ulab` implements a small subset of `numpy` and `scipy`. The functions were chosen such that they might be useful in the context of a microcontroller. However, the project is a living one, and suggestions for new features are always welcome. \n",
"\n",
"This document discusses how you can use the library, starting from building your own firmware, through questions like what affects the firmware size, what are the trade-offs, and what are the most important differences to `numpy` and `scipy`, respectively. The document is organised as follows:\n",
"\n",
@ -397,7 +404,7 @@
"np.polyval(p, x)\n",
"```\n",
"\n",
"There are a couple of exceptions to this rule, namely `fft`, `linalg`, and `random`, which are sub-modules even in `numpy`, thus you have to write them out as \n",
"There are a couple of exceptions to this rule, namely `fft`, and `linalg`, which are sub-modules even in `numpy`, thus you have to write them out as \n",
"\n",
"```python\n",
"from ulab import numpy as np\n",
@ -835,7 +842,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.8.5"
},
"toc": {
"base_numbering": 1,

View file

@ -2599,7 +2599,7 @@
"source": [
"# Binary operators\n",
"\n",
"`ulab` implements the `+`, `-`, `*`, `/`, `**`, `%`, `<`, `>`, `<=`, `>=`, `==`, `!=`, `+=`, `-=`, `*=`, `/=`, `**=`, `%=` binary operators, as well as the `AND`, `OR`, `XOR` bit-wise operators that work element-wise. Note that the bit-wise operators will raise an exception, if either of the operands is of `float` or `complex` type.\n",
"`ulab` implements the `+`, `-`, `*`, `/`, `**`, `<`, `>`, `<=`, `>=`, `==`, `!=`, `+=`, `-=`, `*=`, `/=`, `**=` binary operators, as well as the `AND`, `OR`, `XOR` bit-wise operators that work element-wise. Note that the bit-wise operators will raise an exception, if either of the operands is of `float` or `complex` type.\n",
"\n",
"Broadcasting is available, meaning that the two operands do not even have to have the same shape. If the lengths along the respective axes are equal, or one of them is 1, or the axis is missing, the element-wise operation can still be carried out. \n",
"A thorough explanation of broadcasting can be found under https://numpy.org/doc/stable/user/basics.broadcasting.html. \n",
@ -3270,7 +3270,7 @@
"output_type": "stream",
"text": [
"a:\t array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float)\n",
"a[a < 5]:\t array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)\n",
"a < 5:\t array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)\n",
"\n",
"\n"
]
@ -3283,7 +3283,7 @@
"\n",
"a = np.array(range(9), dtype=np.float)\n",
"print(\"a:\\t\", a)\n",
"print(\"a[a < 5]:\\t\", a[a < 5])"
"print(\"a < 5:\\t\", a[a < 5])"
]
},
{

