Compare commits
No commits in common. "master" and "6.6.1" have entirely different histories.
40 changed files with 1024 additions and 2668 deletions
4
.github/workflows/build.yml
vendored
4
.github/workflows/build.yml
vendored
|
|
@ -20,7 +20,7 @@ jobs:
|
|||
strategy:
|
||||
matrix:
|
||||
os:
|
||||
- ubuntu-24.04
|
||||
- ubuntu-20.04
|
||||
- macOS-latest
|
||||
dims: [1, 2, 3, 4]
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
|
@ -61,7 +61,7 @@ jobs:
|
|||
strategy:
|
||||
matrix:
|
||||
os:
|
||||
- ubuntu-24.04
|
||||
- ubuntu-20.04
|
||||
- macOS-latest
|
||||
dims: [1, 2, 3, 4]
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@ detected and handled.
|
|||
## ndarray methods
|
||||
|
||||
`ulab` implements `numpy`'s `ndarray` with the `==`, `!=`, `<`, `<=`, `>`, `>=`, `+`, `-`, `/`, `*`, `**`,
|
||||
`%`, `+=`, `-=`, `*=`, `/=`, `**=`, `%=` binary operators, and the `len`, `~`, `-`, `+`, `abs` unary operators that
|
||||
`+=`, `-=`, `*=`, `/=`, `**=` binary operators, and the `len`, `~`, `-`, `+`, `abs` unary operators that
|
||||
operate element-wise. Type-aware `ndarray`s can be initialised from any `micropython` iterable, lists of
|
||||
iterables via the `array` constructor, or by means of the `arange`, `concatenate`, `diag`, `eye`,
|
||||
`frombuffer`, `full`, `linspace`, `logspace`, `ones`, or `zeros` functions.
|
||||
|
|
@ -112,7 +112,6 @@ of the user manual.
|
|||
1. `MaixPy` https://github.com/sipeed/MaixPy
|
||||
1. `OpenMV` https://github.com/openmv/openmv
|
||||
1. `pimoroni-pico` https://github.com/pimoroni/pimoroni-pico
|
||||
1. `Tulip Creative Computer` https://github.com/shorepine/tulipcc
|
||||
|
||||
## Compiling
|
||||
|
||||
|
|
|
|||
|
|
@ -2,7 +2,6 @@
|
|||
USERMODULES_DIR := $(USERMOD_DIR)
|
||||
|
||||
# Add all C files to SRC_USERMOD.
|
||||
SRC_USERMOD += $(USERMODULES_DIR)/scipy/integrate/integrate.c
|
||||
SRC_USERMOD += $(USERMODULES_DIR)/scipy/linalg/linalg.c
|
||||
SRC_USERMOD += $(USERMODULES_DIR)/scipy/optimize/optimize.c
|
||||
SRC_USERMOD += $(USERMODULES_DIR)/scipy/signal/signal.c
|
||||
|
|
|
|||
174
code/ndarray.c
174
code/ndarray.c
|
|
@ -563,9 +563,6 @@ ndarray_obj_t *ndarray_new_dense_ndarray(uint8_t ndim, size_t *shape, uint8_t dt
|
|||
ndarray_obj_t *ndarray_new_ndarray_from_tuple(mp_obj_tuple_t *_shape, uint8_t dtype) {
|
||||
// creates a dense array from a tuple
|
||||
// the function should work in the general n-dimensional case
|
||||
if(_shape->len > ULAB_MAX_DIMS) {
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("maximum number of dimensions is " MP_STRINGIFY(ULAB_MAX_DIMS)));
|
||||
}
|
||||
size_t *shape = m_new0(size_t, ULAB_MAX_DIMS);
|
||||
for(size_t i = 0; i < _shape->len; i++) {
|
||||
shape[ULAB_MAX_DIMS - 1 - i] = mp_obj_get_int(_shape->items[_shape->len - 1 - i]);
|
||||
|
|
@ -586,10 +583,43 @@ void ndarray_copy_array(ndarray_obj_t *source, ndarray_obj_t *target, uint8_t sh
|
|||
}
|
||||
#endif
|
||||
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
memcpy(tarray, sarray, target->itemsize);
|
||||
tarray += target->itemsize;
|
||||
ITERATOR_TAIL(source, sarray);
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif
|
||||
}
|
||||
|
||||
ndarray_obj_t *ndarray_new_view(ndarray_obj_t *source, uint8_t ndim, size_t *shape, int32_t *strides, int32_t offset) {
|
||||
|
|
@ -643,7 +673,20 @@ ndarray_obj_t *ndarray_copy_view_convert_type(ndarray_obj_t *source, uint8_t dty
|
|||
uint8_t complex_size = 2 * sizeof(mp_float_t);
|
||||
#endif
|
||||
|
||||
ITERATOR_HEAD()
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
mp_obj_t item;
|
||||
#if ULAB_SUPPORTS_COMPLEX
|
||||
if(source->dtype == NDARRAY_COMPLEX) {
|
||||
|
|
@ -672,7 +715,27 @@ ndarray_obj_t *ndarray_copy_view_convert_type(ndarray_obj_t *source, uint8_t dty
|
|||
ndarray_set_value(dtype, array, 0, item);
|
||||
#endif
|
||||
array += ndarray->itemsize;
|
||||
ITERATOR_TAIL(source, sarray);
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif
|
||||
return ndarray;
|
||||
}
|
||||
|
||||
|
|
@ -699,7 +762,20 @@ mp_obj_t ndarray_byteswap(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_
|
|||
return MP_OBJ_FROM_PTR(ndarray);
|
||||
} else {
|
||||
uint8_t *array = (uint8_t *)ndarray->array;
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
if(self->dtype == NDARRAY_FLOAT) {
|
||||
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
||||
SWAP(uint8_t, array[0], array[3]);
|
||||
|
|
@ -713,7 +789,27 @@ mp_obj_t ndarray_byteswap(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_
|
|||
} else {
|
||||
SWAP(uint8_t, array[0], array[1]);
|
||||
}
|
||||
ITERATOR_TAIL(ndarray, array);
|
||||
array += ndarray->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < ndarray->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1];
|
||||
array += ndarray->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < ndarray->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2];
|
||||
array += ndarray->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < ndarray->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3];
|
||||
array += ndarray->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < ndarray->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif
|
||||
}
|
||||
return MP_OBJ_FROM_PTR(ndarray);
|
||||
}
|
||||
|
|
@ -1342,10 +1438,43 @@ mp_obj_t ndarray_flatten(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_a
|
|||
uint8_t *array = (uint8_t *)ndarray->array;
|
||||
|
||||
if(memcmp(order, "C", 1) == 0) { // C-type ordering
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
memcpy(array, sarray, self->itemsize);
|
||||
array += ndarray->strides[ULAB_MAX_DIMS - 1];
|
||||
ITERATOR_TAIL(self, sarray);
|
||||
sarray += self->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < self->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
sarray -= self->strides[ULAB_MAX_DIMS - 1] * self->shape[ULAB_MAX_DIMS-1];
|
||||
sarray += self->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < self->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
sarray -= self->strides[ULAB_MAX_DIMS - 2] * self->shape[ULAB_MAX_DIMS-2];
|
||||
sarray += self->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < self->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
sarray -= self->strides[ULAB_MAX_DIMS - 3] * self->shape[ULAB_MAX_DIMS-3];
|
||||
sarray += self->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < self->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif
|
||||
} else { // 'F', Fortran-type ordering
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
|
|
@ -1398,13 +1527,6 @@ mp_obj_t ndarray_itemsize(mp_obj_t self_in) {
|
|||
}
|
||||
#endif
|
||||
|
||||
#if NDARRAY_HAS_NDIM
|
||||
mp_obj_t ndarray_ndim(mp_obj_t self_in) {
|
||||
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
return MP_OBJ_NEW_SMALL_INT(self->ndim);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if NDARRAY_HAS_SHAPE
|
||||
mp_obj_t ndarray_shape(mp_obj_t self_in) {
|
||||
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
|
|
@ -1489,7 +1611,7 @@ ndarray_obj_t *ndarray_from_mp_obj(mp_obj_t obj, uint8_t other_type) {
|
|||
|
||||
if(mp_obj_is_int(obj)) {
|
||||
int32_t ivalue = mp_obj_get_int(obj);
|
||||
if((ivalue < -32768) || (ivalue > 65535)) {
|
||||
if((ivalue < -32767) || (ivalue > 32767)) {
|
||||
// the integer value clearly does not fit the ulab integer types, so move on to float
|
||||
ndarray = ndarray_new_linear_array(1, NDARRAY_FLOAT);
|
||||
mp_float_t *array = (mp_float_t *)ndarray->array;
|
||||
|
|
@ -1497,7 +1619,7 @@ ndarray_obj_t *ndarray_from_mp_obj(mp_obj_t obj, uint8_t other_type) {
|
|||
} else {
|
||||
uint8_t dtype;
|
||||
if(ivalue < 0) {
|
||||
if(ivalue >= -128) {
|
||||
if(ivalue > -128) {
|
||||
dtype = NDARRAY_INT8;
|
||||
} else {
|
||||
dtype = NDARRAY_INT16;
|
||||
|
|
@ -1648,12 +1770,6 @@ mp_obj_t ndarray_binary_op(mp_binary_op_t _op, mp_obj_t lobj, mp_obj_t robj) {
|
|||
return ndarray_inplace_ams(lhs, rhs, rstrides, op);
|
||||
break;
|
||||
#endif
|
||||
#if NDARRAY_HAS_INPLACE_MODULO
|
||||
case MP_BINARY_OP_INPLACE_MODULO:
|
||||
COMPLEX_DTYPE_NOT_IMPLEMENTED(lhs->dtype);
|
||||
return ndarray_inplace_modulo(lhs, rhs, rstrides);
|
||||
break;
|
||||
#endif
|
||||
#if NDARRAY_HAS_INPLACE_MULTIPLY
|
||||
case MP_BINARY_OP_INPLACE_MULTIPLY:
|
||||
COMPLEX_DTYPE_NOT_IMPLEMENTED(lhs->dtype);
|
||||
|
|
@ -1709,12 +1825,6 @@ mp_obj_t ndarray_binary_op(mp_binary_op_t _op, mp_obj_t lobj, mp_obj_t robj) {
|
|||
return ndarray_binary_add(lhs, rhs, ndim, shape, lstrides, rstrides);
|
||||
break;
|
||||
#endif
|
||||
#if NDARRAY_HAS_BINARY_OP_MODULO
|
||||
case MP_BINARY_OP_MODULO:
|
||||
COMPLEX_DTYPE_NOT_IMPLEMENTED(lhs->dtype);
|
||||
return ndarray_binary_modulo(lhs, rhs, ndim, shape, lstrides, rstrides);
|
||||
break;
|
||||
#endif
|
||||
#if NDARRAY_HAS_BINARY_OP_MULTIPLY
|
||||
case MP_BINARY_OP_MULTIPLY:
|
||||
return ndarray_binary_multiply(lhs, rhs, ndim, shape, lstrides, rstrides);
|
||||
|
|
|
|||
|
|
@ -232,10 +232,6 @@ mp_obj_t ndarray_dtype(mp_obj_t );
|
|||
mp_obj_t ndarray_itemsize(mp_obj_t );
|
||||
#endif
|
||||
|
||||
#if NDARRAY_HAS_NDIM
|
||||
mp_obj_t ndarray_ndim(mp_obj_t );
|
||||
#endif
|
||||
|
||||
#if NDARRAY_HAS_SIZE
|
||||
mp_obj_t ndarray_size(mp_obj_t );
|
||||
#endif
|
||||
|
|
@ -713,89 +709,4 @@ ndarray_obj_t *ndarray_from_mp_obj(mp_obj_t , uint8_t );
|
|||
#endif /* ULAB_MAX_DIMS == 4 */
|
||||
#endif /* ULAB_HAS_FUNCTION_ITERATOR */
|
||||
|
||||
|
||||
// iterator macro for traversing arrays over all dimensions
|
||||
#if ULAB_MAX_DIMS == 1
|
||||
#define ITERATOR_HEAD()\
|
||||
size_t _l_ = 0;\
|
||||
do {
|
||||
|
||||
#define ITERATOR_TAIL(_source_, _source_array_)\
|
||||
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 1];\
|
||||
_l_++;\
|
||||
} while(_l_ < (_source_)->shape[ULAB_MAX_DIMS - 1]);
|
||||
|
||||
#endif /* ULAB_MAX_DIMS == 1 */
|
||||
|
||||
#if ULAB_MAX_DIMS == 2
|
||||
#define ITERATOR_HEAD()\
|
||||
size_t _k_ = 0;\
|
||||
do {\
|
||||
size_t _l_ = 0;\
|
||||
do {
|
||||
|
||||
#define ITERATOR_TAIL(_source_, _source_array_)\
|
||||
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 1];\
|
||||
_l_++;\
|
||||
} while(_l_ < (_source_)->shape[ULAB_MAX_DIMS - 1]);\
|
||||
(_source_array_) -= (_source_)->strides[ULAB_MAX_DIMS - 1] * (_source_)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 2];\
|
||||
_k_++;\
|
||||
} while(_k_ < (_source_)->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif /* ULAB_MAX_DIMS == 2 */
|
||||
|
||||
#if ULAB_MAX_DIMS == 3
|
||||
#define ITERATOR_HEAD()\
|
||||
size_t _j_ = 0;\
|
||||
do {\
|
||||
size_t _k_ = 0;\
|
||||
do {\
|
||||
size_t _l_ = 0;\
|
||||
do {
|
||||
|
||||
#define ITERATOR_TAIL(_source_, _source_array_)\
|
||||
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 1];\
|
||||
_l_++;\
|
||||
} while(_l_ < (_source_)->shape[ULAB_MAX_DIMS - 1]);\
|
||||
(_source_array_) -= (_source_)->strides[ULAB_MAX_DIMS - 1] * (_source_)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 2];\
|
||||
_k_++;\
|
||||
} while(_k_ < (_source_)->shape[ULAB_MAX_DIMS - 2]);\
|
||||
(_source_array_) -= (_source_)->strides[ULAB_MAX_DIMS - 2] * (_source_)->shape[ULAB_MAX_DIMS - 2];\
|
||||
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 3];\
|
||||
_j_++;\
|
||||
} while(_j_ < (_source_)->shape[ULAB_MAX_DIMS - 3]);
|
||||
|
||||
#endif /* ULAB_MAX_DIMS == 3 */
|
||||
|
||||
#if ULAB_MAX_DIMS == 4
|
||||
#define ITERATOR_HEAD()\
|
||||
size_t _i_ = 0;\
|
||||
do {\
|
||||
size_t _j_ = 0;\
|
||||
do {\
|
||||
size_t _k_ = 0;\
|
||||
do {\
|
||||
size_t _l_ = 0;\
|
||||
do {
|
||||
|
||||
#define ITERATOR_TAIL(_source_, _source_array_)\
|
||||
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 1];\
|
||||
_l_++;\
|
||||
} while(_l_ < (_source_)->shape[ULAB_MAX_DIMS - 1]);\
|
||||
(_source_array_) -= (_source_)->strides[ULAB_MAX_DIMS - 1] * (_source_)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 2];\
|
||||
_k_++;\
|
||||
} while(_k_ < (_source_)->shape[ULAB_MAX_DIMS - 2]);\
|
||||
(_source_array_) -= (_source_)->strides[ULAB_MAX_DIMS - 2] * (_source_)->shape[ULAB_MAX_DIMS - 2];\
|
||||
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 3];\
|
||||
_j_++;\
|
||||
} while(_j_ < (_source_)->shape[ULAB_MAX_DIMS - 3]);\
|
||||
(_source_array_) -= (_source_)->strides[ULAB_MAX_DIMS - 3] * (_source_)->shape[ULAB_MAX_DIMS - 3];\
|
||||
(_source_array_) += (_source_)->strides[ULAB_MAX_DIMS - 4];\
|
||||
_i_++;\
|
||||
} while(_i_ < (_source_)->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif /* ULAB_MAX_DIMS == 4 */
|
||||
|
||||
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -248,105 +248,6 @@ mp_obj_t ndarray_binary_add(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
|
|||
}
|
||||
#endif /* NDARRAY_HAS_BINARY_OP_ADD */
|
||||
|
||||
#if NDARRAY_HAS_BINARY_OP_MODULO
|
||||
mp_obj_t ndarray_binary_modulo(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
|
||||
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
|
||||
|
||||
ndarray_obj_t *results = NULL;
|
||||
uint8_t *larray = (uint8_t *)lhs->array;
|
||||
uint8_t *rarray = (uint8_t *)rhs->array;
|
||||
|
||||
if(lhs->dtype == NDARRAY_UINT8) {
|
||||
if(rhs->dtype == NDARRAY_UINT8) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT8);
|
||||
BINARY_LOOP(results, uint8_t, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_INT8) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
|
||||
BINARY_LOOP(results, int16_t, uint8_t, int8_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_UINT16) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
|
||||
BINARY_LOOP(results, uint16_t, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_INT16) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
|
||||
BINARY_LOOP(results, int16_t, uint8_t, int16_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_FLOAT) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
MODULO_FLOAT_LOOP(results, mp_float_t, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides);
|
||||
}
|
||||
} else if(lhs->dtype == NDARRAY_INT8) {
|
||||
if(rhs->dtype == NDARRAY_UINT8) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
|
||||
BINARY_LOOP(results, int16_t, int8_t, uint8_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_INT8) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT8);
|
||||
BINARY_LOOP(results, int8_t, int8_t, int8_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_UINT16) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
|
||||
BINARY_LOOP(results, int16_t, int8_t, int16_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_INT16) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
|
||||
BINARY_LOOP(results, int16_t, int8_t, int16_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_FLOAT) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
MODULO_FLOAT_LOOP(results, mp_float_t, int8_t, mp_float_t, larray, lstrides, rarray, rstrides);
|
||||
}
|
||||
} else if(lhs->dtype == NDARRAY_UINT16) {
|
||||
if(rhs->dtype == NDARRAY_UINT8) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT8);
|
||||
BINARY_LOOP(results, uint16_t, uint16_t, uint8_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_INT8) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
BINARY_LOOP(results, mp_float_t, uint16_t, int8_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_UINT16) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_UINT16);
|
||||
BINARY_LOOP(results, uint16_t, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_INT16) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
BINARY_LOOP(results, mp_float_t, uint16_t, int16_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_FLOAT) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
MODULO_FLOAT_LOOP(results, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides);
|
||||
}
|
||||
} else if(lhs->dtype == NDARRAY_INT16) {
|
||||
if(rhs->dtype == NDARRAY_UINT8) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
|
||||
BINARY_LOOP(results, int16_t, int16_t, uint8_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_INT8) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
|
||||
BINARY_LOOP(results, int16_t, int16_t, int8_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_UINT16) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
BINARY_LOOP(results, mp_float_t, int16_t, uint16_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_INT16) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_INT16);
|
||||
BINARY_LOOP(results, int16_t, int16_t, int16_t, larray, lstrides, rarray, rstrides, %);
|
||||
} else if(rhs->dtype == NDARRAY_FLOAT) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
MODULO_FLOAT_LOOP(results, mp_float_t, int16_t, mp_float_t, larray, lstrides, rarray, rstrides);
|
||||
}
|
||||
} else if(lhs->dtype == NDARRAY_FLOAT) {
|
||||
if(rhs->dtype == NDARRAY_UINT8) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
MODULO_FLOAT_LOOP(results, mp_float_t, mp_float_t, uint8_t, larray, lstrides, rarray, rstrides);
|
||||
} else if(rhs->dtype == NDARRAY_INT8) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
MODULO_FLOAT_LOOP(results, mp_float_t, mp_float_t, int8_t, larray, lstrides, rarray, rstrides);
|
||||
} else if(rhs->dtype == NDARRAY_UINT16) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
MODULO_FLOAT_LOOP(results, mp_float_t, mp_float_t, uint16_t, larray, lstrides, rarray, rstrides);
|
||||
} else if(rhs->dtype == NDARRAY_INT16) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