View file

@ -14,7 +14,6 @@
"name": "stdout",
"output_type": "stream",
"text": [
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
@ -32,7 +31,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-07T19:16:29.118001Z",
@ -78,7 +77,7 @@
" if args.unix: # tests the code on the unix port. Note that this works on unix only\n",
" with open('/dev/shm/micropython.py', 'w') as fout:\n",
" fout.write(cell)\n",
" proc = subprocess.Popen([\"../micropython/ports/unix/build-2/micropython-2\", \"/dev/shm/micropython.py\"], \n",
" proc = subprocess.Popen([\"../micropython/ports/unix/micropython-2\", \"/dev/shm/micropython.py\"], \n",
" stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n",
" print(proc.stdout.read().decode(\"utf-8\"))\n",
" print(proc.stderr.read().decode(\"utf-8\"))\n",
@ -183,7 +182,7 @@
"%%micropython -pyboard 1\n",
"\n",
"import utime\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"\n",
"def timeit(n=1000):\n",
" def wrapper(f, *args, **kwargs):\n",
@ -245,14 +244,145 @@
"\n",
"**WARNING:** Difference to `numpy`: the `out` keyword argument is not implemented.\n",
"\n",
"These functions follow the same pattern, and work with generic iterables, and `ndarray`s. `min`, and `max` return the minimum or maximum of a sequence. If the input array is two-dimensional, the `axis` keyword argument can be supplied, in which case the minimum/maximum along the given axis will be returned. If `axis=None` (this is also the default value), the minimum/maximum of the flattened array will be determined. The functions also accept the `keepdims=True` or `keepdims=False` keyword argument. The latter case is the default, while the former keeps the dimensions (the number of axes) of the supplied array. \n",
"These functions follow the same pattern, and work with generic iterables, and `ndarray`s. `min`, and `max` return the minimum or maximum of a sequence. If the input array is two-dimensional, the `axis` keyword argument can be supplied, in which case the minimum/maximum along the given axis will be returned. If `axis=None` (this is also the default value), the minimum/maximum of the flattened array will be determined.\n",
"\n",
"`argmin/argmax` return the position (index) of the minimum/maximum in the sequence."
]
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 108,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-17T21:26:22.507996Z",
"start_time": "2020-10-17T21:26:22.492543Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"array([1.0, 2.0, 3.0], dtype=float)\n",
"array([], dtype=float)\n",
"[] 0\n",
"array([1.0, 2.0, 3.0], dtype=float)\n",
"array([], dtype=float)\n",
"\n",
"\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"import ulab as np\n",
"\n",
"a = np.array([1, 2, 3])\n",
"print(a)\n",
"print(a[-1:-1:-3])\n",
"try:\n",
" sa = list(a[-1:-1:-3])\n",
" la = len(sa)\n",
"except IndexError as e:\n",
" sa = str(e)\n",
" la = -1\n",
" \n",
"print(sa, la)\n",
"\n",
"a[-1:-1:-3] = np.ones(0)\n",
"print(a)\n",
"\n",
"b = np.ones(0) + 1\n",
"print(b)\n",
"# print('b', b.shape())"
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-17T21:54:49.123748Z",
"start_time": "2020-10-17T21:54:49.093819Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0, 1, -3array([], dtype=float)\n",
"\n",
"\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"import ulab as np\n",
"a = np.array([1, 2, 3])\n",
"print(a[0:1:-3])"
]
},
{
"cell_type": "code",
"execution_count": 127,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-17T21:57:01.482277Z",
"start_time": "2020-10-17T21:57:01.477362Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[0]"
]
},
"execution_count": 127,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l = list(range(13))\n",
"\n",
"l[0:10:113]"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-17T20:59:58.285134Z",
"start_time": "2020-10-17T20:59:58.263605Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"(0,)"
]
},
"execution_count": 81,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a = np.array([1, 2, 3])\n",
"np.ones(0, dtype=uint8) / np.zeros(0, dtype=uint16)\n",
"np.ones(0).shape"
]
},
{
"cell_type": "code",
"execution_count": 375,
"metadata": {
"ExecuteTime": {
"end_time": "2019-10-18T13:08:28.113525Z",
@ -264,16 +394,16 @@
"name": "stdout",
"output_type": "stream",
"text": [
"a: array([1.0, 2.0, 0.0, 1.0, 10.0], dtype=float64)\n",
"a: array([1.0, 2.0, 0.0, 1.0, 10.0], dtype=float)\n",
"min of a: 0.0\n",
"argmin of a: 2\n",
"\n",
"b:\n",
" array([[1.0, 2.0, 0.0],\n",
" [1.0, 10.0, -1.0]], dtype=float64)\n",
"\t [1.0, 10.0, -1.0]], dtype=float)\n",
"min of b (flattened): -1.0\n",
"min of b (axis=0): array([1.0, 2.0, -1.0], dtype=float64)\n",
"min of b (axis=1): array([0.0, -1.0], dtype=float64)\n",
"min of b (axis=0): array([1.0, 2.0, -1.0], dtype=float)\n",
"min of b (axis=1): array([0.0, -1.0], dtype=float)\n",
"\n",
"\n"
]
@ -282,55 +412,19 @@
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"from ulab import numerical\n",
"\n",
"a = np.array([1, 2, 0, 1, 10])\n",
"print('a:', a)\n",
"print('min of a:', np.min(a))\n",
"print('argmin of a:', np.argmin(a))\n",
"print('min of a:', numerical.min(a))\n",
"print('argmin of a:', numerical.argmin(a))\n",
"\n",
"b = np.array([[1, 2, 0], [1, 10, -1]])\n",
"print('\\nb:\\n', b)\n",
"print('min of b (flattened):', np.min(b))\n",
"print('min of b (axis=0):', np.min(b, axis=0))\n",
"print('min of b (axis=1):', np.min(b, axis=1))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a: array([[0.0, 1.0, 2.0, 3.0],\n",
" [4.0, 5.0, 6.0, 7.0],\n",
" [8.0, 9.0, 10.0, 11.0]], dtype=float64)\n",
"\n",
"min of a (axis=1):\n",
" array([[0.0],\n",
" [4.0],\n",
" [8.0]], dtype=float64)\n",
"\n",
"min of a (axis=0):\n",
" array([[0.0, 1.0, 2.0, 3.0]], dtype=float64)\n",
"\n",
"\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"\n",
"a = np.array(range(12)).reshape((3, 4))\n",
"\n",
"print('a:', a)\n",
"print('\\nmin of a (axis=1):\\n', np.min(a, axis=1, keepdims=True))\n",
"print('\\nmin of a (axis=0):\\n', np.min(a, axis=0, keepdims=True))"
"print('min of b (flattened):', numerical.min(b))\n",
"print('min of b (axis=0):', numerical.min(b, axis=0))\n",
"print('min of b (axis=1):', numerical.min(b, axis=1))"
]
},
{
@ -345,14 +439,12 @@
"\n",
"`numpy`: https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html\n",
"\n",
"These three functions follow the same pattern: if the `axis` keyword is not specified, they assume the default value of `None`, and return the result of the computation for the flattened array. Otherwise, the calculation is along the given axis. \n",
"\n",
"If the `axis` keyword argument is a number (this can also be negative to signify counting from the rightmost axis) the functions contract the arrays, i.e., the results will have one axis fewer than the input array. The only exception to this rule is when the `keepdims` keyword argument is supplied with a value `True`, in which case, the results will have the same number of axis as the input, but the axis specified in `axis` will have a length of 1. This is useful in cases, when the output is to be broadcast with the input in subsequent computations."
"These three functions follow the same pattern: if the axis keyword is not specified, it assumes the default value of `None`, and returns the result of the computation for the flattened array. Otherwise, the calculation is along the given axis."
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 527,
"metadata": {
"ExecuteTime": {
"end_time": "2019-10-20T06:51:58.845076Z",
@ -366,73 +458,29 @@
"text": [
"a: \n",
" array([[1.0, 2.0, 3.0],\n",
" [4.0, 5.0, 6.0],\n",
" [7.0, 8.0, 9.0]], dtype=float64)\n",
"\t [4.0, 5.0, 6.0],\n",
"\t [7.0, 8.0, 9.0]], dtype=float)\n",
"sum, flat array: 45.0\n",
"mean, horizontal: array([2.0, 5.0, 8.0], dtype=float64)\n",
"std, vertical: array([2.449489742783178, 2.449489742783178, 2.449489742783178], dtype=float64)\n",
"\n",
"mean, horizontal: array([2.0, 5.0, 8.0], dtype=float)\n",
"std, vertical: array([2.44949, 2.44949, 2.44949], dtype=float)\n",
"\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"%%micropython -pyboard 1\n",
"\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"from ulab import numerical\n",
"\n",
"a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n",
"print('a: \\n', a)\n",
"\n",
"print('sum, flat array: ', np.sum(a))\n",
"print('sum, flat array: ', numerical.sum(a))\n",
"\n",
"print('mean, horizontal: ', np.mean(a, axis=1))\n",
"print('mean, horizontal: ', numerical.mean(a, axis=1))\n",
"\n",
"print('std, vertical: ', np.std(a, axis=0))"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a: \n",
" array([[1.0, 2.0, 3.0],\n",
" [4.0, 5.0, 6.0],\n",
" [7.0, 8.0, 9.0]], dtype=float64)\n",
"\n",
"std, along 0th axis:\n",
" array([2.449489742783178, 2.449489742783178, 2.449489742783178], dtype=float64)\n",
"\n",
"a: \n",
" array([[1.0, 2.0, 3.0],\n",
" [4.0, 5.0, 6.0],\n",
" [7.0, 8.0, 9.0]], dtype=float64)\n",
"\n",
"std, along 1st axis, keeping dimensions:\n",
" array([[0.8164965809277261],\n",
" [0.8164965809277261],\n",
" [0.8164965809277261]], dtype=float64)\n",
"\n",
"\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"\n",
"a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n",
"print('a: \\n', a)\n",
"print('\\nstd, along 0th axis:\\n', np.std(a, axis=0))\n",
"\n",
"print('\\na: \\n', a)\n",
"print('\\nstd, along 1st axis, keeping dimensions:\\n', np.std(a, axis=1, keepdims=True))"
"print('std, vertical: ', numerical.std(a, axis=0))"
]
},
{
@ -471,12 +519,13 @@
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"from ulab import numerical\n",
"\n",
"a = np.array([1, 2, 3, 4, 5, 6, 7, 8])\n",
"print(\"a:\\t\\t\\t\", a)\n",
"\n",
"np.roll(a, 2)\n",
"numerical.roll(a, 2)\n",
"print(\"a rolled to the left:\\t\", a)\n",
"\n",
"# this should be the original vector\n",
@ -532,18 +581,19 @@
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"from ulab import numerical\n",
"\n",
"a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])\n",
"print(\"a:\\n\", a)\n",
"\n",
"np.roll(a, 2)\n",
"numerical.roll(a, 2)\n",
"print(\"\\na rolled to the left:\\n\", a)\n",
"\n",
"np.roll(a, -1, axis=1)\n",
"numerical.roll(a, -1, axis=1)\n",