MODULO_FLOAT_LOOP(results, mp_float_t, mp_float_t, int16_t, larray, lstrides, rarray, rstrides);
|
||||
} else if(rhs->dtype == NDARRAY_FLOAT) {
|
||||
results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
MODULO_FLOAT_LOOP(results, mp_float_t, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides);
|
||||
}
|
||||
}
|
||||
|
||||
return MP_OBJ_FROM_PTR(results);
|
||||
}
|
||||
#endif /* NDARRAY_HAS_BINARY_OP_MODULO */
|
||||
|
||||
#if NDARRAY_HAS_BINARY_OP_MULTIPLY
|
||||
mp_obj_t ndarray_binary_multiply(ndarray_obj_t *lhs, ndarray_obj_t *rhs,
|
||||
uint8_t ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
|
||||
|
|
@ -1173,29 +1074,6 @@ mp_obj_t ndarray_inplace_ams(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rs
|
|||
}
|
||||
#endif /* NDARRAY_HAS_INPLACE_ADD || NDARRAY_HAS_INPLACE_MULTIPLY || NDARRAY_HAS_INPLACE_SUBTRACT */
|
||||
|
||||
|
||||
#if NDARRAY_HAS_INPLACE_MODULO
|
||||
mp_obj_t ndarray_inplace_modulo(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rstrides) {
|
||||
if((lhs->dtype != NDARRAY_FLOAT) && (rhs->dtype == NDARRAY_FLOAT)) {
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("results cannot be cast to specified type"));
|
||||
}
|
||||
if(lhs->dtype == NDARRAY_FLOAT) {
|
||||
if(rhs->dtype == NDARRAY_UINT8) {
|
||||
INLINE_MODULO_FLOAT_LOOP(lhs, uint8_t, larray, rarray, rstrides);
|
||||
} else if(rhs->dtype == NDARRAY_UINT8) {
|
||||
INLINE_MODULO_FLOAT_LOOP(lhs, int8_t, larray, rarray, rstrides);
|
||||
} else if(rhs->dtype == NDARRAY_UINT16) {
|
||||
INLINE_MODULO_FLOAT_LOOP(lhs, uint16_t, larray, rarray, rstrides);
|
||||
} else if(rhs->dtype == NDARRAY_INT16) {
|
||||
INLINE_MODULO_FLOAT_LOOP(lhs, int16_t, larray, rarray, rstrides);
|
||||
} else {
|
||||
INLINE_MODULO_FLOAT_LOOP(lhs, mp_float_t, larray, rarray, rstrides);
|
||||
}
|
||||
}
|
||||
return MP_OBJ_FROM_PTR(lhs);
|
||||
}
|
||||
#endif /* NDARRAY_HAS_INPLACE_MODULO */
|
||||
|
||||
#if NDARRAY_HAS_INPLACE_TRUE_DIVIDE
|
||||
mp_obj_t ndarray_inplace_divide(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rstrides) {
|
||||
|
||||
|
|
|
|||
|
|
@ -12,7 +12,6 @@
|
|||
|
||||
mp_obj_t ndarray_binary_equality(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *, mp_binary_op_t );
|
||||
mp_obj_t ndarray_binary_add(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
|
||||
mp_obj_t ndarray_binary_modulo(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
|
||||
mp_obj_t ndarray_binary_multiply(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
|
||||
mp_obj_t ndarray_binary_more(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *, mp_binary_op_t );
|
||||
mp_obj_t ndarray_binary_power(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
|
||||
|
|
@ -22,7 +21,6 @@ mp_obj_t ndarray_binary_logical(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size
|
|||
mp_obj_t ndarray_binary_floor_divide(ndarray_obj_t *, ndarray_obj_t *, uint8_t , size_t *, int32_t *, int32_t *);
|
||||
|
||||
mp_obj_t ndarray_inplace_ams(ndarray_obj_t *, ndarray_obj_t *, int32_t *, uint8_t );
|
||||
mp_obj_t ndarray_inplace_modulo(ndarray_obj_t *, ndarray_obj_t *, int32_t *);
|
||||
mp_obj_t ndarray_inplace_power(ndarray_obj_t *, ndarray_obj_t *, int32_t *);
|
||||
mp_obj_t ndarray_inplace_divide(ndarray_obj_t *, ndarray_obj_t *, int32_t *);
|
||||
|
||||
|
|
@ -539,176 +537,3 @@ mp_obj_t ndarray_inplace_divide(ndarray_obj_t *, ndarray_obj_t *, int32_t *);
|
|||
} while(0)
|
||||
|
||||
#endif /* ULAB_MAX_DIMS == 4 */
|
||||
|
||||
#define MODULO_FLOAT1(results, array, type_left, type_right, larray, lstrides, rarray, rstrides)\
|
||||
({\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
*(array)++ = MICROPY_FLOAT_C_FUN(fmod)(*((type_left *)(larray)), *((type_right *)(rarray)));\
|
||||
(larray) += (lstrides)[ULAB_MAX_DIMS - 1];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
|
||||
l++;\
|
||||
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
|
||||
})
|
||||
|
||||
#if ULAB_MAX_DIMS == 1
|
||||
#define MODULO_FLOAT_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
|
||||
type_out *array = (type_out *)(results)->array;\
|
||||
MODULO_FLOAT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
|
||||
} while(0)
|
||||
#endif /* ULAB_MAX_DIMS == 1 */
|
||||
|
||||
#if ULAB_MAX_DIMS == 2
|
||||
#define MODULO_FLOAT_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
|
||||
type_out *array = (type_out *)(results)->array;\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
MODULO_FLOAT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
|
||||
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
|
||||
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
|
||||
l++;\
|
||||
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
|
||||
} while(0)
|
||||
#endif /* ULAB_MAX_DIMS == 2 */
|
||||
|
||||
#if ULAB_MAX_DIMS == 3
|
||||
#define MODULO_FLOAT_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
|
||||
type_out *array = (type_out *)(results)->array;\
|
||||
size_t k = 0;\
|
||||
do {\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
MODULO_FLOAT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
|
||||
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
|
||||
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
|
||||
l++;\
|
||||
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
|
||||
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
|
||||
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
|
||||
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
|
||||
k++;\
|
||||
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
|
||||
} while(0)
|
||||
#endif /* ULAB_MAX_DIMS == 3 */
|
||||
|
||||
#if ULAB_MAX_DIMS == 4
|
||||
#define MODULO_FLOAT_LOOP(results, type_out, type_left, type_right, larray, lstrides, rarray, rstrides) do {\
|
||||
type_out *array = (type_out *)(results)->array;\
|
||||
size_t j = 0;\
|
||||
do {\
|
||||
size_t k = 0;\
|
||||
do {\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
MODULO_FLOAT1((results), (array), type_left, type_right, (larray), (lstrides), (rarray), (rstrides));\
|
||||
(larray) -= (lstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(larray) += (lstrides)[ULAB_MAX_DIMS - 2];\
|
||||
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
|
||||
l++;\
|
||||
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
|
||||
(larray) -= (lstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
|
||||
(larray) += (lstrides)[ULAB_MAX_DIMS - 3];\
|
||||
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
|
||||
k++;\
|
||||
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
|
||||
(larray) -= (lstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
|
||||
(larray) += (lstrides)[ULAB_MAX_DIMS - 4];\
|
||||
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
|
||||
j++;\
|
||||
} while(j < (results)->shape[ULAB_MAX_DIMS - 4]);\
|
||||
} while(0)
|
||||
#endif /* ULAB_MAX_DIMS == 4 */
|
||||
|
||||
|
||||
#define INPLACE_MODULO_FLOAT1(results, type_right, larray, rarray, rstrides)\
|
||||
({\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
*((mp_float_t *)larray) = MICROPY_FLOAT_C_FUN(fmod)(*((mp_float_t *)(larray)), *((type_right *)(rarray)));\
|
||||
(larray) += (results)->strides[ULAB_MAX_DIMS - 1];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 1];\
|
||||
l++;\
|
||||
} while(l < (results)->shape[ULAB_MAX_DIMS - 1]);\
|
||||
})
|
||||
|
||||
|
||||
#if ULAB_MAX_DIMS == 1
|
||||
#define INPLACE_MODULO_FLOAT_LOOP(results, type_right, larray, rarray, rstrides) do {\
|
||||
INPLACE_MODULO_FLOAT1((results), type_right, (larray), (rarray), (rstrides));\
|
||||
} while(0)
|
||||
#endif /* ULAB_MAX_DIMS == 1 */
|
||||
|
||||
|
||||
#if ULAB_MAX_DIMS == 2
|
||||
#define INLINE_MODULO_FLOAT_LOOP(results, type_right, larray, rarray, rstrides) do {\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
INPLACE_MODULO_FLOAT1((results), type_right, (larray), (rarray), (rstrides));\
|
||||
(larray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(larray) += (results)->strides[ULAB_MAX_DIMS - 2];\
|
||||
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
|
||||
l++;\
|
||||
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
|
||||
} while(0)
|
||||
#endif /* ULAB_MAX_DIMS == 2 */
|
||||
|
||||
#if ULAB_MAX_DIMS == 3
|
||||
#define INLINE_MODULO_FLOAT_LOOP(results, type_right, larray, rarray, rstrides) do {\
|
||||
size_t k = 0;\
|
||||
do {\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
INPLACE_MODULO_FLOAT1((results), type_right, (larray), (rarray), (rstrides));\
|
||||
(larray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(larray) += (results)->strides[ULAB_MAX_DIMS - 2];\
|
||||
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
|
||||
l++;\
|
||||
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
|
||||
(larray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
|
||||
(larray) += (results)->strides[ULAB_MAX_DIMS - 3];\
|
||||
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
|
||||
k++;\
|
||||
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
|
||||
} while(0)
|
||||
#endif /* ULAB_MAX_DIMS == 3 */
|
||||
|
||||
#if ULAB_MAX_DIMS == 4
|
||||
#define INLINE_MODULO_FLOAT_LOOP(results, type_right, larray, rarray, rstrides) do {\
|
||||
size_t j = 0;\
|
||||
do {\
|
||||
size_t k = 0;\
|
||||
do {\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
INPLACE_MODULO_FLOAT1((results), type_right, (larray), (rarray), (rstrides));\
|
||||
(larray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(larray) += (results)->strides[ULAB_MAX_DIMS - 2];\
|
||||
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 2];\
|
||||
l++;\
|
||||
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
|
||||
(larray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
|
||||
(larray) += (results)->strides[ULAB_MAX_DIMS - 3];\
|
||||
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 3];\
|
||||
k++;\
|
||||
} while(k < (results)->shape[ULAB_MAX_DIMS - 3]);\
|
||||
(larray) -= (results)->strides[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
|
||||
(larray) += (results)->strides[ULAB_MAX_DIMS - 4];\
|
||||
(rarray) -= (rstrides)[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
|
||||
(rarray) += (rstrides)[ULAB_MAX_DIMS - 4];\
|
||||
j++;\
|
||||
} while(j < (results)->shape[ULAB_MAX_DIMS - 4]);\
|
||||
} while(0)
|
||||
#endif /* ULAB_MAX_DIMS == 4 */
|
||||
|
|
@ -6,7 +6,7 @@
|
|||
*
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2021-2025 Zoltán Vörös
|
||||
* Copyright (c) 2021 Zoltán Vörös
|
||||
*
|
||||
*/
|
||||
|
||||
|
|
@ -42,11 +42,6 @@ void ndarray_properties_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
|
|||
dest[0] = ndarray_itemsize(self_in);
|
||||
break;
|
||||
#endif
|
||||
#if NDARRAY_HAS_NDIM
|
||||
case MP_QSTR_ndim:
|
||||
dest[0] = ndarray_ndim(self_in);
|
||||
break;
|
||||
#endif
|
||||
#if NDARRAY_HAS_SHAPE
|
||||
case MP_QSTR_shape:
|
||||
dest[0] = ndarray_shape(self_in);
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@
|
|||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
|
||||
* 2020-2025 Zoltán Vörös
|
||||
* 2020-2021 Zoltán Vörös
|
||||
*/
|
||||
|
||||
#ifndef _NDARRAY_PROPERTIES_
|
||||
|
|
@ -36,10 +36,6 @@ MP_DEFINE_CONST_FUN_OBJ_1(ndarray_flatiter_make_new_obj, ndarray_flatiter_make_n
|
|||
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_itemsize_obj, ndarray_itemsize);
|
||||
#endif
|
||||
|
||||
#if NDARRAY_HAS_NDIM
|
||||
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_ndim_obj, ndarray_ndim);
|
||||
#endif
|
||||
|
||||
#if NDARRAY_HAS_SHAPE
|
||||
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_shape_obj, ndarray_shape);
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -260,14 +260,48 @@ static mp_obj_t compare_isinf_isfinite(mp_obj_t _x, uint8_t mask) {
|
|||
}
|
||||
uint8_t *xarray = (uint8_t *)x->array;
|
||||
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
mp_float_t value = *(mp_float_t *)xarray;
|
||||
if(isnan(value)) {
|
||||
*rarray++ = 0;
|
||||
} else {
|
||||
*rarray++ = isinf(value) ? mask : 1 - mask;
|
||||
}
|
||||
ITERATOR_TAIL(x, xarray);
|
||||
xarray += x->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < x->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
xarray -= x->strides[ULAB_MAX_DIMS - 1] * x->shape[ULAB_MAX_DIMS-1];
|
||||
xarray += x->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < x->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
xarray -= x->strides[ULAB_MAX_DIMS - 2] * x->shape[ULAB_MAX_DIMS-2];
|
||||
xarray += x->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < x->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
xarray -= x->strides[ULAB_MAX_DIMS - 3] * x->shape[ULAB_MAX_DIMS-3];
|
||||
xarray += x->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < x->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif
|
||||
|
||||
return MP_OBJ_FROM_PTR(results);
|
||||
} else {
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("wrong input type"));
|
||||
|
|
|
|||
|
|
@ -338,7 +338,7 @@ static mp_obj_t io_loadtxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw
|
|||
buffer[read] = '\0';
|
||||
offset = buffer;
|
||||
while(*offset != '\0') {
|
||||
while(*offset == comment_char) {
|
||||
if(*offset == comment_char) {
|
||||
// clear the line till the end, or the buffer's end
|
||||
while((*offset != '\0')) {
|
||||
offset++;
|
||||
|
|
@ -425,7 +425,7 @@ static mp_obj_t io_loadtxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw
|
|||
offset = buffer;
|
||||
|
||||
while(*offset != '\0') {
|
||||
while(*offset == comment_char) {
|
||||
if(*offset == comment_char) {
|
||||
// clear the line till the end, or the buffer's end
|
||||
while((*offset != '\0')) {
|
||||
offset++;
|
||||
|
|
@ -619,14 +619,48 @@ static mp_obj_t io_save(mp_obj_t file, mp_obj_t ndarray_) {
|
|||
|
||||
uint8_t *array = (uint8_t *)ndarray->array;
|
||||
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
memcpy(buffer+offset, array, sz);
|
||||
offset += sz;
|
||||
if(offset == ULAB_IO_BUFFER_SIZE) {
|
||||
stream_p->write(stream, buffer, offset, &error);
|
||||
offset = 0;
|
||||
}
|
||||
ITERATOR_TAIL(ndarray, array);
|
||||
array += ndarray->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < ndarray->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1];
|
||||
array += ndarray->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < ndarray->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2];
|
||||
array += ndarray->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < ndarray->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3];
|
||||
array += ndarray->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < ndarray->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif
|
||||
|
||||
stream_p->write(stream, buffer, offset, &error);
|
||||
stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error);
|
||||
|
||||
|
|
@ -717,32 +751,16 @@ static mp_obj_t io_savetxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw
|
|||
char *buffer = m_new(char, ULAB_IO_BUFFER_SIZE);
|
||||
int error;
|
||||
|
||||
size_t len_comment;
|
||||
char *comments;
|
||||
|
||||
if(mp_obj_is_str(args[5].u_obj)) {
|
||||
const char *_comments = mp_obj_str_get_data(args[5].u_obj, &len_comment);
|
||||
comments = (char *)_comments;
|
||||
} else {
|
||||
len_comment = 2;
|
||||
comments = m_new(char, len_comment);
|
||||
comments[0] = '#';
|
||||
comments[1] = ' ';
|
||||
}
|
||||
|
||||
if(mp_obj_is_str(args[3].u_obj)) {
|
||||
size_t _len;
|
||||
if(mp_obj_is_str(args[5].u_obj)) {
|
||||
const char *comments = mp_obj_str_get_data(args[5].u_obj, &_len);
|
||||
stream_p->write(stream, comments, _len, &error);
|
||||
} else {
|
||||
stream_p->write(stream, "# ", 2, &error);
|
||||
}
|
||||
const char *header = mp_obj_str_get_data(args[3].u_obj, &_len);
|
||||
|
||||
stream_p->write(stream, comments, len_comment, &error);
|
||||
|
||||
// We can't write the header in the single chunk, for it might contain line breaks
|
||||
for(size_t i = 0; i < _len; header++, i++) {
|
||||
stream_p->write(stream, header, 1, &error);
|
||||
if((*header == '\n') && (i < _len)) {
|
||||
stream_p->write(stream, comments, len_comment, &error);
|
||||
}
|
||||
}
|
||||
stream_p->write(stream, header, _len, &error);
|
||||
stream_p->write(stream, "\n", 1, &error);
|
||||
}
|
||||
|
||||
|
|
@ -781,19 +799,16 @@ static mp_obj_t io_savetxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw
|
|||
} while(k < ndarray->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif
|
||||
|
||||
if(mp_obj_is_str(args[4].u_obj)) { // footer string
|
||||
if(mp_obj_is_str(args[4].u_obj)) {
|
||||
size_t _len;
|
||||
if(mp_obj_is_str(args[5].u_obj)) {
|
||||
const char *comments = mp_obj_str_get_data(args[5].u_obj, &_len);
|
||||
stream_p->write(stream, comments, _len, &error);
|
||||
} else {
|
||||
stream_p->write(stream, "# ", 2, &error);
|
||||
}
|
||||
const char *footer = mp_obj_str_get_data(args[4].u_obj, &_len);
|
||||
|
||||
stream_p->write(stream, comments, len_comment, &error);
|
||||
|
||||
// We can't write the header in the single chunk, for it might contain line breaks
|
||||
for(size_t i = 0; i < _len; footer++, i++) {
|
||||
stream_p->write(stream, footer, 1, &error);
|
||||
if((*footer == '\n') && (i < _len)) {
|
||||
stream_p->write(stream, comments, len_comment, &error);
|
||||
}
|
||||
}
|
||||
stream_p->write(stream, footer, _len, &error);
|
||||
stream_p->write(stream, "\n", 1, &error);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -274,7 +274,7 @@ static mp_obj_t numerical_sum_mean_std_iterable(mp_obj_t oin, uint8_t optype, si
|
|||
}
|
||||
}
|
||||
|
||||
static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, mp_obj_t keepdims, uint8_t optype, size_t ddof) {
|
||||
static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype, size_t ddof) {
|
||||
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
|
||||
uint8_t *array = (uint8_t *)ndarray->array;
|
||||
shape_strides _shape_strides = tools_reduce_axes(ndarray, axis);
|
||||
|
|
@ -372,7 +372,7 @@ static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t
|
|||
mp_float_t norm = (mp_float_t)_shape_strides.shape[0];
|
||||
// re-wind the array here
|
||||
farray = (mp_float_t *)results->array;
|
||||
for(size_t i = 0; i < results->len; i++) {
|
||||
for(size_t i=0; i < results->len; i++) {
|
||||
*farray++ *= norm;
|
||||
}
|
||||
}
|
||||
|
|
@ -380,7 +380,7 @@ static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t
|
|||
bool isStd = optype == NUMERICAL_STD ? 1 : 0;
|
||||
results = ndarray_new_dense_ndarray(_shape_strides.ndim, _shape_strides.shape, NDARRAY_FLOAT);
|
||||
farray = (mp_float_t *)results->array;
|
||||
// we can return the 0 array here, if the degrees of freedom are larger than the length of the axis
|
||||
// we can return the 0 array here, if the degrees of freedom is larger than the length of the axis
|
||||
if((optype == NUMERICAL_STD) && (_shape_strides.shape[0] <= ddof)) {
|
||||
return MP_OBJ_FROM_PTR(results);
|
||||
}
|
||||
|
|
@ -397,9 +397,11 @@ static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t
|
|||
RUN_MEAN_STD(mp_float_t, array, farray, _shape_strides, div, isStd);
|
||||
}
|
||||
}
|
||||
return ulab_tools_restore_dims(ndarray, results, keepdims, _shape_strides);
|
||||
if(results->ndim == 0) { // return a scalar here
|
||||
return mp_binary_get_val_array(results->dtype, results->array, 0);
|
||||
}
|
||||
return MP_OBJ_FROM_PTR(results);
|
||||
}
|
||||
// we should never get to this point
|
||||
return mp_const_none;
|
||||
}
|
||||
#endif
|
||||
|
|
@ -439,7 +441,7 @@ static mp_obj_t numerical_argmin_argmax_iterable(mp_obj_t oin, uint8_t optype) {
|
|||
}
|
||||
}
|
||||
|
||||
static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t keepdims, mp_obj_t axis, uint8_t optype) {
|
||||
static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype) {
|
||||
// TODO: treat the flattened array
|
||||
if(ndarray->len == 0) {
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("attempt to get (arg)min/(arg)max of empty sequence"));
|
||||
|
|
@ -519,9 +521,7 @@ static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t
|
|||
int32_t *strides = m_new0(int32_t, ULAB_MAX_DIMS);
|
||||
|
||||
numerical_reduce_axes(ndarray, ax, shape, strides);
|
||||
shape_strides _shape_strides = tools_reduce_axes(ndarray, axis);
|
||||
|
||||
uint8_t index = _shape_strides.axis;
|
||||
uint8_t index = ULAB_MAX_DIMS - ndarray->ndim + ax;
|
||||
|
||||
ndarray_obj_t *results = NULL;
|
||||
|
||||
|
|
@ -546,9 +546,12 @@ static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t
|
|||
}
|
||||
|
||||
m_del(int32_t, strides, ULAB_MAX_DIMS);
|
||||
return ulab_tools_restore_dims(ndarray, results, keepdims, _shape_strides);
|
||||
|
||||
if(results->len == 1) {
|
||||
return mp_binary_get_val_array(results->dtype, results->array, 0);
|
||||
}
|
||||
return MP_OBJ_FROM_PTR(results);
|
||||
}
|
||||
// we should never get to this point
|
||||
return mp_const_none;
|
||||
}
|
||||
#endif
|
||||
|
|
@ -557,7 +560,6 @@ static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m
|
|||
static const mp_arg_t allowed_args[] = {
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE} } ,
|
||||
{ MP_QSTR_axis, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_keepdims, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_FALSE } },
|
||||
};
|
||||
|
||||
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
||||
|
|
@ -565,8 +567,6 @@ static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m
|
|||
|
||||
mp_obj_t oin = args[0].u_obj;
|
||||
mp_obj_t axis = args[1].u_obj;
|
||||
mp_obj_t keepdims = args[2].u_obj;
|
||||
|
||||
if((axis != mp_const_none) && (!mp_obj_is_int(axis))) {
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("axis must be None, or an integer"));
|
||||
}
|
||||
|
|
@ -598,12 +598,11 @@ static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m
|
|||
case NUMERICAL_ARGMIN:
|
||||
case NUMERICAL_ARGMAX:
|
||||
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
|
||||
return numerical_argmin_argmax_ndarray(ndarray, keepdims, axis, optype);
|
||||
case NUMERICAL_MEAN:
|
||||
case NUMERICAL_STD:
|
||||
return numerical_argmin_argmax_ndarray(ndarray, axis, optype);
|
||||
case NUMERICAL_SUM:
|
||||
case NUMERICAL_MEAN:
|
||||
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype)
|
||||
return numerical_sum_mean_std_ndarray(ndarray, axis, keepdims, optype, 0);
|
||||
return numerical_sum_mean_std_ndarray(ndarray, axis, optype, 0);
|
||||
default:
|
||||
mp_raise_NotImplementedError(MP_ERROR_TEXT("operation is not implemented on ndarrays"));
|
||||
}
|
||||
|
|
@ -1386,7 +1385,6 @@ mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg
|
|||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } } ,
|
||||
{ MP_QSTR_axis, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_ddof, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
||||
{ MP_QSTR_keepdims, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_FALSE } },
|
||||
};
|
||||
|
||||
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
||||
|
|
@ -1395,8 +1393,6 @@ mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg
|
|||
mp_obj_t oin = args[0].u_obj;
|
||||
mp_obj_t axis = args[1].u_obj;
|
||||
size_t ddof = args[2].u_int;
|
||||
mp_obj_t keepdims = args[3].u_obj;
|
||||
|
||||
if((axis != mp_const_none) && (mp_obj_get_int(axis) != 0) && (mp_obj_get_int(axis) != 1)) {
|
||||
// this seems to pass with False, and True...
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("axis must be None, or an integer"));
|
||||
|
|
@ -1405,7 +1401,7 @@ mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg
|
|||
return numerical_sum_mean_std_iterable(oin, NUMERICAL_STD, ddof);
|
||||
} else if(mp_obj_is_type(oin, &ulab_ndarray_type)) {
|
||||
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
|
||||
return numerical_sum_mean_std_ndarray(ndarray, axis, keepdims, NUMERICAL_STD, ddof);
|
||||
return numerical_sum_mean_std_ndarray(ndarray, axis, NUMERICAL_STD, ddof);
|
||||
} else {
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("input must be tuple, list, range, or ndarray"));
|
||||
}
|
||||
|
|
|
|||
|
|
@ -57,9 +57,35 @@
|
|||
(rarray) += (results)->itemsize;\
|
||||
})
|
||||
|
||||
// The mean could be calculated by simply dividing the sum by
|
||||
// the number of elements, but that method is numerically unstable
|
||||
#define RUN_MEAN1(type, array, rarray, ss)\
|
||||
({\
|
||||
mp_float_t M = 0.0;\
|
||||
for(size_t i=0; i < (ss).shape[0]; i++) {\
|
||||
mp_float_t value = (mp_float_t)(*(type *)(array));\
|
||||
M = M + (value - M) / (mp_float_t)(i+1);\
|
||||
(array) += (ss).strides[0];\
|
||||
}\
|
||||
*(rarray)++ = M;\
|
||||
})
|
||||
|
||||
// Instead of the straightforward implementation of the definition,
|
||||
// we take the numerically stable Welford algorithm here
|
||||
// https://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
|
||||
#define RUN_STD1(type, array, rarray, ss, div)\
|
||||
({\
|
||||
mp_float_t M = 0.0, m = 0.0, S = 0.0;\
|
||||
for(size_t i=0; i < (ss).shape[0]; i++) {\
|
||||
mp_float_t value = (mp_float_t)(*(type *)(array));\
|
||||
m = M + (value - M) / (mp_float_t)(i+1);\
|
||||
S = S + (value - M) * (value - m);\
|
||||
M = m;\
|
||||
(array) += (ss).strides[0];\
|
||||
}\
|
||||
*(rarray)++ = MICROPY_FLOAT_C_FUN(sqrt)(S / (div));\
|
||||
})
|
||||
|
||||
#define RUN_MEAN_STD1(type, array, rarray, ss, div, isStd)\
|
||||
({\
|
||||
mp_float_t M = 0.0, m = 0.0, S = 0.0;\
|
||||
|
|
@ -167,6 +193,14 @@
|
|||
RUN_SUM1(type, (array), (results), (rarray), (ss));\
|
||||
} while(0)
|
||||
|
||||
#define RUN_MEAN(type, array, rarray, ss) do {\
|
||||
RUN_MEAN1(type, (array), (rarray), (ss));\
|
||||
} while(0)
|
||||
|
||||
#define RUN_STD(type, array, rarray, ss, div) do {\
|
||||
RUN_STD1(type, (array), (results), (rarray), (ss), (div));\
|
||||
} while(0)
|
||||
|
||||
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
|
||||
RUN_MEAN_STD1(type, (array), (rarray), (ss), (div), (isStd));\
|
||||
} while(0)
|
||||
|
|
@ -200,6 +234,26 @@
|
|||
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
|
||||
} while(0)
|
||||
|
||||
#define RUN_MEAN(type, array, rarray, ss) do {\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
RUN_MEAN1(type, (array), (rarray), (ss));\
|
||||
(array) -= (ss).strides[0] * (ss).shape[0];\
|
||||
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
|
||||
l++;\
|
||||
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
|
||||
} while(0)
|
||||
|
||||
#define RUN_STD(type, array, rarray, ss, div) do {\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
RUN_STD1(type, (array), (rarray), (ss), (div));\
|
||||
(array) -= (ss).strides[0] * (ss).shape[0];\
|
||||
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
|
||||
l++;\
|
||||
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
|
||||
} while(0)
|
||||
|
||||
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
|
|
@ -271,6 +325,38 @@
|
|||
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
|
||||
} while(0)
|
||||
|
||||
#define RUN_MEAN(type, array, rarray, ss) do {\
|
||||
size_t k = 0;\
|
||||
do {\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
RUN_MEAN1(type, (array), (rarray), (ss));\
|
||||
(array) -= (ss).strides[0] * (ss).shape[0];\
|
||||
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
|
||||
l++;\
|
||||
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
|
||||
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
|
||||
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
|
||||
k++;\
|
||||
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
|
||||
} while(0)
|
||||
|
||||
#define RUN_STD(type, array, rarray, ss, div) do {\
|
||||
size_t k = 0;\
|
||||
do {\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
RUN_STD1(type, (array), (rarray), (ss), (div));\
|
||||
(array) -= (ss).strides[0] * (ss).shape[0];\
|
||||
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
|
||||
l++;\
|
||||
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
|
||||
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
|
||||
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
|
||||
k++;\
|
||||
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
|
||||
} while(0)
|
||||
|
||||
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
|
||||
size_t k = 0;\
|
||||
do {\
|
||||
|
|
@ -381,6 +467,50 @@
|
|||
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
|
||||
} while(0)
|
||||
|
||||
#define RUN_MEAN(type, array, rarray, ss) do {\
|
||||
size_t j = 0;\
|
||||
do {\
|
||||
size_t k = 0;\
|
||||
do {\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
RUN_MEAN1(type, (array), (rarray), (ss));\
|
||||
(array) -= (ss).strides[0] * (ss).shape[0];\
|
||||
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
|
||||
l++;\
|
||||
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
|
||||
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
|
||||
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
|
||||
k++;\
|
||||
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
|
||||
(array) -= (ss).strides[ULAB_MAX_DIMS - 2] * (ss).shape[ULAB_MAX_DIMS - 2];\
|
||||
(array) += (ss).strides[ULAB_MAX_DIMS - 3];\
|
||||
j++;\
|
||||
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
|
||||
} while(0)
|
||||
|
||||
#define RUN_STD(type, array, rarray, ss, div) do {\
|
||||
size_t j = 0;\
|
||||
do {\
|
||||
size_t k = 0;\
|
||||
do {\
|
||||
size_t l = 0;\
|
||||
do {\
|
||||
RUN_STD1(type, (array), (rarray), (ss), (div));\
|
||||
(array) -= (ss).strides[0] * (ss).shape[0];\
|
||||
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
|
||||
l++;\
|
||||
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
|
||||
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
|
||||
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
|
||||
k++;\
|
||||
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
|
||||
(array) -= (ss).strides[ULAB_MAX_DIMS - 2] * (ss).shape[ULAB_MAX_DIMS - 2];\
|
||||
(array) += (ss).strides[ULAB_MAX_DIMS - 3];\
|
||||
j++;\
|
||||
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
|
||||
} while(0)
|
||||
|
||||
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
|
||||
size_t j = 0;\
|
||||
do {\
|
||||
|
|
|
|||
|
|
@ -197,9 +197,42 @@ mp_obj_t poly_polyval(mp_obj_t o_p, mp_obj_t o_x) {
|
|||
|
||||
// TODO: these loops are really nothing, but the re-impplementation of
|
||||
// ITERATE_VECTOR from vectorise.c. We could pass a function pointer here
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
*array++ = poly_eval(func(sarray), p, plen);
|
||||
ITERATOR_TAIL(source, sarray);
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif
|
||||
} else {
|
||||
// o_x had better be a one-dimensional standard iterable
|
||||
ndarray = ndarray_new_linear_array(mp_obj_get_int(mp_obj_len_maybe(o_x)), NDARRAY_FLOAT);
|
||||
|
|
|
|||
|
|
@ -57,7 +57,7 @@ const mp_obj_type_t random_generator_type = {
|
|||
void random_generator_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
||||
(void)kind;
|
||||
random_generator_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
mp_printf(MP_PYTHON_PRINTER, "Generator() at 0x%p", self);
|
||||
mp_printf(MP_PYTHON_PRINTER, "Gnerator() at 0x%p", self);
|
||||
}
|
||||
|
||||
mp_obj_t random_generator_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
||||
|
|
@ -149,9 +149,12 @@ static mp_obj_t random_normal(size_t n_args, const mp_obj_t *pos_args, mp_map_t
|
|||
ndarray = ndarray_new_linear_array((size_t)mp_obj_get_int(size), NDARRAY_FLOAT);
|
||||
} else if(mp_obj_is_type(size, &mp_type_tuple)) {
|
||||
mp_obj_tuple_t *_shape = MP_OBJ_TO_PTR(size);
|
||||
if(_shape->len > ULAB_MAX_DIMS) {
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("maximum number of dimensions is " MP_STRINGIFY(ULAB_MAX_DIMS)));
|
||||
}
|
||||
ndarray = ndarray_new_ndarray_from_tuple(_shape, NDARRAY_FLOAT);
|
||||
} else { // input type not supported
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("shape must be None, an integer or a tuple of integers"));
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("shape must be None, and integer or a tuple of integers"));
|
||||
}
|
||||
} else {
|
||||
// return single value
|
||||
|
|
@ -218,16 +221,27 @@ static mp_obj_t random_random(size_t n_args, const mp_obj_t *pos_args, mp_map_t
|
|||
mp_obj_t out = args[2].u_obj;
|
||||
|
||||
ndarray_obj_t *ndarray = NULL;
|
||||
size_t *shape = m_new0(size_t, ULAB_MAX_DIMS);
|
||||
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
|
||||
uint8_t ndim = 1;
|
||||
|
||||
if(size != mp_const_none) {
|
||||
if(mp_obj_is_int(size)) {
|
||||
shape[ULAB_MAX_DIMS - 1] = (size_t)mp_obj_get_int(size);
|
||||
} else if(mp_obj_is_type(size, &mp_type_tuple)) {
|
||||
mp_obj_tuple_t *_shape = MP_OBJ_TO_PTR(size);
|
||||
ndarray = ndarray_new_ndarray_from_tuple(_shape, NDARRAY_FLOAT);
|
||||
if(_shape->len > ULAB_MAX_DIMS) {
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("maximum number of dimensions is " MP_STRINGIFY(ULAB_MAX_DIMS)));
|
||||
}
|
||||
ndim = _shape->len;
|
||||
for(size_t i = 0; i < ULAB_MAX_DIMS; i++) {
|
||||
if(i >= ndim) {
|
||||
shape[ULAB_MAX_DIMS - 1 - i] = 0;
|
||||
} else {
|
||||
shape[ULAB_MAX_DIMS - 1 - i] = mp_obj_get_int(_shape->items[i]);
|
||||
}
|
||||
}
|
||||
} else { // input type not supported
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("shape must be None, an integer or a tuple of integers"));
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("shape must be None, and integer or a tuple of integers"));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -253,8 +267,7 @@ static mp_obj_t random_random(size_t n_args, const mp_obj_t *pos_args, mp_map_t
|
|||
}
|
||||
} else { // out == None
|
||||
if(size != mp_const_none) {
|
||||
mp_obj_tuple_t *_shape = MP_OBJ_TO_PTR(size);
|
||||
ndarray = ndarray_new_ndarray_from_tuple(_shape, NDARRAY_FLOAT);
|
||||
ndarray = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
|
||||
} else {
|
||||
// return single value
|
||||
mp_float_t value;
|
||||
|
|
@ -323,9 +336,13 @@ static mp_obj_t random_uniform(size_t n_args, const mp_obj_t *pos_args, mp_map_t
|
|||
return mp_obj_new_float(value);
|
||||
} else if(mp_obj_is_type(size, &mp_type_tuple)) {
|
||||
mp_obj_tuple_t *_shape = MP_OBJ_TO_PTR(size);
|
||||
// TODO: this could be reduced, if the inspection was in the ndarray_new_ndarray_from_tuple function
|
||||
if(_shape->len > ULAB_MAX_DIMS) {
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("maximum number of dimensions is " MP_STRINGIFY(ULAB_MAX_DIMS)));
|
||||
}
|
||||
ndarray = ndarray_new_ndarray_from_tuple(_shape, NDARRAY_FLOAT);
|
||||
} else { // input type not supported
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("shape must be None, an integer or a tuple of integers"));
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("shape must be None, and integer or a tuple of integers"));
|
||||
}
|
||||
|
||||