"print(\"\\na rolled up:\\n\", a)\n",
"\n",
"np.roll(a, 1, axis=None)\n",
"numerical.roll(a, 1, axis=None)\n",
"print(\"\\na rolled with None:\\n\", a)"
]
},
@ -599,7 +649,9 @@
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"from ulab import numerical\n",
"from ulab import vector\n",
"\n",
"def dummy_adc():\n",
" # dummy adc function, so that the results are reproducible\n",
@ -607,8 +659,8 @@
" \n",
"n = 10\n",
"# These are the normalised weights; the last entry is the most dominant\n",
"weight = np.exp([1, 2, 3, 4, 5])\n",
"weight = weight/np.sum(weight)\n",
"weight = vector.exp([1, 2, 3, 4, 5])\n",
"weight = weight/numerical.sum(weight)\n",
"\n",
"print(weight)\n",
"# initial array of samples\n",
@ -617,10 +669,10 @@
"for i in range(n):\n",
" # a new datum is inserted on the right hand side. This simply overwrites whatever was in the last slot\n",
" samples[-1] = dummy_adc()\n",
" print(np.mean(samples[-5:]*weight))\n",
" print(numerical.mean(samples[-5:]*weight))\n",
" print(samples[-5:])\n",
" # the data are shifted by one position to the left\n",
" numerical.np(samples, 1)"
" numerical.roll(samples, 1)"
]
},
{
@ -673,16 +725,17 @@
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"from ulab import numerical\n",
"\n",
"a = np.array([1, 2, 3, 4, 5])\n",
"print(\"a: \\t\", a)\n",
"print(\"a flipped:\\t\", np.flip(a))\n",
"\n",
"a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.uint8)\n",
"print(\"\\na flipped horizontally\\n\", np.flip(a, axis=1))\n",
"print(\"\\na flipped vertically\\n\", np.flip(a, axis=0))\n",
"print(\"\\na flipped horizontally+vertically\\n\", np.flip(a))"
"print(\"\\na flipped horizontally\\n\", numerical.flip(a, axis=1))\n",
"print(\"\\na flipped vertically\\n\", numerical.flip(a, axis=0))\n",
"print(\"\\na flipped horizontally+vertically\\n\", numerical.flip(a))"
]
},
{
@ -747,18 +800,19 @@
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"from ulab import numerical\n",
"\n",
"a = np.array(range(9), dtype=np.uint8)\n",
"print('a:\\n', a)\n",
"\n",
"print('\\nfirst derivative:\\n', np.diff(a, n=1))\n",
"print('\\nsecond derivative:\\n', np.diff(a, n=2))\n",
"print('\\nfirst derivative:\\n', numerical.diff(a, n=1))\n",
"print('\\nsecond derivative:\\n', numerical.diff(a, n=2))\n",
"\n",
"c = np.array([[1, 2, 3, 4], [4, 3, 2, 1], [1, 4, 9, 16], [0, 0, 0, 0]])\n",
"print('\\nc:\\n', c)\n",
"print('\\nfirst derivative, first axis:\\n', np.diff(c, axis=0))\n",
"print('\\nfirst derivative, second axis:\\n', np.diff(c, axis=1))"
"print('\\nfirst derivative, first axis:\\n', numerical.diff(c, axis=0))\n",
"print('\\nfirst derivative, second axis:\\n', numerical.diff(c, axis=1))"
]
},
{
@ -804,7 +858,7 @@
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"\n",
"a = np.array(range(12), dtype=np.int8).reshape((3, 4))\n",
"print('a:\\n', a)\n",
@ -871,17 +925,18 @@
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"from ulab import numerical\n",
"\n",
"a = np.array([[1, 12, 3, 0], [5, 3, 4, 1], [9, 11, 1, 8], [7, 10, 0, 1]], dtype=np.float)\n",
"print('\\na:\\n', a)\n",
"b = np.sort(a, axis=0)\n",
"b = numerical.sort(a, axis=0)\n",
"print('\\na sorted along vertical axis:\\n', b)\n",
"\n",
"c = np.sort(a, axis=1)\n",
"c = numerical.sort(a, axis=1)\n",
"print('\\na sorted along horizontal axis:\\n', c)\n",
"\n",
"c = np.sort(a, axis=None)\n",
"c = numerical.sort(a, axis=None)\n",
"print('\\nflattened a sorted:\\n', c)"
]
},
@ -900,13 +955,15 @@
"source": [
"%%micropython -pyboard 1\n",
"\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"from ulab import vector\n",
"from ulab import numerical\n",
"\n",
"@timeit\n",
"def sort_time(array):\n",
" return np.sort(array)\n",
" return numerical.sort(array)\n",
"\n",
"b = np.sin(np.linspace(0, 6.28, num=1000))\n",
"b = vector.sin(np.linspace(0, 6.28, num=1000))\n",
"print('b: ', b)\n",
"sort_time(b)\n",
"print('\\nb sorted:\\n', b)"
@ -968,17 +1025,18 @@
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"from ulab import numerical\n",
"\n",
"a = np.array([[1, 12, 3, 0], [5, 3, 4, 1], [9, 11, 1, 8], [7, 10, 0, 1]], dtype=np.float)\n",
"print('\\na:\\n', a)\n",
"b = np.argsort(a, axis=0)\n",
"b = numerical.argsort(a, axis=0)\n",
"print('\\na sorted along vertical axis:\\n', b)\n",
"\n",
"c = np.argsort(a, axis=1)\n",
"c = numerical.argsort(a, axis=1)\n",
"print('\\na sorted along horizontal axis:\\n', c)\n",
"\n",
"c = np.argsort(a, axis=None)\n",
"c = numerical.argsort(a, axis=None)\n",
"print('\\nflattened a sorted:\\n', c)"
]
},
@ -1020,11 +1078,12 @@
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"import ulab as np\n",
"from ulab import numerical\n",
"\n",
"a = np.array([0, 5, 1, 3, 2, 4], dtype=np.uint8)\n",
"print('\\na:\\n', a)\n",
"b = np.argsort(a, axis=1)\n",
"b = numerical.argsort(a, axis=1)\n",
"print('\\nsorting indices:\\n', b)\n",
"print('\\nthe original array:\\n', a)"
]
@ -1032,7 +1091,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "base",
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
@ -1046,7 +1105,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
"version": "3.8.5"
},
"toc": {
"base_numbering": 1,