mp_float_t *array = (mp_float_t *)ndarray->array;
|
||||
|
|
|
|||
|
|
@ -91,10 +91,43 @@ static mp_obj_t vector_generic_vector(size_t n_args, const mp_obj_t *pos_args, m
|
|||
|
||||
mp_float_t (*func)(void *) = ndarray_get_float_function(source->dtype);
|
||||
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
mp_float_t value = func(sarray);
|
||||
*tarray++ = f(value);
|
||||
ITERATOR_TAIL(source, sarray);
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif /* ULAB_MAX_DIMS > 1 */
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif /* ULAB_MAX_DIMS > 2 */
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif /* ULAB_MAX_DIMS > 3 */
|
||||
#else
|
||||
if(source->dtype == NDARRAY_UINT8) {
|
||||
ITERATE_VECTOR(uint8_t, target, tarray, tstrides, source, sarray);
|
||||
|
|
@ -138,10 +171,43 @@ static mp_obj_t vector_generic_vector(mp_obj_t o_in, mp_float_t (*f)(mp_float_t)
|
|||
|
||||
mp_float_t (*func)(void *) = ndarray_get_float_function(source->dtype);
|
||||
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
mp_float_t value = func(sarray);
|
||||
*array++ = f(value);
|
||||
ITERATOR_TAIL(source, sarray);
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif /* ULAB_MAX_DIMS > 1 */
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif /* ULAB_MAX_DIMS > 2 */
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif /* ULAB_MAX_DIMS > 3 */
|
||||
#else
|
||||
if(source->dtype == NDARRAY_UINT8) {
|
||||
ITERATE_VECTOR(uint8_t, array, source, sarray);
|
||||
|
|
@ -261,11 +327,43 @@ mp_obj_t vector_around(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg
|
|||
|
||||
mp_float_t (*func)(void *) = ndarray_get_float_function(source->dtype);
|
||||
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
mp_float_t f = func(sarray);
|
||||
*narray++ = MICROPY_FLOAT_C_FUN(round)(f * mul) / mul;
|
||||
ITERATOR_TAIL(source, sarray);
|
||||
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif
|
||||
return MP_OBJ_FROM_PTR(ndarray);
|
||||
}
|
||||
|
||||
|
|
@ -533,13 +631,46 @@ static mp_obj_t vector_exp(mp_obj_t o_in) {
|
|||
mp_float_t *array = (mp_float_t *)ndarray->array;
|
||||
uint8_t itemsize = sizeof(mp_float_t);
|
||||
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
mp_float_t real = *(mp_float_t *)sarray;
|
||||
mp_float_t imag = *(mp_float_t *)(sarray + itemsize);
|
||||
mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real);
|
||||
*array++ = exp_real * MICROPY_FLOAT_C_FUN(cos)(imag);
|
||||
*array++ = exp_real * MICROPY_FLOAT_C_FUN(sin)(imag);
|
||||
ITERATOR_TAIL(source, sarray);
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif /* ULAB_MAX_DIMS > 1 */
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif /* ULAB_MAX_DIMS > 2 */
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif /* ULAB_MAX_DIMS > 3 */
|
||||
return MP_OBJ_FROM_PTR(ndarray);
|
||||
}
|
||||
}
|
||||
|
|
@ -790,7 +921,20 @@ mp_obj_t vector_sqrt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args)
|
|||
mp_float_t *array = (mp_float_t *)ndarray->array;
|
||||
uint8_t itemsize = sizeof(mp_float_t);
|
||||
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
mp_float_t real = *(mp_float_t *)sarray;
|
||||
mp_float_t imag = *(mp_float_t *)(sarray + itemsize);
|
||||
mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(sqrt)(real * real + imag * imag);
|
||||
|
|
@ -798,15 +942,47 @@ mp_obj_t vector_sqrt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args)
|
|||
mp_float_t theta = MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(atan2)(imag, real);
|
||||
*array++ = sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta);
|
||||
*array++ = sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta);
|
||||
ITERATOR_TAIL(source, sarray);
|
||||
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif /* ULAB_MAX_DIMS > 1 */
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif /* ULAB_MAX_DIMS > 2 */
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif /* ULAB_MAX_DIMS > 3 */
|
||||
return MP_OBJ_FROM_PTR(ndarray);
|
||||
} else if(source->dtype == NDARRAY_FLOAT) {
|
||||
uint8_t *sarray = (uint8_t *)source->array;
|
||||
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_COMPLEX);
|
||||
mp_float_t *array = (mp_float_t *)ndarray->array;
|
||||
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
mp_float_t value = *(mp_float_t *)sarray;
|
||||
if(value >= MICROPY_FLOAT_CONST(0.0)) {
|
||||
*array++ = MICROPY_FLOAT_C_FUN(sqrt)(value);
|
||||
|
|
@ -815,8 +991,27 @@ mp_obj_t vector_sqrt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args)
|
|||
array++;
|
||||
*array++ = MICROPY_FLOAT_C_FUN(sqrt)(-value);
|
||||
}
|
||||
ITERATOR_TAIL(source, sarray);
|
||||
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 1];
|
||||
l++;
|
||||
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif /* ULAB_MAX_DIMS > 1 */
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif /* ULAB_MAX_DIMS > 2 */
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif /* ULAB_MAX_DIMS > 3 */
|
||||
return MP_OBJ_FROM_PTR(ndarray);
|
||||
} else {
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("input dtype must be float or complex"));
|
||||
|
|
@ -876,12 +1071,45 @@ static mp_obj_t vector_vectorized_function_call(mp_obj_t self_in, size_t n_args,
|
|||
uint8_t *sarray = (uint8_t *)source->array;
|
||||
uint8_t *narray = (uint8_t *)ndarray->array;
|
||||
|
||||
ITERATOR_HEAD();
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
size_t i = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
size_t j = 0;
|
||||
do {
|
||||
#endif
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
size_t k = 0;
|
||||
do {
|
||||
#endif
|
||||
size_t l = 0;
|
||||
do {
|
||||
avalue[0] = mp_binary_get_val_array(source->dtype, sarray, 0);
|
||||
fvalue = MP_OBJ_TYPE_GET_SLOT(self->type, call)(self->fun, 1, 0, avalue);
|
||||
ndarray_set_value(self->otypes, narray, 0, fvalue);
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 1];
|
||||
narray += ndarray->itemsize;
|
||||
ITERATOR_TAIL(source, sarray);
|
||||
l++;
|
||||
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS - 1];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 2];
|
||||
k++;
|
||||
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
|
||||
#endif /* ULAB_MAX_DIMS > 1 */
|
||||
#if ULAB_MAX_DIMS > 2
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS - 2];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 3];
|
||||
j++;
|
||||
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
|
||||
#endif /* ULAB_MAX_DIMS > 2 */
|
||||
#if ULAB_MAX_DIMS > 3
|
||||
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS - 3];
|
||||
sarray += source->strides[ULAB_MAX_DIMS - 4];
|
||||
i++;
|
||||
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
|
||||
#endif /* ULAB_MAX_DIMS > 3 */
|
||||
|
||||
return MP_OBJ_FROM_PTR(ndarray);
|
||||
} else if(mp_obj_is_type(args[0], &mp_type_tuple) || mp_obj_is_type(args[0], &mp_type_list) ||
|
||||
|
|
|
|||
|
|
@ -1,701 +0,0 @@
|
|||
/*
|
||||
* This file is part of the micropython-ulab project,
|
||||
*
|
||||
* https://github.com/v923z/micropython-ulab
|
||||
*
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2024 Harald Milz <hm@seneca.muc.de>
|
||||
*
|
||||
* References:
|
||||
* - Dr. Robert van Engelen, Improving the mp_float_t Exponential Quadrature Tanh-Sinh, Sinh-Sinh and Exp-Sinh Formulas,
|
||||
* 2021, https://www.genivia.com/qthsh.html
|
||||
* - Borwein, Bailey & Girgensohn, "Experimentation in Mathematics - Computational Paths to Discovery", A K Peters,
|
||||
* 2003, pages 312-313
|
||||
* - Joren Vanherck, Bart Sorée, Wim Magnus, Tanh-sinh quadrature for single and multiple integration using
|
||||
* floating-point arithmetic, 2020, https://arxiv.org/abs/2007.15057
|
||||
* - Tanh-Sinh quadrature, Wikipedia, https://en.wikipedia.org/wiki/Tanh-sinh_quadrature
|
||||
* - Romberg's method, Wikipedia, https://en.wikipedia.org/wiki/Romberg%27s_method
|
||||
* - Adaptive Simpson's method, Wikipedia, https://en.wikipedia.org/wiki/Adaptive_Simpson%27s_method
|
||||
* - Gauss–Kronrod quadrature formula, Wikipedia, https://en.wikipedia.org/wiki/Gauss%E2%80%93Kronrod_quadrature_formula
|
||||
*
|
||||
* This module provides four integration methods, and thus deviates from scipy.integrate a bit.
|
||||
* As for the pros and cons of the different methods please consult the literature above.
|
||||
* The code was ported to Micropython from Dr. Engelen's paper and used with his written kind permission
|
||||
* - quad - Tanh-Sinh, Sinh-Sinh and Exp-Sinh quadrature
|
||||
* - romberg - Romberg quadrature
|
||||
* - simpson - Adaptive Simpson quadrature
|
||||
* - quadgk - Adaptive Gauss-Kronrod (G10,K21) quadrature
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include "py/obj.h"
|
||||
#include "py/runtime.h"
|
||||
#include "py/misc.h"
|
||||
#include "py/objtuple.h"
|
||||
|
||||
#include "../../ndarray.h"
|
||||
#include "../../ulab.h"
|
||||
#include "../../ulab_tools.h"
|
||||
#include "integrate.h"
|
||||
|
||||
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
||||
ULAB_DEFINE_FLOAT_CONST(etolerance, MICROPY_FLOAT_CONST(1e-14), 0x283424dcUL, 0x3e901b2b29a4692bULL);
|
||||
#define ULAB_MACHEPS MICROPY_FLOAT_CONST(1e-17)
|
||||
#else
|
||||
ULAB_DEFINE_FLOAT_CONST(etolerance, MICROPY_FLOAT_CONST(1e-8), 0x358637cfUL, 0x3e7010c6f7d42d18ULL);
|
||||
#define ULAB_MACHEPS MICROPY_FLOAT_CONST(1e-8)
|
||||
#endif
|
||||
|
||||
#define ULAB_ZERO MICROPY_FLOAT_CONST(0.0)
|
||||
#define ULAB_POINT_TWO_FIVE MICROPY_FLOAT_CONST(0.25)
|
||||
#define ULAB_ONE MICROPY_FLOAT_CONST(1.0)
|
||||
#define ULAB_TWO MICROPY_FLOAT_CONST(2.0)
|
||||
#define ULAB_FOUR MICROPY_FLOAT_CONST(4.0)
|
||||
#define ULAB_SIX MICROPY_FLOAT_CONST(6.0)
|
||||
#define ULAB_TEN MICROPY_FLOAT_CONST(10.0)
|
||||
#define ULAB_FIFTEEN MICROPY_FLOAT_CONST(15.0)
|
||||
#define ULAB_EPSILON_5 MICROPY_FLOAT_CONST(1e-5)
|
||||
|
||||
|
||||
static mp_float_t integrate_python_call(const mp_obj_type_t *type, mp_obj_t fun, mp_float_t x, mp_obj_t *fargs, uint8_t nparams) {
|
||||
// Helper function for calculating the value of f(x, a, b, c, ...),
|
||||
// where f is defined in python. Takes a float, returns a float.
|
||||
// The array of mp_obj_t type must be supplied, as must the number of parameters (a, b, c...) in nparams
|
||||
fargs[0] = mp_obj_new_float(x);
|
||||
return mp_obj_get_float(MP_OBJ_TYPE_GET_SLOT(type, call)(fun, nparams+1, 0, fargs));
|
||||
}
|
||||
|
||||
// sign helper function
|
||||
int sign(mp_float_t x) {
|
||||
if (x >= ULAB_ZERO)
|
||||
return 1;
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
#if ULAB_INTEGRATE_HAS_TANHSINH
|
||||
// Tanh-Sinh, Sinh-Sinh and Exp-Sinh quadrature
|
||||
// https://www.genivia.com/qthsh.html
|
||||
|
||||
// return optimized Exp-Sinh integral split point d
|
||||
mp_float_t exp_sinh_opt_d(mp_float_t (*fun)(mp_float_t), mp_float_t a, mp_float_t eps, mp_float_t d) {
|
||||
const mp_obj_type_t *type = mp_obj_get_type(fun);
|
||||
mp_obj_t fargs[1];
|
||||
mp_float_t h2 = integrate_python_call(type, fun, a + d/2, fargs, 0) - integrate_python_call(type, fun, (a + d*2)*4, fargs, 0);
|
||||
int i = 1, j = 32; // j=32 is optimal to find r
|
||||
if (isfinite(h2) && MICROPY_FLOAT_C_FUN(fabs)(h2) > ULAB_EPSILON_5) { // if |h2| > 2^-16
|
||||
mp_float_t r, fl, fr, h, s = 0, lfl, lfr, lr = 2;
|
||||
do { // find max j such that fl and fr are finite
|
||||
j /= 2;
|
||||
r = 1 << (i + j);
|
||||
fl = integrate_python_call(type, fun, a + d/r, fargs, 0);
|
||||
fr = integrate_python_call(type, fun, (a + d*r)*r*r, fargs, 0);
|
||||
h = fl - fr;
|
||||
} while (j > 1 && !isfinite(h));
|
||||
if (j > 1 && isfinite(h) && sign(h) != sign(h2)) {
|
||||
lfl = fl; // last fl=f(a+d/r)
|
||||
lfr = fr; // last fr=f(a+d*r)*r*r
|
||||
do { // bisect in 4 iterations
|
||||
j /= 2;
|
||||
r = 1 << (i + j);
|
||||
fl = integrate_python_call(type, fun, a + d/r, fargs, 0);
|
||||
fr = integrate_python_call(type, fun, (a + d*r)*r*r, fargs, 0);
|
||||
h = fl - fr;
|
||||
if (isfinite(h)) {
|
||||
s += MICROPY_FLOAT_C_FUN(fabs)(h); // sum |h| to remove noisy cases
|
||||
if (sign(h) == sign(h2)) {
|
||||
i += j; // search right half
|
||||
}
|
||||
else { // search left half
|
||||
lfl = fl; // record last fl=f(a+d/r)
|
||||
lfr = fr; // record last fl=f(a+d*r)*r*r
|
||||
lr = r; // record last r
|
||||
}
|
||||
}
|
||||
} while (j > 1);
|
||||
if (s > eps) { // if sum of |h| > eps
|
||||
h = lfl - lfr; // use last fl and fr before the sign change
|
||||
r = lr; // use last r before the sign change
|
||||
if (h != ULAB_ZERO) // if last diff != 0, back up r by one step
|
||||
r /= ULAB_TWO;
|
||||
if (MICROPY_FLOAT_C_FUN(fabs)(lfl) < MICROPY_FLOAT_C_FUN(fabs)(lfr))
|
||||
d /= r; // move d closer to the finite endpoint
|
||||
else
|
||||
d *= r; // move d closer to the infinite endpoint
|
||||
}
|
||||
}
|
||||
}
|
||||
return d;
|
||||
}
|
||||
|
||||
|
||||
// integrate function f, range a..b, max levels n, error tolerance eps
|
||||
mp_float_t tanhsinh(mp_float_t (*fun)(mp_float_t), mp_float_t a, mp_float_t b, uint16_t n, mp_float_t eps, mp_float_t *e) {
|
||||
const mp_obj_type_t *type = mp_obj_get_type(fun);
|
||||
mp_obj_t fargs[1];
|
||||
const mp_float_t tol = ULAB_TEN * eps;
|
||||
mp_float_t c = ULAB_ZERO, d = ULAB_ONE, s, sign = ULAB_ONE, v, h = ULAB_TWO;
|
||||
int k = 0, mode = 0; // Tanh-Sinh = 0, Exp-Sinh = 1, Sinh-Sinh = 2
|
||||
if (b < a) { // swap bounds
|
||||
v = b;
|
||||
b = a;
|
||||
a = v;
|
||||
sign = -1;
|
||||
}
|
||||
if (isfinite(a) && isfinite(b)) {
|
||||
c = (a+b) / ULAB_TWO;
|
||||
d = (b-a) / ULAB_TWO;
|
||||
v = c;
|
||||
}
|
||||
else if (isfinite(a)) {
|
||||
mode = 1; // Exp-Sinh
|
||||
d = exp_sinh_opt_d(fun, a, eps, d);
|
||||
c = a;
|
||||
v = a+d;
|
||||
}
|
||||
else if (isfinite(b)) {
|
||||
mode = 1; // Exp-Sinh
|
||||
// d = -d;
|
||||
d = exp_sinh_opt_d(fun, b, eps, -d);
|
||||
sign = -sign;
|
||||
c = b;
|
||||
v = b+d;
|
||||
}
|
||||
else {
|
||||
mode = 2; // Sinh-Sinh
|
||||
v = ULAB_ZERO;
|
||||
}
|
||||
s = integrate_python_call(type, fun, v, fargs, 0);
|
||||
do {
|
||||
mp_float_t p = ULAB_ZERO, q, fp = ULAB_ZERO, fm = ULAB_ZERO, t, eh;
|
||||
h /= ULAB_TWO;
|
||||
t = eh = MICROPY_FLOAT_C_FUN(exp)(h);
|
||||
if (k > ULAB_ZERO)
|
||||
eh *= eh;
|
||||
if (mode == 0) { // Tanh-Sinh
|
||||
do {
|
||||
mp_float_t u = MICROPY_FLOAT_C_FUN(exp)(ULAB_ONE / t - t); // = exp(-2*sinh(j*h)) = 1/exp(sinh(j*h))^2
|
||||
mp_float_t r = ULAB_TWO * u / (ULAB_ONE + u); // = 1 - tanh(sinh(j*h))
|
||||
mp_float_t w = (t + ULAB_ONE / t) * r / (ULAB_ONE + u); // = cosh(j*h)/cosh(sinh(j*h))^2
|
||||
mp_float_t x = d*r;
|
||||
if (a+x > a) { // if too close to a then reuse previous fp
|
||||
mp_float_t y = integrate_python_call(type, fun, a+x, fargs, 0);
|
||||
if (isfinite(y))
|
||||
fp = y; // if f(x) is finite, add to local sum
|
||||
}
|
||||
if (b-x < b) { // if too close to a then reuse previous fp
|
||||
mp_float_t y = integrate_python_call(type, fun, b-x, fargs, 0);
|
||||
if (isfinite(y))
|
||||
fm = y; // if f(x) is finite, add to local sum
|
||||
}
|
||||
q = w*(fp+fm);
|
||||
p += q;
|
||||
t *= eh;
|
||||
} while (MICROPY_FLOAT_C_FUN(fabs)(q) > eps*MICROPY_FLOAT_C_FUN(fabs)(p));
|
||||
}
|
||||
else {
|
||||
t /= ULAB_TWO;
|
||||
do {
|
||||
mp_float_t r = MICROPY_FLOAT_C_FUN(exp)(t - ULAB_POINT_TWO_FIVE / t); // = exp(sinh(j*h))
|
||||
mp_float_t x, y, w = r;
|
||||
q = ULAB_ZERO;
|
||||
if (mode == 1) { // Exp-Sinh
|
||||
x = c + d/r;
|
||||
if (x == c) // if x hit the finite endpoint then break
|
||||
break;
|
||||
y = integrate_python_call(type, fun, x, fargs, 0);
|
||||
if (isfinite(y)) // if f(x) is finite, add to local sum
|
||||
q += y/w;
|
||||
}
|
||||
else { // Sinh-Sinh
|
||||
r = (r - ULAB_ONE / r) / ULAB_TWO; // = sinh(sinh(j*h))
|
||||
w = (w + ULAB_ONE / w) / ULAB_TWO; // = cosh(sinh(j*h))
|
||||
x = c - d*r;
|
||||
y = integrate_python_call(type, fun, x, fargs, 0);
|
||||
if (isfinite(y)) // if f(x) is finite, add to local sum
|
||||
q += y*w;
|
||||
}
|
||||
x = c + d*r;
|
||||
y = integrate_python_call(type, fun, x, fargs, 0);
|
||||
if (isfinite(y)) // if f(x) is finite, add to local sum
|
||||
q += y*w;
|
||||
q *= t + ULAB_POINT_TWO_FIVE / t; // q *= cosh(j*h)
|
||||
p += q;
|
||||
t *= eh;
|
||||
} while (MICROPY_FLOAT_C_FUN(fabs)(q) > eps*MICROPY_FLOAT_C_FUN(fabs)(p));
|
||||
}
|
||||
v = s-p;
|
||||
s += p;
|
||||
++k;
|
||||
} while (MICROPY_FLOAT_C_FUN(fabs)(v) > tol*MICROPY_FLOAT_C_FUN(fabs)(s) && k <= n);
|
||||
// return the error estimate by reference
|
||||
*e = MICROPY_FLOAT_C_FUN(fabs)(v)/(MICROPY_FLOAT_C_FUN(fabs)(s)+eps);
|
||||
return sign*d*s*h; // result with estimated relative error e
|
||||
}
|
||||
|
||||
//| def tanhsinh(
|
||||
//| fun: Callable[[float], float],
|
||||
//| a: float,
|
||||
//| b: float,
|
||||
//| *,
|
||||
//| levels: int = 6
|
||||
//| eps: float = etolerance
|
||||
//| ) -> float:
|
||||
//| """
|
||||
//| :param callable f: The function to integrate
|
||||
//| :param float a: The lower integration limit
|
||||
//| :param float b: The upper integration limit
|
||||
//| :param float levels: The number of levels to perform (6..7 is optimal)
|
||||
//| :param float eps: The error tolerance value
|
||||
//|
|
||||
//| Find a quadrature of the function ``f(x)`` on the interval
|
||||
//| (``a``..``b``) using an optimized double exponential. The result is accurate to within
|
||||
//| ``eps`` unless more than ``levels`` levels are required."""