View file

@ -31,7 +31,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-29T16:53:11.972661Z",
@ -49,7 +49,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-29T16:59:24.652277Z",
@ -77,7 +77,7 @@
" if args.unix: # tests the code on the unix port. Note that this works on unix only\n",
" with open('/dev/shm/micropython.py', 'w') as fout:\n",
" fout.write(cell)\n",
" proc = subprocess.Popen([\"../micropython/ports/unix/build-2/micropython-2\", \"/dev/shm/micropython.py\"], \n",
" proc = subprocess.Popen([\"../micropython/ports/unix/micropython-2\", \"/dev/shm/micropython.py\"], \n",
" stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n",
" print(proc.stdout.read().decode(\"utf-8\"))\n",
" print(proc.stderr.read().decode(\"utf-8\"))\n",
@ -291,9 +291,7 @@
"a = bytearray([1, 1, 0, 0, 0, 0, 0, 255])\n",
"print('a: ', a)\n",
"print()\n",
"print('unsigned integers: ', utils.from_uint32_buffe\n",
"print('original vector:\\n', y)\n",
"print('\\nspectrum:\\n', a)r(a))\n",
"print('unsigned integers: ', utils.from_uint32_buffer(a))\n",
"\n",
"b = bytearray([1, 1, 0, 0, 0, 0, 0, 255])\n",
"print('\\nb: ', b)\n",
@ -400,53 +398,12 @@
"source": [
"## spectrogram\n",
"\n",
"In addition to the Fourier transform and its inverse, `ulab` also sports a function called `spectrogram`, which returns the absolute value of the Fourier transform, also known as the power spectrum. This could be used to find the dominant spectral component in a time series. The positional arguments are treated in the same way as in `fft`, and `ifft`. This means that, if the firmware was compiled with complex support and `ULAB_FFT_IS_NUMPY_COMPATIBLE` is defined to be 1 in `ulab.h`, the input can also be a complex array. \n",
"\n",
"And easy way to find out if the FFT is `numpy`-compatible is to check the number of values `fft.fft` returns, when called with a single real argument of length other than 2: "
"In addition to the Fourier transform and its inverse, `ulab` also sports a function called `spectrogram`, which returns the absolute value of the Fourier transform, also known as the power spectrum. This could be used to find the dominant spectral component in a time series. The arguments are treated in the same way as in `fft`, and `ifft`. This means that, if the firmware was compiled with complex support, the input can also be a complex array."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"FFT is numpy compatible (complex inputs/outputs)\n",
"\n",
"\n"
]
}
],
"source": [
"%%micropython -unix 1\n",
"\n",
"from ulab import numpy as np\n",
"\n",
"if len(np.fft.fft(np.zeros(4))) == 2:\n",
" print('FFT is NOT numpy compatible (real and imaginary parts are treated separately)')\n",
"else:\n",
" print('FFT is numpy compatible (complex inputs/outputs)')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Depending on the `numpy`-compatibility of the FFT, the `spectrogram` function takes one or two positional arguments, and three keyword arguments. If the FFT is `numpy` compatible, one positional argument is allowed, and it is a 1D real or complex `ndarray`. If the FFT is not `numpy`-compatible, if a single argument is supplied, it will be treated as the real part of the input, and if two positional arguments are supplied, they are treated as the real and imaginary parts of the signal.\n",
"\n",
"The keyword arguments are as follows:\n",
"\n",
"1. `scratchpad = None`: must be a 1D, dense, floating point array, twice as long as the input array; the `scratchpad` will be used as a temporary internal buffer to perform the Fourier transform; the `scratchpad` can repeatedly be re-used.\n",
"1. `out = None`: must be a 1D, not necessarily dense, floating point array that will store the results\n",
"1. `log = False`: must be either `True`, or `False`; if `True`, the `spectrogram` returns the logarithm of the absolute values of the Fourier transform."
]
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 10,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-29T16:59:56.400603Z",
@ -462,7 +419,7 @@
" array([0.0, 0.009775015390171337, 0.01954909674625918, ..., -0.5275140569487312, -0.5357931822978732, -0.5440211108893697], dtype=float64)\n",
"\n",
"spectrum:\n",
" array([187.8635087634578, 315.3112063607119, 347.8814873399375, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n",
" array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n",
"\n",
"\n"
]
@ -487,14 +444,12 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"As such, `spectrogram` is really just a shorthand for `np.abs(np.fft.fft(signal))`, if the FFT is `numpy`-compatible, or `np.sqrt(a*a + b*b)` if the FFT returns the real (`a`) and imaginary (`b`) parts separately. However, `spectrogram` saves significant amounts of RAM: the expression `a*a + b*b` has to allocate memory for `a*a`, `b*b`, and finally, their sum. Similarly, `np.abs` returns a new array. This issue is compounded even more, if `np.log()` is used on the absolute value. \n",
"\n",
"In contrast, `spectrogram` handles all calculations in the same internal arrays, and allows one to re-use previously reserved RAM. This can be especially useful in cases, when `spectogram` is called repeatedly, as in the snippet below."
"As such, `spectrogram` is really just a shorthand for `np.sqrt(a*a + b*b)`, however, it saves significant amounts of RAM: the expression `a*a + b*b` has to allocate memory for `a*a`, `b*b`, and finally, their sum. In contrast, `spectrogram` calculates the spectrum internally, and stores it in the memory segment that was reserved for the real part of the Fourier transform."
]
},
{
"cell_type": "code",
"execution_count": 34,
"execution_count": 9,
"metadata": {
"ExecuteTime": {
"end_time": "2022-01-29T16:59:48.485610Z",
@ -506,8 +461,12 @@
"name": "stdout",
"output_type": "stream",
"text": [
"signal: array([-27.38260169844543, 6.237834411021073, -0.4038327279002965, ..., -0.9795967096969854, -0.4038327279002969, 6.237834411021073], dtype=float64)\n",
"out: array([-27.38260169844543, 6.237834411021073, -0.4038327279002965, ..., -0.9795967096969854, -0.4038327279002969, 6.237834411021073], dtype=float64)\n",
"\n",
"spectrum calculated the hard way:\n",
" array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n",
"\n",
"spectrum calculated the lazy way:\n",
" array([187.8635087634579, 315.3112063607119, 347.8814873399374, ..., 84.45888934298905, 347.8814873399374, 315.3112063607118], dtype=float64)\n",
"\n",
"\n"
]
@ -519,34 +478,17 @@
"from ulab import numpy as np\n",
"from ulab import utils as utils\n",
"\n",
"n = 1024\n",
"t = np.linspace(0, 2 * np.pi, num=1024)\n",
"scratchpad = np.zeros(2 * n)\n",
"x = np.linspace(0, 10, num=1024)\n",
"y = np.sin(x)\n",
"\n",
"for _ in range(10):\n",
" signal = np.sin(t)\n",
" utils.spectrogram(signal, out=signal, scratchpad=scratchpad, log=True)\n",
"a, b = np.fft.fft(y)\n",
"\n",
"print('signal: ', signal)\n",
"print('\\nspectrum calculated the hard way:\\n', np.sqrt(a*a + b*b))\n",
"\n",
"for _ in range(10):\n",
" signal = np.sin(t)\n",
" out = np.log(utils.spectrogram(signal))\n",
"a = utils.spectrogram(y)\n",
"\n",
"print('out: ', out)"
"print('\\nspectrum calculated the lazy way:\\n', a)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that `scratchpad` is reserved only once, and then is re-used in the first loop. By assigning `signal` to the output, we save additional RAM. This approach avoids the usual problem of memory fragmentation, which would happen in the second loop, where both `spectrogram`, and `np.log` must reserve RAM in each iteration."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
@ -565,7 +507,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
"version": "3.8.5"
},
"toc": {
"base_numbering": 1,