|
||||
//|
|
||||
|
||||
|
||||
static mp_obj_t integrate_tanhsinh(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
||||
static const mp_arg_t allowed_args[] = {
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_levels, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 6} },
|
||||
{ MP_QSTR_eps, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(etolerance)} },
|
||||
};
|
||||
|
||||
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
||||
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
||||
|
||||
mp_obj_t fun = args[0].u_obj;
|
||||
const mp_obj_type_t *type = mp_obj_get_type(fun);
|
||||
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a callable"));
|
||||
}
|
||||
|
||||
// iterate over args 1, 2, and 4
|
||||
// arg 3 will be handled by MP_ARG_INT above.
|
||||
for (int i=1; i<=4; i*=2) {
|
||||
type = mp_obj_get_type(args[i].u_obj);
|
||||
if (type != &mp_type_float && type != &mp_type_int) {
|
||||
mp_raise_msg_varg(&mp_type_TypeError,
|
||||
MP_ERROR_TEXT("can't convert arg %d from %s to float"), i, mp_obj_get_type_str(args[i].u_obj));
|
||||
}
|
||||
}
|
||||
mp_float_t a = mp_obj_get_float(args[1].u_obj);
|
||||
mp_float_t b = mp_obj_get_float(args[2].u_obj);
|
||||
uint16_t n = (uint16_t)args[3].u_int;
|
||||
if (n < 1) {
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("levels needs to be a positive integer"));
|
||||
}
|
||||
mp_float_t eps = mp_obj_get_float(args[4].u_obj);
|
||||
|
||||
mp_obj_t res[2];
|
||||
mp_float_t e;
|
||||
res[0] = mp_obj_new_float(tanhsinh(fun, a, b, n, eps, &e));
|
||||
res[1] = mp_obj_new_float(e);
|
||||
return mp_obj_new_tuple(2, res);
|
||||
}
|
||||
|
||||
MP_DEFINE_CONST_FUN_OBJ_KW(integrate_tanhsinh_obj, 2, integrate_tanhsinh);
|
||||
#endif /* ULAB_INTEGRATE_HAS_TANHSINH */
|
||||
|
||||
#if ULAB_INTEGRATE_HAS_ROMBERG
|
||||
// Romberg quadrature
|
||||
// This function is deprecated as of SciPy 1.12.0 and will be removed in SciPy 1.15.0. Please use scipy.integrate.quad instead.
|
||||
// https://en.wikipedia.org/wiki/Romberg%27s_method, https://www.genivia.com/qthsh.html,
|
||||
// https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romberg.html (which is different
|
||||
// insofar as the latter expects an array of function values).
|
||||
|
||||
mp_float_t qromb(mp_float_t (*fun)(mp_float_t), mp_float_t a, mp_float_t b, uint16_t n, mp_float_t eps) {
|
||||
const mp_obj_type_t *type = mp_obj_get_type(fun);
|
||||
mp_obj_t fargs[1];
|
||||
mp_float_t R1[n], R2[n];
|
||||
mp_float_t *Ro = &R1[0], *Ru = &R2[0];
|
||||
mp_float_t h = b-a;
|
||||
uint16_t i, j;
|
||||
Ro[0] = (integrate_python_call(type, fun, a, fargs, 0) + integrate_python_call(type, fun, b, fargs, 0)) * h/2;
|
||||
for (i = 1; i < n; ++i) {
|
||||
unsigned long long k = 1UL << i;
|
||||
unsigned long long s = 1;
|
||||
mp_float_t sum = ULAB_ZERO;
|
||||
mp_float_t *Rt;
|
||||
h /= ULAB_TWO;
|
||||
for (j = 1; j < k; j += 2)
|
||||
sum += integrate_python_call(type, fun, a+j*h, fargs, 0);
|
||||
Ru[0] = h*sum + Ro[0] / ULAB_TWO;
|
||||
for (j = 1; j <= i; ++j) {
|
||||
s <<= 2;
|
||||
Ru[j] = (s*Ru[j-1] - Ro[j-1])/(s-1);
|
||||
}
|
||||
if (i > 2 && MICROPY_FLOAT_C_FUN(fabs)(Ro[i-1]-Ru[i]) <= eps*MICROPY_FLOAT_C_FUN(fabs)(Ru[i])+eps)
|
||||
return Ru[i];
|
||||
Rt = Ro;
|
||||
Ro = Ru;
|
||||
Ru = Rt;
|
||||
}
|
||||
return Ro[n-1];
|
||||
}
|
||||
|
||||
//| def romberg(
|
||||
//| fun: Callable[[float], float],
|
||||
//| a: float,
|
||||
//| b: float,
|
||||
//| *,
|
||||
//| steps: int = 100
|
||||
//| eps: float = etolerance
|
||||
//| ) -> float:
|
||||
//| """
|
||||
//| :param callable f: The function to integrate
|
||||
//| :param float a: The lower integration limit
|
||||
//| :param float b: The upper integration limit
|
||||
//| :param float steps: The number of equidistant steps
|
||||
//| :param float eps: The tolerance value
|
||||
//|
|
||||
//| Find a quadrature of the function ``f(x)`` on the interval
|
||||
//| (``a``..``b``) using the Romberg method. The result is accurate to within
|
||||
//| ``eps`` unless more than ``steps`` steps are required."""
|
||||
//| ...
|
||||
//|
|
||||
|
||||
static mp_obj_t integrate_romberg(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
||||
static const mp_arg_t allowed_args[] = {
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_steps, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 100} },
|
||||
{ MP_QSTR_eps, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(etolerance)} },
|
||||
};
|
||||
|
||||
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
||||
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
||||
|
||||
mp_obj_t fun = args[0].u_obj;
|
||||
const mp_obj_type_t *type = mp_obj_get_type(fun);
|
||||
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a callable"));
|
||||
}
|
||||
|
||||
// iterate over args 1, 2, and 4
|
||||
// arg 3 will be handled by MP_ARG_INT above.
|
||||
for (int i=1; i<=4; i*=2) {
|
||||
type = mp_obj_get_type(args[i].u_obj);
|
||||
if (type != &mp_type_float && type != &mp_type_int) {
|
||||
mp_raise_msg_varg(&mp_type_TypeError,
|
||||
MP_ERROR_TEXT("can't convert arg %d from %s to float"), i, mp_obj_get_type_str(args[i].u_obj));
|
||||
}
|
||||
}
|
||||
mp_float_t a = mp_obj_get_float(args[1].u_obj);
|
||||
mp_float_t b = mp_obj_get_float(args[2].u_obj);
|
||||
uint16_t steps = (uint16_t)args[3].u_int;
|
||||
if (steps < 1) {
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("steps needs to be a positive integer"));
|
||||
}
|
||||
mp_float_t eps = mp_obj_get_float(args[4].u_obj);
|
||||
|
||||
return mp_obj_new_float(qromb(fun, a, b, steps, eps));
|
||||
}
|
||||
|
||||
MP_DEFINE_CONST_FUN_OBJ_KW(integrate_romberg_obj, 2, integrate_romberg);
|
||||
#endif /* ULAB_INTEGRATE_HAS_ROMBERG */
|
||||
|
||||
#if ULAB_INTEGRATE_HAS_SIMPSON
|
||||
// Adaptive Simpson quadrature
|
||||
// https://en.wikipedia.org/wiki/Adaptive_Simpson%27s_method, https://www.genivia.com/qthsh.html
|
||||
|
||||
mp_float_t as(mp_float_t (*fun)(mp_float_t), mp_float_t a, mp_float_t b, mp_float_t fa, mp_float_t fm,
|
||||
mp_float_t fb, mp_float_t v, mp_float_t eps, int n, mp_float_t t) {
|
||||
const mp_obj_type_t *type = mp_obj_get_type(fun);
|
||||
mp_obj_t fargs[1];
|
||||
mp_float_t h = (b-a) / ULAB_TWO;
|
||||
mp_float_t f1 = integrate_python_call(type, fun, a + h / ULAB_TWO, fargs, 0);
|
||||
mp_float_t f2 = integrate_python_call(type, fun, b - h / ULAB_TWO, fargs, 0);
|
||||
mp_float_t sl = h*(fa + ULAB_FOUR * f1 + fm) / ULAB_SIX;
|
||||
mp_float_t sr = h*(fm + ULAB_FOUR * f2 + fb) / ULAB_SIX;
|
||||
mp_float_t s = sl+sr;
|
||||
mp_float_t d = (s-v) / ULAB_FIFTEEN;
|
||||
mp_float_t m = a+h;
|
||||
if (n <= 0 || MICROPY_FLOAT_C_FUN(fabs)(d) < eps)
|
||||
return t + s + d; // note: fabs(d) can be used as error estimate
|
||||
eps /= ULAB_TWO;
|
||||
--n;
|
||||
t = as(fun, a, m, fa, f1, fm, sl, eps, n, t);
|
||||
return as(fun, m, b, fm, f2, fb, sr, eps, n, t);
|
||||
}
|
||||
|
||||
mp_float_t qasi(mp_float_t (*fun)(mp_float_t), mp_float_t a, mp_float_t b, int n, mp_float_t eps) {
|
||||
const mp_obj_type_t *type = mp_obj_get_type(fun);
|
||||
mp_obj_t fargs[1];
|
||||
mp_float_t fa = integrate_python_call(type, fun, a, fargs, 0);
|
||||
mp_float_t fm = integrate_python_call(type, fun, (a+b)/2, fargs, 0);
|
||||
mp_float_t fb = integrate_python_call(type, fun, b, fargs, 0);
|
||||
mp_float_t v = (fa + ULAB_FOUR * fm + fb) * (b-a) / ULAB_SIX;
|
||||
return as(fun, a, b, fa, fm, fb, v, eps, n, 0);
|
||||
}
|
||||
|
||||
//| def simpson(
|
||||
//| fun: Callable[[float], float],
|
||||
//| a: float,
|
||||
//| b: float,
|
||||
//| *,
|
||||
//| steps: int = 100
|
||||
//| eps: float = etolerance
|
||||
//| ) -> float:
|
||||
//| """
|
||||
//| :param callable f: The function to integrate
|
||||
//| :param float a: The lower integration limit
|
||||
//| :param float b: The upper integration limit
|
||||
//| :param float steps: The number of equidistant steps
|
||||
//| :param float eps: The tolerance value
|
||||
//|
|
||||
//| Find a quadrature of the function ``f(x)`` on the interval
|
||||
//| (``a``..``b``) using the Adaptive Simpson's method. The result is accurate to within
|
||||
//| ``eps`` unless more than ``steps`` steps are required."""
|
||||
//| ...
|
||||
//|
|
||||
|
||||
static mp_obj_t integrate_simpson(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
||||
static const mp_arg_t allowed_args[] = {
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_steps, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 100} },
|
||||
{ MP_QSTR_eps, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(etolerance)} },
|
||||
};
|
||||
|
||||
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
||||
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
||||
|
||||
mp_obj_t fun = args[0].u_obj;
|
||||
const mp_obj_type_t *type = mp_obj_get_type(fun);
|
||||
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a function"));
|
||||
}
|
||||
|
||||
// iterate over args 1, 2, and 4
|
||||
// arg 3 will be handled by MP_ARG_INT above.