View file

@ -10,10 +10,6 @@ x = np.linspace(-np.pi, np.pi, num=8)
y = np.sin(x)
if use_ulab:
if 'real' in dir(np):
a = np.fft.fft(y)
c = np.real(np.fft.ifft(a))
else:
a, b = np.fft.fft(y)
c, d = np.fft.ifft(a, b)
# c should be equal to y
@ -23,10 +19,6 @@ if use_ulab:
print(cmp_result)
z = np.zeros(len(x))
if 'real' in dir(np):
a = np.fft.fft(y)
c = np.real(np.fft.ifft(a))
else:
a, b = np.fft.fft(y, z)
c, d = np.fft.ifft(a, b)
# c should be equal to y

View file

@ -1,26 +0,0 @@
try:
from ulab import numpy as np
except:
import numpy as np
dtypes = (np.uint8, np.int8, np.uint16, np.int16, np.float)
for dtype1 in dtypes:
x1 = np.array(range(6), dtype=dtype1).reshape((2, 3))
for dtype2 in dtypes:
x2 = np.array(range(1, 4), dtype=dtype2)
print(x1 % x2)
print()
print('=' * 30)
print('inplace modulo')
print('=' * 30)
print()
for dtype1 in dtypes:
x1 = np.array(range(6), dtype=dtype1).reshape((2, 3))
for dtype2 in dtypes:
x2 = np.array(range(1, 4), dtype=dtype2)
x1 %= x2
print(x1)

View file

@ -1,105 +0,0 @@
array([[0, 1, 2],
[0, 0, 2]], dtype=uint8)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0, 1, 2],
[0, 0, 2]], dtype=uint16)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0, 1, 2],
[0, 0, 2]], dtype=int8)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0, 0, 1],
[0, 2, 0]], dtype=uint8)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0, 1, 2],
[0, 0, 2]], dtype=uint16)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
==============================
inplace modulo
==============================
array([[0, 1, 2],
[0, 0, 2]], dtype=uint8)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0, 0, 1],
[0, 2, 0]], dtype=uint8)
array([[0, 0, 1],
[0, 0, 0]], dtype=int16)
array([[0.0, 0.0, 1.0],
[0.0, 0.0, 0.0]], dtype=float64)
array([[0.0, 0.0, 1.0],
[0.0, 0.0, 0.0]], dtype=float64)
array([[0.0, 0.0, 1.0],
[0.0, 0.0, 0.0]], dtype=float64)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0, 1, 2],
[0, 0, 2]], dtype=int16)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)
array([[0.0, 1.0, 2.0],
[0.0, 0.0, 2.0]], dtype=float64)

View file

@ -1,10 +0,0 @@
try:
from ulab import numpy as np
except ImportError:
import numpy as np
rng = np.random.Generator(1234)
for generator in (rng.normal, rng.random, rng.uniform):
random_array = generator(size=(1, 2))
print("array shape:", random_array.shape)

View file

@ -1,3 +0,0 @@
array shape: (1, 2)
array shape: (1, 2)
array shape: (1, 2)

View file

@ -1,23 +0,0 @@
try:
from ulab import numpy as np
except ImportError:
import numpy as np
for dtype in (np.uint8, np.int8, np.uint16, np.int8, np.float):
a = np.array(range(12), dtype=dtype)
b = a.reshape((3, 4))
print(a)
print(b)
print()
print(np.sum(a))
print(np.sum(a, axis=0))
print(np.sum(a, axis=0, keepdims=True))
print()
print(np.sum(b))
print(np.sum(b, axis=0))
print(np.sum(b, axis=1))
print(np.sum(b, axis=0, keepdims=True))
print(np.sum(b, axis=1, keepdims=True))

View file

@ -1,80 +0,0 @@
array([0, 1, 2, ..., 9, 10, 11], dtype=uint8)
array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=uint8)
66
66
array([66], dtype=uint8)
66
array([12, 15, 18, 21], dtype=uint8)
array([6, 22, 38], dtype=uint8)
array([[12, 15, 18, 21]], dtype=uint8)
array([[6],
[22],
[38]], dtype=uint8)
array([0, 1, 2, ..., 9, 10, 11], dtype=int8)
array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=int8)
66
66
array([66], dtype=int8)
66
array([12, 15, 18, 21], dtype=int8)
array([6, 22, 38], dtype=int8)
array([[12, 15, 18, 21]], dtype=int8)
array([[6],
[22],
[38]], dtype=int8)
array([0, 1, 2, ..., 9, 10, 11], dtype=uint16)
array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=uint16)
66
66
array([66], dtype=uint16)
66
array([12, 15, 18, 21], dtype=uint16)
array([6, 22, 38], dtype=uint16)
array([[12, 15, 18, 21]], dtype=uint16)
array([[6],
[22],
[38]], dtype=uint16)
array([0, 1, 2, ..., 9, 10, 11], dtype=int8)
array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=int8)
66
66
array([66], dtype=int8)
66
array([12, 15, 18, 21], dtype=int8)
array([6, 22, 38], dtype=int8)
array([[12, 15, 18, 21]], dtype=int8)
array([[6],
[22],
[38]], dtype=int8)
array([0.0, 1.0, 2.0, ..., 9.0, 10.0, 11.0], dtype=float64)
array([[0.0, 1.0, 2.0, 3.0],
[4.0, 5.0, 6.0, 7.0],
[8.0, 9.0, 10.0, 11.0]], dtype=float64)
66.0
66.0
array([66.0], dtype=float64)
66.0
array([12.0, 15.0, 18.0, 21.0], dtype=float64)
array([6.0, 22.0, 38.0], dtype=float64)
array([[12.0, 15.0, 18.0, 21.0]], dtype=float64)
array([[6.0],
[22.0],
[38.0]], dtype=float64)