|
||||
for (int i=1; i<=4; i*=2) {
|
||||
type = mp_obj_get_type(args[i].u_obj);
|
||||
if (type != &mp_type_float && type != &mp_type_int) {
|
||||
mp_raise_msg_varg(&mp_type_TypeError,
|
||||
MP_ERROR_TEXT("can't convert arg %d from %s to float"), i, mp_obj_get_type_str(args[i].u_obj));
|
||||
}
|
||||
}
|
||||
mp_float_t a = mp_obj_get_float(args[1].u_obj);
|
||||
mp_float_t b = mp_obj_get_float(args[2].u_obj);
|
||||
uint16_t steps = (uint16_t)args[3].u_int;
|
||||
if (steps < 1) {
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("steps needs to be a positive integer"));
|
||||
}
|
||||
mp_float_t eps = mp_obj_get_float(args[4].u_obj);
|
||||
|
||||
return mp_obj_new_float(qasi(fun, a, b, steps, eps));
|
||||
}
|
||||
|
||||
MP_DEFINE_CONST_FUN_OBJ_KW(integrate_simpson_obj, 2, integrate_simpson);
|
||||
#endif /* ULAB_INTEGRATE_HAS_SIMPSON */
|
||||
|
||||
#if ULAB_INTEGRATE_HAS_QUAD
|
||||
// Adaptive Gauss-Kronrod (G10,K21) quadrature
|
||||
// https://en.wikipedia.org/wiki/Gauss%E2%80%93Kronrod_quadrature_formula, https://www.genivia.com/qthsh.html
|
||||
|
||||
mp_float_t gk(mp_float_t (*fun)(mp_float_t), mp_float_t c, mp_float_t d, mp_float_t *err) {
|
||||
// abscissas and weights pre-calculated with Legendre Stieltjes polynomials
|
||||
static const mp_float_t abscissas[21] = {
|
||||
MICROPY_FLOAT_CONST(0.00000000000000000e+00),
|
||||
MICROPY_FLOAT_CONST(7.65265211334973338e-02),
|
||||
MICROPY_FLOAT_CONST(1.52605465240922676e-01),
|
||||
MICROPY_FLOAT_CONST(2.27785851141645078e-01),
|
||||
MICROPY_FLOAT_CONST(3.01627868114913004e-01),
|
||||
MICROPY_FLOAT_CONST(3.73706088715419561e-01),
|
||||
MICROPY_FLOAT_CONST(4.43593175238725103e-01),
|
||||
MICROPY_FLOAT_CONST(5.10867001950827098e-01),
|
||||
MICROPY_FLOAT_CONST(5.75140446819710315e-01),
|
||||
MICROPY_FLOAT_CONST(6.36053680726515025e-01),
|
||||
MICROPY_FLOAT_CONST(6.93237656334751385e-01),
|
||||
MICROPY_FLOAT_CONST(7.46331906460150793e-01),
|
||||
MICROPY_FLOAT_CONST(7.95041428837551198e-01),
|
||||
MICROPY_FLOAT_CONST(8.39116971822218823e-01),
|
||||
MICROPY_FLOAT_CONST(8.78276811252281976e-01),
|
||||
MICROPY_FLOAT_CONST(9.12234428251325906e-01),
|
||||
MICROPY_FLOAT_CONST(9.40822633831754754e-01),
|
||||
MICROPY_FLOAT_CONST(9.63971927277913791e-01),
|
||||
MICROPY_FLOAT_CONST(9.81507877450250259e-01),
|
||||
MICROPY_FLOAT_CONST(9.93128599185094925e-01),
|
||||
MICROPY_FLOAT_CONST(9.98859031588277664e-01),
|
||||
};
|
||||
static const mp_float_t weights[21] = {
|
||||
MICROPY_FLOAT_CONST(7.66007119179996564e-02),
|
||||
MICROPY_FLOAT_CONST(7.63778676720807367e-02),
|
||||
MICROPY_FLOAT_CONST(7.57044976845566747e-02),
|
||||
MICROPY_FLOAT_CONST(7.45828754004991890e-02),
|
||||
MICROPY_FLOAT_CONST(7.30306903327866675e-02),
|
||||
MICROPY_FLOAT_CONST(7.10544235534440683e-02),
|
||||
MICROPY_FLOAT_CONST(6.86486729285216193e-02),
|
||||
MICROPY_FLOAT_CONST(6.58345971336184221e-02),
|
||||
MICROPY_FLOAT_CONST(6.26532375547811680e-02),
|
||||
MICROPY_FLOAT_CONST(5.91114008806395724e-02),
|
||||
MICROPY_FLOAT_CONST(5.51951053482859947e-02),
|
||||
MICROPY_FLOAT_CONST(5.09445739237286919e-02),
|
||||
MICROPY_FLOAT_CONST(4.64348218674976747e-02),
|
||||
MICROPY_FLOAT_CONST(4.16688733279736863e-02),
|
||||
MICROPY_FLOAT_CONST(3.66001697582007980e-02),
|
||||
MICROPY_FLOAT_CONST(3.12873067770327990e-02),
|
||||
MICROPY_FLOAT_CONST(2.58821336049511588e-02),
|
||||
MICROPY_FLOAT_CONST(2.03883734612665236e-02),
|
||||
MICROPY_FLOAT_CONST(1.46261692569712530e-02),
|
||||
MICROPY_FLOAT_CONST(8.60026985564294220e-03),
|
||||
MICROPY_FLOAT_CONST(3.07358371852053150e-03),
|
||||
};
|
||||
static const mp_float_t gauss_weights[10] = {
|
||||
MICROPY_FLOAT_CONST(1.52753387130725851e-01),
|
||||
MICROPY_FLOAT_CONST(1.49172986472603747e-01),
|
||||
MICROPY_FLOAT_CONST(1.42096109318382051e-01),
|
||||
MICROPY_FLOAT_CONST(1.31688638449176627e-01),
|
||||
MICROPY_FLOAT_CONST(1.18194531961518417e-01),
|
||||
MICROPY_FLOAT_CONST(1.01930119817240435e-01),
|
||||
MICROPY_FLOAT_CONST(8.32767415767047487e-02),
|
||||
MICROPY_FLOAT_CONST(6.26720483341090636e-02),
|
||||
MICROPY_FLOAT_CONST(4.06014298003869413e-02),
|
||||
MICROPY_FLOAT_CONST(1.76140071391521183e-02),
|
||||
};
|
||||
const mp_obj_type_t *type = mp_obj_get_type(fun);
|
||||
mp_obj_t fargs[1];
|
||||
mp_float_t p = ULAB_ZERO; // kronrod quadrature sum
|
||||
mp_float_t q = ULAB_ZERO; // gauss quadrature sum
|
||||
mp_float_t fp, fm;
|
||||
mp_float_t e;
|
||||
int i;
|
||||
fp = integrate_python_call(type, fun, c, fargs, 0);
|
||||
p = fp * weights[0];
|
||||
for (i = 1; i < 21; i += 2) {
|
||||
fp = integrate_python_call(type, fun, c + d * abscissas[i], fargs, 0);
|
||||
fm = integrate_python_call(type, fun, c - d * abscissas[i], fargs, 0);
|
||||
p += (fp + fm) * weights[i];
|
||||
q += (fp + fm) * gauss_weights[i/2];
|
||||
}
|
||||
for (i = 2; i < 21; i += 2) {
|
||||
fp = integrate_python_call(type, fun, c + d * abscissas[i], fargs, 0);
|
||||
fm = integrate_python_call(type, fun, c - d * abscissas[i], fargs, 0);
|
||||
p += (fp + fm) * weights[i];
|
||||
}
|
||||
*err = MICROPY_FLOAT_C_FUN(fabs)(p - q);
|
||||
e = MICROPY_FLOAT_C_FUN(fabs)(2 * p * ULAB_MACHEPS); // optional, to take 1e-17 MachEps prec. into account
|
||||
if (*err < e)
|
||||
*err = e;
|
||||
return p;
|
||||
}
|
||||
|
||||
mp_float_t qakro(mp_float_t (*fun)(mp_float_t), mp_float_t a, mp_float_t b, int n, mp_float_t tol, mp_float_t eps, mp_float_t *err) {
|
||||
mp_float_t c = (a+b) / ULAB_TWO;
|
||||
mp_float_t d = (b-a) / ULAB_TWO;
|
||||
mp_float_t e;
|
||||
mp_float_t r = gk(fun, c, d, &e);
|
||||
mp_float_t s = d*r;
|
||||
mp_float_t t = MICROPY_FLOAT_C_FUN(fabs)(s*tol);
|
||||
if (tol == ULAB_ZERO)
|
||||
tol = t;
|
||||
if (n > 0 && t < e && tol < e) {
|
||||
s = qakro(fun, a, c, n-1, t / ULAB_TWO, eps, err);
|
||||
s += qakro(fun, c, b, n-1, t / ULAB_TWO, eps, &e);
|
||||
*err += e;
|
||||
return s;
|
||||
}
|
||||
*err = e;
|
||||
return s;
|
||||
}
|
||||
|
||||
|
||||
//| def quad(
|
||||
//| fun: Callable[[float], float],
|
||||
//| a: float,
|
||||
//| b: float,
|
||||
//| *,
|
||||
//| order: int = 5
|
||||
//| eps: float = etolerance
|
||||
//| ) -> float:
|
||||
//| """
|
||||
//| :param callable f: The function to integrate
|
||||
//| :param float a: The lower integration limit
|
||||
//| :param float b: The upper integration limit
|
||||
//| :param float order: Order of quadrature integration. Default is 5.
|
||||
//| :param float eps: The tolerance value
|
||||
//|
|
||||
//| Find a quadrature of the function ``f(x)`` on the interval
|
||||
//| (``a``..``b``) using the Adaptive Gauss-Kronrod method. The result is accurate to within
|
||||
//| ``eps`` unless a higher order than ``order`` is required."""
|
||||
//| ...
|
||||
//|
|
||||
|
||||
static mp_obj_t integrate_quad(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
||||
static const mp_arg_t allowed_args[] = {
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE } },
|
||||
{ MP_QSTR_order, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5} },
|
||||
{ MP_QSTR_eps, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = ULAB_REFERENCE_FLOAT_CONST(etolerance)} },
|
||||
};
|
||||
|
||||
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
||||
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
||||
|
||||
mp_obj_t fun = args[0].u_obj;
|
||||
const mp_obj_type_t *type = mp_obj_get_type(fun);
|
||||
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
|
||||
mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a callable"));
|
||||
}
|
||||
|
||||
// iterate over args 1, 2, and 4
|
||||
// arg 3 will be handled by MP_ARG_INT above.
|
||||
for (int i=1; i<=4; i*=2) {
|
||||
type = mp_obj_get_type(args[i].u_obj);
|
||||
if (type != &mp_type_float && type != &mp_type_int) {
|
||||
mp_raise_msg_varg(&mp_type_TypeError,
|
||||
MP_ERROR_TEXT("can't convert arg %d from %s to float"), i, mp_obj_get_type_str(args[i].u_obj));
|
||||
}
|
||||
}
|
||||
mp_float_t a = mp_obj_get_float(args[1].u_obj);
|
||||
mp_float_t b = mp_obj_get_float(args[2].u_obj);
|
||||
uint16_t order = (uint16_t)args[3].u_int;
|
||||
if (order < 1) {
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("order needs to be a positive integer"));
|
||||
}
|
||||
mp_float_t eps = mp_obj_get_float(args[4].u_obj);
|
||||
|
||||
mp_obj_t res[2];
|
||||
mp_float_t e;
|
||||
res[0] = mp_obj_new_float(qakro(fun, a, b, order, 0, eps, &e));
|
||||
res[1] = mp_obj_new_float(e);
|
||||
return mp_obj_new_tuple(2, res);
|
||||
}
|
||||
|
||||
MP_DEFINE_CONST_FUN_OBJ_KW(integrate_quad_obj, 2, integrate_quad);
|
||||
#endif /* ULAB_INTEGRATE_HAS_QUAD */
|
||||
|
||||
static const mp_rom_map_elem_t ulab_scipy_integrate_globals_table[] = {
|
||||
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_integrate) },
|
||||
#if ULAB_INTEGRATE_HAS_TANHSINH
|
||||
{ MP_ROM_QSTR(MP_QSTR_tanhsinh), MP_ROM_PTR(&integrate_tanhsinh_obj) },
|
||||
#endif
|
||||
#if ULAB_INTEGRATE_HAS_ROMBERG
|
||||
{ MP_ROM_QSTR(MP_QSTR_romberg), MP_ROM_PTR(&integrate_romberg_obj) },
|
||||
#endif
|
||||
#if ULAB_INTEGRATE_HAS_SIMPSON
|
||||
{ MP_ROM_QSTR(MP_QSTR_simpson), MP_ROM_PTR(&integrate_simpson_obj) },
|
||||
#endif
|
||||
#if ULAB_INTEGRATE_HAS_QUAD
|
||||
{ MP_ROM_QSTR(MP_QSTR_quad), MP_ROM_PTR(&integrate_quad_obj) },
|
||||
#endif
|
||||
};
|
||||
|
||||
static MP_DEFINE_CONST_DICT(mp_module_ulab_scipy_integrate_globals, ulab_scipy_integrate_globals_table);
|
||||
|
||||
const mp_obj_module_t ulab_scipy_integrate_module = {
|
||||
.base = { &mp_type_module },
|
||||
.globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_integrate_globals,
|
||||
};
|
||||
#if CIRCUITPY_ULAB
|
||||
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_integrate, ulab_scipy_integrate_module);
|
||||
#endif
|
||||
|
||||
|
|
@ -1,34 +0,0 @@
|
|||
|
||||
/*
|
||||
* This file is part of the micropython-ulab project,
|
||||
*
|
||||
* https://github.com/v923z/micropython-ulab
|
||||
*
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2024 Harald Milz <hm@seneca.muc.de>
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef _SCIPY_INTEGRATE_
|
||||
#define _SCIPY_INTEGRATE_
|
||||
|
||||
#include "../../ulab_tools.h"
|
||||
|
||||
extern const mp_obj_module_t ulab_scipy_integrate_module;
|
||||
|
||||
#if ULAB_INTEGRATE_HAS_TANHSINH
|
||||
MP_DECLARE_CONST_FUN_OBJ_KW(optimize_tanhsinh_obj);
|
||||
#endif
|
||||
#if ULAB_INTEGRATE_HAS_ROMBERG
|
||||
MP_DECLARE_CONST_FUN_OBJ_KW(optimize_romberg_obj);
|
||||
#endif
|
||||
#if ULAB_INTEGRATE_HAS_SIMPSON
|
||||
MP_DECLARE_CONST_FUN_OBJ_KW(optimize_simpson_obj);
|
||||
#endif
|
||||
#if ULAB_INTEGRATE_HAS_QUAD
|
||||
MP_DECLARE_CONST_FUN_OBJ_KW(optimize_quad_obj);
|
||||
#endif
|
||||
|
||||
#endif /* _SCIPY_INTEGRATE_ */
|
||||
|
||||
|
|
@ -1,3 +1,4 @@
|
|||
|
||||
/*
|
||||
* This file is part of the micropython-ulab project,
|
||||
*
|
||||
|
|
@ -19,8 +20,6 @@
|
|||
#include "signal/signal.h"
|
||||
#include "special/special.h"
|
||||
#include "linalg/linalg.h"
|
||||
#include "integrate/integrate.h"
|
||||
|
||||
|
||||
#if ULAB_HAS_SCIPY
|
||||
|
||||
|
|
@ -29,9 +28,6 @@
|
|||
|
||||
static const mp_rom_map_elem_t ulab_scipy_globals_table[] = {
|
||||
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_scipy) },
|
||||
#if ULAB_SCIPY_HAS_INTEGRATE_MODULE
|
||||
{ MP_ROM_QSTR(MP_QSTR_integrate), MP_ROM_PTR(&ulab_scipy_integrate_module) },
|
||||
#endif
|
||||
#if ULAB_SCIPY_HAS_LINALG_MODULE
|
||||
{ MP_ROM_QSTR(MP_QSTR_linalg), MP_ROM_PTR(&ulab_scipy_linalg_module) },
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -33,7 +33,7 @@
|
|||
#include "user/user.h"
|
||||
#include "utils/utils.h"
|
||||
|
||||
#define ULAB_VERSION 6.9.0
|
||||
#define ULAB_VERSION 6.6.1
|
||||
#define xstr(s) str(s)
|
||||
#define str(s) #s
|
||||
|
||||
|
|
|
|||
34
code/ulab.h
34
code/ulab.h
|
|
@ -117,10 +117,6 @@
|
|||
#define NDARRAY_HAS_BINARY_OP_LESS_EQUAL (1)
|
||||
#endif
|
||||
|
||||
#ifndef NDARRAY_HAS_BINARY_OP_MODULO
|
||||
#define NDARRAY_HAS_BINARY_OP_MODULO (1)
|
||||
#endif
|
||||
|
||||
#ifndef NDARRAY_HAS_BINARY_OP_MORE
|
||||
#define NDARRAY_HAS_BINARY_OP_MORE (1)
|
||||
#endif
|
||||
|
|
@ -165,10 +161,6 @@
|
|||
#define NDARRAY_HAS_INPLACE_ADD (1)
|
||||
#endif
|
||||
|
||||
#ifndef NDARRAY_HAS_INPLACE_MODULO
|
||||
#define NDARRAY_HAS_INPLACE_MODU (1)
|
||||
#endif
|
||||
|
||||
#ifndef NDARRAY_HAS_INPLACE_MULTIPLY
|
||||
#define NDARRAY_HAS_INPLACE_MULTIPLY (1)
|
||||
#endif
|
||||
|
|
@ -253,10 +245,6 @@
|
|||
#define NDARRAY_HAS_ITEMSIZE (1)
|
||||
#endif
|
||||
|
||||
#ifndef NDARRAY_HAS_NDIM
|
||||
#define NDARRAY_HAS_NDIM (1)
|
||||
#endif
|
||||
|
||||
#ifndef NDARRAY_HAS_RESHAPE
|
||||
#define NDARRAY_HAS_RESHAPE (1)
|
||||
#endif
|
||||
|
|
@ -410,28 +398,6 @@
|
|||
#define ULAB_NUMPY_HAS_WHERE (1)
|
||||
#endif
|
||||
|
||||
// the integrate module; functions of the integrate module still have
|
||||
// to be defined separately
|
||||
#ifndef ULAB_SCIPY_HAS_INTEGRATE_MODULE
|
||||
#define ULAB_SCIPY_HAS_INTEGRATE_MODULE (1)
|
||||
#endif
|
||||
|
||||
#ifndef ULAB_INTEGRATE_HAS_TANHSINH
|
||||
#define ULAB_INTEGRATE_HAS_TANHSINH (1)
|
||||
#endif
|
||||
|
||||
#ifndef ULAB_INTEGRATE_HAS_ROMBERG
|
||||
#define ULAB_INTEGRATE_HAS_ROMBERG (1)
|
||||
#endif
|
||||
|
||||
#ifndef ULAB_INTEGRATE_HAS_SIMPSON
|
||||
#define ULAB_INTEGRATE_HAS_SIMPSON (1)
|
||||
#endif
|
||||
|
||||
#ifndef ULAB_INTEGRATE_HAS_QUAD
|
||||
#define ULAB_INTEGRATE_HAS_QUAD (1)
|
||||
#endif
|
||||
|
||||
// the linalg module; functions of the linalg module still have
|
||||
// to be defined separately
|
||||
#ifndef ULAB_NUMPY_HAS_LINALG_MODULE
|
||||
|
|
|
|||
|
|
@ -162,15 +162,6 @@ void *ndarray_set_float_function(uint8_t dtype) {
|
|||
}
|
||||
#endif /* NDARRAY_BINARY_USES_FUN_POINTER */
|
||||
|
||||
int8_t tools_get_axis(mp_obj_t axis, uint8_t ndim) {
|
||||
int8_t ax = mp_obj_get_int(axis);
|
||||
if(ax < 0) ax += ndim;
|
||||
if((ax < 0) || (ax > ndim - 1)) {
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("axis is out of bounds"));
|
||||
}
|
||||
return ax;
|
||||
}
|
||||
|
||||
shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) {
|
||||
// TODO: replace numerical_reduce_axes with this function, wherever applicable
|
||||
// This function should be used, whenever a tensor is contracted;
|
||||
|
|
@ -181,36 +172,38 @@ shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) {
|
|||
}
|
||||
shape_strides _shape_strides;
|
||||
|
||||
_shape_strides.increment = 0;
|
||||
// this is the contracted dimension (won't be overwritten for axis == None)
|
||||
_shape_strides.ndim = 0;
|
||||
|
||||
if(axis == mp_const_none) {
|
||||
_shape_strides.shape = ndarray->shape;
|
||||
_shape_strides.strides = ndarray->strides;
|
||||
return _shape_strides;
|
||||
}
|
||||
|
||||
size_t *shape = m_new(size_t, ULAB_MAX_DIMS + 1);
|
||||
_shape_strides.shape = shape;
|
||||
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS + 1);
|
||||
_shape_strides.strides = strides;
|
||||
|
||||
_shape_strides.increment = 0;
|
||||
// this is the contracted dimension (won't be overwritten for axis == None)
|
||||
_shape_strides.ndim = 0;
|
||||
|
||||
memcpy(_shape_strides.shape, ndarray->shape, sizeof(size_t) * ULAB_MAX_DIMS);
|
||||
memcpy(_shape_strides.strides, ndarray->strides, sizeof(int32_t) * ULAB_MAX_DIMS);
|
||||
|
||||
_shape_strides.axis = ULAB_MAX_DIMS - 1; // value of index for axis == mp_const_none (won't be overwritten)
|
||||
if(axis == mp_const_none) {
|
||||
return _shape_strides;
|
||||
}
|
||||
|
||||
uint8_t index = ULAB_MAX_DIMS - 1; // value of index for axis == mp_const_none (won't be overwritten)
|
||||
|
||||
if(axis != mp_const_none) { // i.e., axis is an integer
|
||||
int8_t ax = tools_get_axis(axis, ndarray->ndim);
|
||||
_shape_strides.axis = ULAB_MAX_DIMS - ndarray->ndim + ax;
|
||||
int8_t ax = mp_obj_get_int(axis);
|
||||
if(ax < 0) ax += ndarray->ndim;
|
||||
if((ax < 0) || (ax > ndarray->ndim - 1)) {
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("index out of range"));
|
||||
}
|
||||
index = ULAB_MAX_DIMS - ndarray->ndim + ax;
|
||||
_shape_strides.ndim = ndarray->ndim - 1;
|
||||
}
|
||||
|
||||
// move the value stored at index to the leftmost position, and align everything else to the right
|
||||
_shape_strides.shape[0] = ndarray->shape[_shape_strides.axis];
|
||||
_shape_strides.strides[0] = ndarray->strides[_shape_strides.axis];
|
||||
for(uint8_t i = 0; i < _shape_strides.axis; i++) {
|
||||
_shape_strides.shape[0] = ndarray->shape[index];
|
||||
_shape_strides.strides[0] = ndarray->strides[index];
|
||||
for(uint8_t i = 0; i < index; i++) {
|
||||
// entries to the right of index must be shifted by one position to the left
|
||||
_shape_strides.shape[i + 1] = ndarray->shape[i];
|
||||
_shape_strides.strides[i + 1] = ndarray->strides[i];
|
||||
|
|
@ -220,37 +213,16 @@ shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) {
|
|||
_shape_strides.increment = 1;
|
||||
}
|
||||
|
||||
if(_shape_strides.ndim == 0) {
|
||||
_shape_strides.ndim = 1;
|
||||
_shape_strides.shape[ULAB_MAX_DIMS - 1] = 1;
|
||||
_shape_strides.strides[ULAB_MAX_DIMS - 1] = ndarray->itemsize;
|
||||
}
|
||||
|
||||
return _shape_strides;
|
||||
}
|
||||
|
||||
mp_obj_t ulab_tools_restore_dims(ndarray_obj_t *ndarray, ndarray_obj_t *results, mp_obj_t keepdims, shape_strides _shape_strides) {
|
||||
// restores the contracted dimension, if keepdims is True
|
||||
if((ndarray->ndim == 1) && (keepdims != mp_const_true)) {
|
||||
// since the original array has already been contracted and
|
||||
// we don't want to keep the dimensions here, we have to return a scalar
|
||||
return mp_binary_get_val_array(results->dtype, results->array, 0);
|
||||
int8_t tools_get_axis(mp_obj_t axis, uint8_t ndim) {
|
||||
int8_t ax = mp_obj_get_int(axis);
|
||||
if(ax < 0) ax += ndim;
|
||||
if((ax < 0) || (ax > ndim - 1)) {
|
||||
mp_raise_ValueError(MP_ERROR_TEXT("axis is out of bounds"));
|
||||
}
|
||||
|
||||
if(keepdims == mp_const_true) {
|
||||
results->ndim += 1;
|
||||
for(int8_t i = 0; i < ULAB_MAX_DIMS; i++) {
|
||||
results->shape[i] = ndarray->shape[i];
|
||||
}
|
||||
results->shape[_shape_strides.axis] = 1;
|
||||
|
||||
results->strides[ULAB_MAX_DIMS - 1] = ndarray->itemsize;
|
||||
for(uint8_t i = ULAB_MAX_DIMS; i > 1; i--) {
|
||||
results->strides[i - 2] = results->strides[i - 1] * results->shape[i - 1];
|
||||
}
|
||||
}
|
||||
|
||||
return MP_OBJ_FROM_PTR(results);
|
||||
return ax;
|
||||
}
|
||||
|
||||
#if ULAB_MAX_DIMS > 1
|
||||
|
|
|
|||
|
|
@ -17,7 +17,6 @@
|
|||
|
||||
typedef struct _shape_strides_t {
|
||||
uint8_t increment;
|
||||
uint8_t axis;
|
||||
uint8_t ndim;
|
||||
size_t *shape;
|
||||
int32_t *strides;
|
||||
|
|
@ -35,7 +34,6 @@ void *ndarray_set_float_function(uint8_t );
|
|||
|
||||
shape_strides tools_reduce_axes(ndarray_obj_t *, mp_obj_t );
|
||||
int8_t tools_get_axis(mp_obj_t , uint8_t );
|
||||
mp_obj_t ulab_tools_restore_dims(ndarray_obj_t * , ndarray_obj_t * , mp_obj_t , shape_strides );
|
||||
ndarray_obj_t *tools_object_is_square(mp_obj_t );
|
||||
|
||||
uint8_t ulab_binary_get_size(uint8_t );
|
||||
|
|
|
|||
|
|
@ -23,12 +23,11 @@ from sphinx import addnodes
|
|||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = 'The ulab book'
|
||||
copyright = '2019-2025, Zoltán Vörös and contributors'
|
||||
copyright = '2019-2024, Zoltán Vörös and contributors'
|
||||
author = 'Zoltán Vörös'
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
release = '6.9.0'
|
||||
|
||||
release = '6.6.0'
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
|
|
|
|||
|
|
@ -23,7 +23,6 @@ Welcome to the ulab book!
|
|||
numpy-fft
|
||||
numpy-linalg
|
||||
numpy-random
|
||||
scipy-integrate
|
||||
scipy-linalg
|
||||
scipy-optimize
|
||||
scipy-signal
|
||||
|
|
|
|||
|
|
@ -1,220 +0,0 @@
|
|||
|
||||
scipy.integrate
|
||||
===============
|
||||
|
||||
This module provides a simplified subset of CPython’s
|
||||
``scipy.integrate`` module. The algorithms were not ported from
|
||||
CPython’s ``scipy.integrate`` for the sake of resource usage, but
|
||||
derived from a paper found in https://www.genivia.com/qthsh.html. There
|
||||
are four numerical integration algorithms:
|
||||
|
||||
1. `scipy.integrate.quad <#quad>`__
|
||||
2. `scipy.integrate.romberg <#romberg>`__
|
||||
3. `scipy.integrate.simpson <#simpson>`__
|
||||
4. `scipy.integrate.tanhsinh <#tanhsinh>`__
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
Numerical integration works best with float64 math enabled. If you
|
||||
require float64 math, be sure to set ``MICROPY_OBJ_REPR_A`` and
|
||||
``MICROPY_FLOAT_IMPL_DOUBLE``. This being said, the modules work equally
|
||||
well using float32, albeit with reduced precision. The required error
|
||||
tolerance can be specified for each of the function calls using the
|
||||
“eps=” option, defaulting to the compiled in ``etolerance`` value (1e-14
|
||||
for fp64, 1e-8 for fp32).
|
||||
|
||||
The submodule can be enabled by setting
|
||||
``ULAB_SCIPY_HAS_INTEGRATE_MODULE`` in ``code/ulab.h``. As for the
|
||||
individual integration algorithms, you can select which to include by
|
||||
setting one or more of ``ULAB_INTEGRATE_HAS_QUAD``,
|
||||
``ULAB_INTEGRATE_HAS_ROMBERG``, ``ULAB_INTEGRATE_HAS_SIMPSON``, and
|
||||
``ULAB_INTEGRATE_HAS_TANHSINH``.
|
||||
|
||||
Also note that these algorithms do not support complex numbers, although
|
||||
it is certainly possible to implement complex integration in MicroPython
|
||||
on top of this module, e.g. as in
|
||||
https://stackoverflow.com/questions/5965583/use-scipy-integrate-quad-to-integrate-complex-numbers.
|
||||
|
||||
quad
|
||||
----
|
||||
|
||||
``scipy``:
|
||||
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
|
||||
|
||||
In CPython ``scipy.integrate``, ``quad`` is a wrapper implementing many
|
||||
algorithms based on the Fortran QUADPACK package. Gauss-Kronrod is just
|
||||
one of them, and it is useful for most general-purpose tasks. This
|
||||
particular function implements an Adaptive Gauss-Kronrod (G10,K21)
|
||||
quadrature algorithm. The Gauss–Kronrod quadrature formula is a variant
|
||||
of Gaussian quadrature, in which the evaluation points are chosen so
|
||||
that an accurate approximation can be computed by re-using the
|
||||
information produced by the computation of a less accurate approximation
|
||||
(https://en.wikipedia.org/wiki/Gauss%E2%80%93Kronrod_quadrature_formula).
|
||||
|
||||
The function takes three to five arguments:
|
||||
|
||||
- f, a callable,
|
||||
- a and b, the lower and upper integration limit,
|
||||
- order=, the order of integration (default 5),
|
||||
- eps=, the error tolerance (default etolerance)
|
||||
|
||||
The function returns the result and the error estimate as a tuple of
|
||||
floats.
|
||||
|
||||
.. code::
|
||||
|
||||
# code to be run in micropython
|
||||
|
||||
from ulab import scipy
|
||||
|
||||
f = lambda x: x**2 + 2*x + 1
|
||||
result = scipy.integrate.quad(f, 0, 5, order=5, eps=1e-10)
|
||||
print (f"result = {result}")
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
UsageError: Cell magic `%%micropython` not found.
|
||||
|
||||
|
||||
romberg
|
||||
-------
|
||||
|
||||
``scipy``:
|
||||
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romberg.html
|
||||
|
||||
This function implements the Romberg quadrature algorithm. Romberg’s
|
||||
method is a Newton–Cotes formula – it evaluates the integrand at equally
|
||||
spaced points. The integrand must have continuous derivatives, though
|
||||
fairly good results may be obtained if only a few derivatives exist. If
|
||||
it is possible to evaluate the integrand at unequally spaced points,
|
||||
then other methods such as Gaussian quadrature and Clenshaw–Curtis
|
||||
quadrature are generally more accurate
|
||||
(https://en.wikipedia.org/wiki/Romberg%27s_method).
|
||||
|
||||
Please note: This function is deprecated as of SciPy 1.12.0 and will be
|
||||
removed in SciPy 1.15.0. Please use ``scipy.integrate.quad`` instead.
|
||||
|
||||
The function takes three to five arguments:
|
||||
|
||||
- f, a callable,
|
||||
- a and b, the lower and upper integration limit,
|
||||
- steps=, the number of steps taken to calculate (default 100),
|
||||
- eps=, the error tolerance (default etolerance)
|
||||
|
||||
The function returns the result as a float.
|
||||
|
||||
.. code::
|
||||
|
||||
# code to be run in micropython
|
||||
|
||||
from ulab import scipy
|
||||
|
||||
f = lambda x: x**2 + 2*x + 1
|
||||
result = scipy.integrate.romberg(f, 0, 5)
|
||||
print (f"result = {result}")
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
UsageError: Cell magic `%%micropython` not found.
|
||||
|
||||
|
||||
simpson
|
||||
-------
|
||||
|
||||
``scipy``:
|
||||
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html
|
||||
|
||||
This function is different from CPython’s ``simpson`` method in that it
|
||||
does not take an array of function values but determines the optimal
|
||||
spacing of samples itself. Adaptive Simpson’s method, also called
|
||||
adaptive Simpson’s rule, is a method of numerical integration proposed
|
||||
by G.F. Kuncir in 1962. It is probably the first recursive adaptive
|
||||
algorithm for numerical integration to appear in print, although more
|
||||
modern adaptive methods based on Gauss–Kronrod quadrature and
|
||||
Clenshaw–Curtis quadrature are now generally preferred
|
||||
(https://en.wikipedia.org/wiki/Adaptive_Simpson%27s_method).
|
||||
|
||||
The function takes three to five arguments:
|
||||
|
||||
- f, a callable,
|
||||
- a and b, the lower and upper integration limit,
|
||||
- steps=, the number of steps taken to calculate (default 100),
|
||||
- eps=, the error tolerance (default etolerance)
|
||||
|
||||
The function returns the result as a float.
|
||||
|
||||
.. code::
|
||||
|
||||
# code to be run in micropython
|
||||
|
||||
from ulab import scipy
|
||||
|
||||
f = lambda x: x**2 + 2*x + 1
|
||||
result = scipy.integrate.simpson(f, 0, 5)
|
||||
print (f"result = {result}")
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
UsageError: Cell magic `%%micropython` not found.
|
||||
|
||||
|
||||
tanhsinh
|
||||
--------
|
||||
|
||||
``scipy``:
|
||||
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
|
||||
|
||||
In CPython ``scipy.integrate``, ``tanhsinh`` is written in Python
|
||||
(https://github.com/scipy/scipy/blob/main/scipy/integrate/\_tanhsinh.py).
|
||||
It is used in cases where Newton-Cotes, Gauss-Kronrod, and other
|
||||
formulae do not work due to properties of the integrand or the
|
||||
integration limits. (In SciPy v1.14.1, it is not a public function but
|
||||
it has been marked as public in SciPy v1.15.0rc1).
|
||||
|
||||
This particular function implements an optimized Tanh-Sinh, Sinh-Sinh
|
||||
and Exp-Sinh quadrature algorithm. It is especially applied where
|
||||
singularities or infinite derivatives exist at one or both endpoints.
|
||||
The method uses hyperbolic functions in a change of variables to
|
||||
transform an integral on the interval x ∈ (−1, 1) to an integral on the
|
||||
entire real line t ∈ (−∞, ∞), the two integrals having the same value.
|
||||
After this transformation, the integrand decays with a double
|
||||
exponential rate, and thus, this method is also known as the double
|
||||
exponential (DE) formula
|
||||
(https://en.wikipedia.org/wiki/Tanh-sinh_quadrature).
|
||||
|
||||
As opposed to the three algorithms mentioned before, it also supports
|
||||
integrals with infinite limits like the Gaussian integral
|
||||
(https://en.wikipedia.org/wiki/Gaussian_integral), as shown below.
|
||||
|
||||
The function takes three to five arguments:
|
||||
|
||||
- f, a callable,
|
||||
- a and b, the lower and upper integration limit,
|
||||
- levels=, the number of loops taken to calculate (default 6),
|
||||
- eps=, the error tolerance (default: etolerance)
|
||||
|
||||
The function returns the result and the error estimate as a tuple of
|
||||
floats.
|
||||
|
||||
.. code::
|
||||
|
||||
# code to be run in micropython
|
||||
|
||||
from ulab import scipy, numpy as np
|
||||
from math import *
|
||||
f = lambda x: exp(- x**2)
|
||||
result = scipy.integrate.tanhsinh(f, -np.inf, np.inf)
|
||||
print (f"result = {result}")
|
||||
exact = sqrt(pi) # which is the exact value
|
||||
print (f"exact value = {exact}")
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
UsageError: Cell magic `%%micropython` not found.
|
||||
|
||||
|
||||
.. code::
|
||||
|
||||
# code to be run in CPython
|
||||
|
||||
|
|
@ -1814,12 +1814,12 @@ array.
|
|||
Binary operators
|
||||
================
|
||||
|
||||
``ulab`` implements the ``+``, ``-``, ``*``, ``/``, ``**``, ``%``,
|
||||
``<``, ``>``, ``<=``, ``>=``, ``==``, ``!=``, ``+=``, ``-=``, ``*=``,
|
||||
``/=``, ``**=``, ``%=`` binary operators, as well as the ``AND``,
|
||||
``OR``, ``XOR`` bit-wise operators that work element-wise. Note that the
|
||||
bit-wise operators will raise an exception, if either of the operands is
|
||||
of ``float`` or ``complex`` type.
|
||||
``ulab`` implements the ``+``, ``-``, ``*``, ``/``, ``**``, ``<``,
|
||||
``>``, ``<=``, ``>=``, ``==``, ``!=``, ``+=``, ``-=``, ``*=``, ``/=``,
|
||||
``**=`` binary operators, as well as the ``AND``, ``OR``, ``XOR``
|
||||
bit-wise operators that work element-wise. Note that the bit-wise
|
||||
operators will raise an exception, if either of the operands is of
|
||||
``float`` or ``complex`` type.