View file

@ -1,30 +0,0 @@
try:
from ulab import numpy as np
except:
import numpy as np
dtypes = (np.uint8, np.int8, np.uint16, np.int16, np.float)
print('flattened array')
for dtype in dtypes:
a = np.array(range(12), dtype=dtype).reshape((3, 4))
print(np.take(a, (0, 10)))
print('\n1D arrays')
for dtype in dtypes:
a = np.array(range(12), dtype=dtype)
print('\na:', a)
indices = (0, 2, 2, 1)
print(np.take(a, indices))
indices = np.array([0, 2, 2, 1], dtype=np.uint8)
print(np.take(a, indices))
print('\n2D arrays')
for dtype in dtypes:
a = np.array(range(12), dtype=dtype).reshape((3, 4))
print('\na:', a)
print('\nfirst axis')
print(np.take(a, (0, 2, 2, 1), axis=0))
print('\nsecond axis')
print(np.take(a, (0, 2, 2, 1), axis=1))

View file

@ -1,105 +0,0 @@
flattened array
array([0, 10], dtype=uint8)
array([0, 10], dtype=int8)
array([0, 10], dtype=uint16)
array([0, 10], dtype=int16)
array([0.0, 10.0], dtype=float64)
1D arrays
a: array([0, 1, 2, ..., 9, 10, 11], dtype=uint8)
array([0, 2, 2, 1], dtype=uint8)
array([0, 2, 2, 1], dtype=uint8)
a: array([0, 1, 2, ..., 9, 10, 11], dtype=int8)
array([0, 2, 2, 1], dtype=int8)
array([0, 2, 2, 1], dtype=int8)
a: array([0, 1, 2, ..., 9, 10, 11], dtype=uint16)
array([0, 2, 2, 1], dtype=uint16)
array([0, 2, 2, 1], dtype=uint16)
a: array([0, 1, 2, ..., 9, 10, 11], dtype=int16)
array([0, 2, 2, 1], dtype=int16)
array([0, 2, 2, 1], dtype=int16)
a: array([0.0, 1.0, 2.0, ..., 9.0, 10.0, 11.0], dtype=float64)
array([0.0, 2.0, 2.0, 1.0], dtype=float64)
array([0.0, 2.0, 2.0, 1.0], dtype=float64)
2D arrays
a: array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=uint8)
first axis
array([[0, 1, 2, 3],
[8, 9, 10, 11],
[8, 9, 10, 11],
[4, 5, 6, 7]], dtype=uint8)
second axis
array([[0, 2, 2, 1],
[4, 6, 6, 5],
[8, 10, 10, 9]], dtype=uint8)
a: array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=int8)
first axis
array([[0, 1, 2, 3],
[8, 9, 10, 11],
[8, 9, 10, 11],
[4, 5, 6, 7]], dtype=int8)
second axis
array([[0, 2, 2, 1],
[4, 6, 6, 5],
[8, 10, 10, 9]], dtype=int8)
a: array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=uint16)
first axis
array([[0, 1, 2, 3],
[8, 9, 10, 11],
[8, 9, 10, 11],
[4, 5, 6, 7]], dtype=uint16)
second axis
array([[0, 2, 2, 1],
[4, 6, 6, 5],
[8, 10, 10, 9]], dtype=uint16)
a: array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=int16)
first axis
array([[0, 1, 2, 3],
[8, 9, 10, 11],
[8, 9, 10, 11],
[4, 5, 6, 7]], dtype=int16)
second axis
array([[0, 2, 2, 1],
[4, 6, 6, 5],
[8, 10, 10, 9]], dtype=int16)
a: array([[0.0, 1.0, 2.0, 3.0],
[4.0, 5.0, 6.0, 7.0],
[8.0, 9.0, 10.0, 11.0]], dtype=float64)
first axis
array([[0.0, 1.0, 2.0, 3.0],
[8.0, 9.0, 10.0, 11.0],
[8.0, 9.0, 10.0, 11.0],
[4.0, 5.0, 6.0, 7.0]], dtype=float64)
second axis
array([[0.0, 2.0, 2.0, 1.0],
[4.0, 6.0, 6.0, 5.0],
[8.0, 10.0, 10.0, 9.0]], dtype=float64)

View file

@ -1,28 +0,0 @@
import sys
from math import *
try:
from ulab import scipy
except ImportError:
import scipy
f = lambda x: x * sin(x) * exp(x)
a=1
b=2
(res, err) = scipy.integrate.tanhsinh(f, a, b)
if isclose (res, 7.11263821415851) and isclose (err, 5.438231077315757e-14):
print (res, err)
res = scipy.integrate.romberg(f, a, b)
if isclose (res, 7.112638214158507):
print (res)
res = scipy.integrate.simpson(f, a, b)
if isclose (res, 7.112638214158494):
print (res)
(res, err) = scipy.integrate.quad(f, a, b)
if isclose (res, 7.112638214158507) and isclose (err, 7.686723611780195e-14):
print (res, err)

View file

@ -1,4 +0,0 @@
7.11263821415851 5.438231077315757e-14
7.112638214158507
7.112638214158494
7.112638214158507 7.686723611780195e-14