|
||||
|
||||
Broadcasting is available, meaning that the two operands do not even
|
||||
have to have the same shape. If the lengths along the respective axes
|
||||
|
|
|
|||
|
|
@ -1,510 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2021-01-12T16:11:12.111639Z",
|
||||
"start_time": "2021-01-12T16:11:11.914041Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Populating the interactive namespace from numpy and matplotlib\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pylab inline"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Notebook magic"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-01-29T20:50:20.813162Z",
|
||||
"start_time": "2022-01-29T20:50:20.794562Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from IPython.core.magic import Magics, magics_class, line_cell_magic\n",
|
||||
"from IPython.core.magic import cell_magic, register_cell_magic, register_line_magic\n",
|
||||
"from IPython.core.magic_arguments import argument, magic_arguments, parse_argstring\n",
|
||||
"import subprocess\n",
|
||||
"import os"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-01-29T20:50:21.613220Z",
|
||||
"start_time": "2022-01-29T20:50:21.557819Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"@magics_class\n",
|
||||
"class PyboardMagic(Magics):\n",
|
||||
" @cell_magic\n",
|
||||
" @magic_arguments()\n",
|
||||
" @argument('-skip')\n",
|
||||
" @argument('-unix')\n",
|
||||
" @argument('-pyboard')\n",
|
||||
" @argument('-file')\n",
|
||||
" @argument('-data')\n",
|
||||
" @argument('-time')\n",
|
||||
" @argument('-memory')\n",
|
||||
" def micropython(self, line='', cell=None):\n",
|
||||
" args = parse_argstring(self.micropython, line)\n",
|
||||
" if args.skip: # doesn't care about the cell's content\n",
|
||||
" print('skipped execution')\n",
|
||||
" return None # do not parse the rest\n",
|
||||
" if args.unix: # tests the code on the unix port. Note that this works on unix only\n",
|
||||
" with open('/dev/shm/micropython.py', 'w') as fout:\n",
|
||||
" fout.write(cell)\n",
|
||||
" proc = subprocess.Popen([\"../micropython/ports/unix/micropython-2\", \"/dev/shm/micropython.py\"], \n",
|
||||
" stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n",
|
||||
" print(proc.stdout.read().decode(\"utf-8\"))\n",
|
||||
" print(proc.stderr.read().decode(\"utf-8\"))\n",
|
||||
" return None\n",
|
||||
" if args.file: # can be used to copy the cell content onto the pyboard's flash\n",
|
||||
" spaces = \" \"\n",
|
||||
" try:\n",
|
||||
" with open(args.file, 'w') as fout:\n",
|
||||
" fout.write(cell.replace('\\t', spaces))\n",
|
||||
" printf('written cell to {}'.format(args.file))\n",
|
||||
" except:\n",
|
||||
" print('Failed to write to disc!')\n",
|
||||
" return None # do not parse the rest\n",
|
||||
" if args.data: # can be used to load data from the pyboard directly into kernel space\n",
|
||||
" message = pyb.exec(cell)\n",
|
||||
" if len(message) == 0:\n",
|
||||
" print('pyboard >>>')\n",
|
||||
" else:\n",
|
||||
" print(message.decode('utf-8'))\n",
|
||||
" # register new variable in user namespace\n",
|
||||
" self.shell.user_ns[args.data] = string_to_matrix(message.decode(\"utf-8\"))\n",
|
||||
" \n",
|
||||
" if args.time: # measures the time of executions\n",
|
||||
" pyb.exec('import utime')\n",
|
||||
" message = pyb.exec('t = utime.ticks_us()\\n' + cell + '\\ndelta = utime.ticks_diff(utime.ticks_us(), t)' + \n",
|
||||
" \"\\nprint('execution time: {:d} us'.format(delta))\")\n",
|
||||
" print(message.decode('utf-8'))\n",
|
||||
" \n",
|
||||
" if args.memory: # prints out memory information \n",
|
||||
" message = pyb.exec('from micropython import mem_info\\nprint(mem_info())\\n')\n",
|
||||
" print(\"memory before execution:\\n========================\\n\", message.decode('utf-8'))\n",
|
||||
" message = pyb.exec(cell)\n",
|
||||
" print(\">>> \", message.decode('utf-8'))\n",
|
||||
" message = pyb.exec('print(mem_info())')\n",
|
||||
" print(\"memory after execution:\\n========================\\n\", message.decode('utf-8'))\n",
|
||||
"\n",
|
||||
" if args.pyboard:\n",
|
||||
" message = pyb.exec(cell)\n",
|
||||
" print(message.decode('utf-8'))\n",
|
||||
"\n",
|
||||
"ip = get_ipython()\n",
|
||||
"ip.register_magics(PyboardMagic)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## pyboard"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 57,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2020-05-07T07:35:35.126401Z",
|
||||
"start_time": "2020-05-07T07:35:35.105824Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pyboard\n",
|
||||
"pyb = pyboard.Pyboard('/dev/ttyACM0')\n",
|
||||
"pyb.enter_raw_repl()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2020-05-19T19:11:18.145548Z",
|
||||
"start_time": "2020-05-19T19:11:18.137468Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pyb.exit_raw_repl()\n",
|
||||
"pyb.close()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 58,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2020-05-07T07:35:38.725924Z",
|
||||
"start_time": "2020-05-07T07:35:38.645488Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%micropython -pyboard 1\n",
|
||||
"\n",
|
||||
"import utime\n",
|
||||
"import ulab as np\n",
|
||||
"\n",
|
||||
"def timeit(n=1000):\n",
|
||||
" def wrapper(f, *args, **kwargs):\n",
|
||||
" func_name = str(f).split(' ')[1]\n",
|
||||
" def new_func(*args, **kwargs):\n",
|
||||
" run_times = np.zeros(n, dtype=np.uint16)\n",
|
||||
" for i in range(n):\n",
|
||||
" t = utime.ticks_us()\n",
|
||||
" result = f(*args, **kwargs)\n",
|
||||
" run_times[i] = utime.ticks_diff(utime.ticks_us(), t)\n",
|
||||
" print('{}() execution times based on {} cycles'.format(func_name, n, (delta2-delta1)/n))\n",
|
||||
" print('\\tbest: %d us'%np.min(run_times))\n",
|
||||
" print('\\tworst: %d us'%np.max(run_times))\n",
|
||||
" print('\\taverage: %d us'%np.mean(run_times))\n",
|
||||
" print('\\tdeviation: +/-%.3f us'%np.std(run_times)) \n",
|
||||
" return result\n",
|
||||
" return new_func\n",
|
||||
" return wrapper\n",
|
||||
"\n",
|
||||
"def timeit(f, *args, **kwargs):\n",
|
||||
" func_name = str(f).split(' ')[1]\n",
|
||||
" def new_func(*args, **kwargs):\n",
|
||||
" t = utime.ticks_us()\n",
|
||||
" result = f(*args, **kwargs)\n",
|
||||
" print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')\n",
|
||||
" return result\n",
|
||||
" return new_func"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"__END_OF_DEFS__"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# scipy.integrate\n",
|
||||
"\n",
|
||||
"This module provides a simplified subset of CPython's `scipy.integrate` module. The algorithms were not ported from CPython's `scipy.integrate` for the sake of resource usage, but derived from a paper found in https://www.genivia.com/qthsh.html. There are four numerical integration algorithms:\n",
|
||||
"\n",
|
||||
"1. [scipy.integrate.quad](#quad)\n",
|
||||
"2. [scipy.integrate.romberg](#romberg)\n",
|
||||
"3. [scipy.integrate.simpson](#simpson)\n",
|
||||
"4. [scipy.integrate.tanhsinh](#tanhsinh)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"\n",
|
||||
"Numerical integration works best with float64 math enabled. If you require float64 math, be sure to set `MICROPY_OBJ_REPR_A` and `MICROPY_FLOAT_IMPL_DOUBLE`. This being said, the modules work equally well using float32, albeit with reduced precision. The required error tolerance can be specified for each of the function calls using the \"eps=\" option, defaulting to the compiled in `etolerance` value (1e-14 for fp64, 1e-8 for fp32).\n",
|
||||
"\n",
|
||||
"The submodule can be enabled by setting `ULAB_SCIPY_HAS_INTEGRATE_MODULE` in `code/ulab.h`. As for the individual integration algorithms, you can select which to include by setting one or more of `ULAB_INTEGRATE_HAS_QUAD`, `ULAB_INTEGRATE_HAS_ROMBERG`, `ULAB_INTEGRATE_HAS_SIMPSON`, and `ULAB_INTEGRATE_HAS_TANHSINH`.\n",
|
||||
"\n",
|
||||
"Also note that these algorithms do not support complex numbers, although it is certainly possible to implement complex integration in MicroPython on top of this module, e.g. as in https://stackoverflow.com/questions/5965583/use-scipy-integrate-quad-to-integrate-complex-numbers. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## quad\n",
|
||||
"\n",
|
||||
"`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html \n",
|
||||
"\n",
|
||||
"In CPython `scipy.integrate`, `quad` is a wrapper implementing many algorithms based on the Fortran QUADPACK package. Gauss-Kronrod is just one of them, and it is useful for most general-purpose tasks. This particular function implements an Adaptive Gauss-Kronrod (G10,K21) quadrature algorithm. The Gauss–Kronrod quadrature formula is a variant of Gaussian quadrature, in which the evaluation points are chosen so that an accurate approximation can be computed by re-using the information produced by the computation of a less accurate approximation (https://en.wikipedia.org/wiki/Gauss%E2%80%93Kronrod_quadrature_formula). \n",
|
||||
"\n",
|
||||
"The function takes three to five arguments: \n",
|
||||
"\n",
|
||||
"* f, a callable,\n",
|
||||
"* a and b, the lower and upper integration limit, \n",
|
||||
"* order=, the order of integration (default 5),\n",
|
||||
"* eps=, the error tolerance (default etolerance) \n",
|
||||
"\n",
|
||||
"The function returns the result and the error estimate as a tuple of floats. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2020-06-19T20:24:10.529668Z",
|
||||
"start_time": "2020-06-19T20:24:10.520389Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"UsageError: Cell magic `%%micropython` not found.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import scipy\n",
|
||||
"\n",
|
||||
"f = lambda x: x**2 + 2*x + 1\n",
|
||||
"result = scipy.integrate.quad(f, 0, 5, order=5, eps=1e-10)\n",
|
||||
"print (f\"result = {result}\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## romberg\n",
|
||||
"\n",
|
||||
"`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romberg.html \n",
|
||||
"\n",
|
||||
"This function implements the Romberg quadrature algorithm. Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally spaced points. The integrand must have continuous derivatives, though fairly good results may be obtained if only a few derivatives exist. If it is possible to evaluate the integrand at unequally spaced points, then other methods such as Gaussian quadrature and Clenshaw–Curtis quadrature are generally more accurate (https://en.wikipedia.org/wiki/Romberg%27s_method). \n",
|
||||
"\n",
|
||||
"Please note: This function is deprecated as of SciPy 1.12.0 and will be removed in SciPy 1.15.0. Please use `scipy.integrate.quad` instead. \n",
|
||||
"\n",
|
||||
"The function takes three to five arguments: \n",
|
||||
"\n",
|
||||
"* f, a callable,\n",
|
||||
"* a and b, the lower and upper integration limit, \n",
|
||||
"* steps=, the number of steps taken to calculate (default 100),\n",
|
||||
"* eps=, the error tolerance (default etolerance) \n",
|
||||
"\n",
|
||||
"The function returns the result as a float.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"UsageError: Cell magic `%%micropython` not found.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import scipy\n",
|
||||
"\n",
|
||||
"f = lambda x: x**2 + 2*x + 1\n",
|
||||
"result = scipy.integrate.romberg(f, 0, 5)\n",
|
||||
"print (f\"result = {result}\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## simpson\n",
|
||||
"\n",
|
||||
"`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html \n",
|
||||
"\n",
|
||||
"This function is different from CPython's `simpson` method in that it does not take an array of function values but determines the optimal spacing of samples itself. Adaptive Simpson's method, also called adaptive Simpson's rule, is a method of numerical integration proposed by G.F. Kuncir in 1962. It is probably the first recursive adaptive algorithm for numerical integration to appear in print, although more modern adaptive methods based on Gauss–Kronrod quadrature and Clenshaw–Curtis quadrature are now generally preferred (https://en.wikipedia.org/wiki/Adaptive_Simpson%27s_method). \n",
|
||||
"\n",
|
||||
"The function takes three to five arguments: \n",
|
||||
"\n",
|
||||
"* f, a callable,\n",
|
||||
"* a and b, the lower and upper integration limit, \n",
|
||||
"* steps=, the number of steps taken to calculate (default 100),\n",
|
||||
"* eps=, the error tolerance (default etolerance) \n",
|
||||
"\n",
|
||||
"The function returns the result as a float."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"UsageError: Cell magic `%%micropython` not found.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import scipy\n",
|
||||
"\n",
|
||||
"f = lambda x: x**2 + 2*x + 1\n",
|
||||
"result = scipy.integrate.simpson(f, 0, 5)\n",
|
||||
"print (f\"result = {result}\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## tanhsinh\n",
|
||||
"\n",
|
||||
"`scipy`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html \n",
|
||||
"\n",
|
||||
"In CPython `scipy.integrate`, `tanhsinh` is written in Python (https://github.com/scipy/scipy/blob/main/scipy/integrate/_tanhsinh.py). It is used in cases where Newton-Cotes, Gauss-Kronrod, and other formulae do not work due to properties of the integrand or the integration limits. (In SciPy v1.14.1, it is not a public function but it has been marked as public in SciPy v1.15.0rc1). \n",
|
||||
"\n",
|
||||
"This particular function implements an optimized Tanh-Sinh, Sinh-Sinh and Exp-Sinh quadrature algorithm. It is especially applied where singularities or infinite derivatives exist at one or both endpoints. The method uses hyperbolic functions in a change of variables to transform an integral on the interval x ∈ (−1, 1) to an integral on the entire real line t ∈ (−∞, ∞), the two integrals having the same value. After this transformation, the integrand decays with a double exponential rate, and thus, this method is also known as the double exponential (DE) formula (https://en.wikipedia.org/wiki/Tanh-sinh_quadrature). \n",
|
||||
"\n",
|
||||
"As opposed to the three algorithms mentioned before, it also supports integrals with infinite limits like the Gaussian integral (https://en.wikipedia.org/wiki/Gaussian_integral), as shown below. \n",
|
||||
"\n",
|
||||
"The function takes three to five arguments: \n",
|
||||
"\n",
|
||||
"* f, a callable,\n",
|
||||
"* a and b, the lower and upper integration limit, \n",
|
||||
"* levels=, the number of loops taken to calculate (default 6),\n",
|
||||
"* eps=, the error tolerance (default: etolerance)\n",
|
||||
"\n",
|
||||
"The function returns the result and the error estimate as a tuple of floats.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"UsageError: Cell magic `%%micropython` not found.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import scipy, numpy as np\n",
|
||||
"from math import *\n",
|
||||
"f = lambda x: exp(- x**2)\n",
|
||||
"result = scipy.integrate.tanhsinh(f, -np.inf, np.inf)\n",
|
||||
"print (f\"result = {result}\")\n",
|
||||
"exact = sqrt(pi) # which is the exact value\n",
|
||||
"print (f\"exact value = {exact}\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.3"
|
||||
},
|
||||
"toc": {
|
||||
"base_numbering": 1,
|
||||
"nav_menu": {},
|
||||
"number_sections": true,
|
||||
"sideBar": true,
|
||||
"skip_h1_title": false,
|
||||
"title_cell": "Table of Contents",
|
||||
"title_sidebar": "Contents",
|
||||
"toc_cell": false,
|
||||
"toc_position": {
|
||||
"height": "calc(100% - 180px)",
|
||||
"left": "10px",
|
||||
"top": "150px",
|
||||
"width": "382.797px"
|
||||
},
|
||||
"toc_section_display": true,
|
||||
"toc_window_display": true
|
||||
},
|
||||
"varInspector": {
|
||||
"cols": {
|
||||
"lenName": 16,
|
||||
"lenType": 16,
|
||||
"lenVar": 40
|
||||
},
|
||||
"kernels_config": {
|
||||
"python": {
|
||||
"delete_cmd_postfix": "",
|
||||
"delete_cmd_prefix": "del ",
|
||||
"library": "var_list.py",
|
||||
"varRefreshCmd": "print(var_dic_list())"
|
||||
},
|
||||
"r": {
|
||||
"delete_cmd_postfix": ") ",
|
||||
"delete_cmd_prefix": "rm(",
|
||||
"library": "var_list.r",
|
||||
"varRefreshCmd": "cat(var_dic_list()) "
|
||||
}
|
||||
},
|
||||
"types_to_exclude": [
|
||||
"module",
|
||||
"function",
|
||||
"builtin_function_or_method",
|
||||
"instance",
|
||||
"_Feature"
|
||||
],
|
||||
"window_display": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
|
@ -1,57 +1,3 @@
|
|||
Fri, 06 Jun 2025
|
||||
|
||||
version 6.8.0
|
||||
|
||||
expose ndim property
|
||||
|
||||
Fri, 06 Jun 2025
|
||||
|
||||
version 6.7.7
|
||||
|
||||
fix ndarray type inference for micropython objects
|
||||
|
||||
Thu, 29 May 2025
|
||||
|
||||
version 6.7.6
|
||||
|
||||
loadtxt can deal with multi-line comments
|
||||
|
||||
Thu, 29 May 2025
|
||||
|
||||
version 6.7.5
|
||||
|
||||
fix typo and shape in radnom module
|
||||
|
||||
Sun, 16 Mar 2025
|
||||
|
||||
version 6.7.4
|
||||
|
||||
re-name integration constants to avoid name clash with EPS ports
|
||||
|
||||
Sun, 26 Jan 2025
|
||||
|
||||
version 6.7.3
|
||||
|
||||
fix keepdims for min, max, argmin, argmax
|
||||
|
||||
Sun, 19 Jan 2025
|
||||
|
||||
version 6.7.2
|
||||
|
||||
fix keepdims for std, remove redundant macros from numerical.h, update documentation
|
||||
|
||||
Mon, 30 Dec 2024
|
||||
|
||||
version 6.7.1
|
||||
|
||||
add keepdims keyword argument to numerical functions
|
||||
|
||||
Sun, 15 Dec 2024
|
||||
|
||||
version 6.7.0
|
||||
|
||||
add scipy.integrate module
|
||||
|
||||
Sun, 24 Nov 2024
|
||||
|
||||
version 6.6.1
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-02-09T06:27:15.118699Z",
|
||||
|
|
@ -57,11 +57,11 @@
|
|||
"# -- Project information -----------------------------------------------------\n",
|
||||
"\n",
|
||||
"project = 'The ulab book'\n",
|
||||
"copyright = '2019-2025, Zoltán Vörös and contributors'\n",
|
||||
"copyright = '2019-2024, Zoltán Vörös and contributors'\n",
|
||||
"author = 'Zoltán Vörös'\n",
|
||||
"\n",
|
||||
"# The full version, including alpha/beta/rc tags\n",
|
||||
"release = '6.9.0'\n",
|
||||
"release = '6.6.0'\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# -- General configuration ---------------------------------------------------\n",
|
||||
|
|
@ -191,7 +191,6 @@
|
|||
" numpy-fft\n",
|
||||
" numpy-linalg\n",
|
||||
" numpy-random\n",
|
||||
" scipy-integrate\n",
|
||||
" scipy-linalg\n",
|
||||
" scipy-optimize\n",
|
||||
" scipy-signal\n",
|
||||
|
|
@ -295,10 +294,6 @@
|
|||
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
|
||||
" _, nbc = validator.normalize(nbc)\n",
|
||||
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
|
||||
" _, nbc = validator.normalize(nbc)\n",
|
||||
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
|
||||
" _, nbc = validator.normalize(nbc)\n",
|
||||
"/home/v923z/anaconda3/lib/python3.11/site-packages/nbconvert/exporters/exporter.py:349: MissingIDFieldWarning: Code cell is missing an id field, this will become a hard error in future nbformat versions. You may want to use `normalize()` on your notebooks before validations (available since nbformat 5.1.4). Previous versions of nbformat are fixing this issue transparently, and will stop doing so in the future.\n",
|
||||
" _, nbc = validator.normalize(nbc)\n"
|
||||
]
|
||||
}
|
||||
|
|
@ -311,7 +306,6 @@
|
|||
" 'numpy-fft',\n",
|
||||
" 'numpy-linalg',\n",
|
||||
" 'numpy-random',\n",
|
||||
" 'scipy-integrate',\n",
|
||||
" 'scipy-linalg',\n",
|
||||
" 'scipy-optimize',\n",
|
||||
" 'scipy-signal',\n",
|
||||
|
|
@ -476,7 +470,7 @@
|
|||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "base",
|
||||
"display_name": "Python 3.8.5 ('base')",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
|
|
@ -538,6 +532,11 @@
|
|||
"_Feature"
|
||||
],
|
||||
"window_display": false
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "9e4ec6f642f986afcc9e252c165e44859a62defc5c697cae6f82c2943465ec10"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
|
|
|||
|
|
@ -2599,7 +2599,7 @@
|
|||
"source": [
|
||||
"# Binary operators\n",
|
||||
"\n",
|
||||
"`ulab` implements the `+`, `-`, `*`, `/`, `**`, `%`, `<`, `>`, `<=`, `>=`, `==`, `!=`, `+=`, `-=`, `*=`, `/=`, `**=`, `%=` binary operators, as well as the `AND`, `OR`, `XOR` bit-wise operators that work element-wise. Note that the bit-wise operators will raise an exception, if either of the operands is of `float` or `complex` type.\n",
|
||||
"`ulab` implements the `+`, `-`, `*`, `/`, `**`, `<`, `>`, `<=`, `>=`, `==`, `!=`, `+=`, `-=`, `*=`, `/=`, `**=` binary operators, as well as the `AND`, `OR`, `XOR` bit-wise operators that work element-wise. Note that the bit-wise operators will raise an exception, if either of the operands is of `float` or `complex` type.\n",
|
||||
"\n",
|
||||
"Broadcasting is available, meaning that the two operands do not even have to have the same shape. If the lengths along the respective axes are equal, or one of them is 1, or the axis is missing, the element-wise operation can still be carried out. \n",
|
||||
"A thorough explanation of broadcasting can be found under https://numpy.org/doc/stable/user/basics.broadcasting.html. \n",
|
||||
|
|
|
|||
|
|
@ -14,7 +14,6 @@
|
|||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"%pylab is deprecated, use %matplotlib inline and import the required libraries.\n",
|
||||
"Populating the interactive namespace from numpy and matplotlib\n"
|
||||
]
|
||||
}
|
||||
|
|
@ -32,7 +31,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-01-07T19:16:29.118001Z",
|
||||
|
|
@ -78,7 +77,7 @@
|
|||
" if args.unix: # tests the code on the unix port. Note that this works on unix only\n",
|
||||
" with open('/dev/shm/micropython.py', 'w') as fout:\n",
|
||||
" fout.write(cell)\n",
|
||||
" proc = subprocess.Popen([\"../micropython/ports/unix/build-2/micropython-2\", \"/dev/shm/micropython.py\"], \n",
|
||||
" proc = subprocess.Popen([\"../micropython/ports/unix/micropython-2\", \"/dev/shm/micropython.py\"], \n",
|
||||
" stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n",
|
||||
" print(proc.stdout.read().decode(\"utf-8\"))\n",
|
||||
" print(proc.stderr.read().decode(\"utf-8\"))\n",
|
||||
|
|
@ -183,7 +182,7 @@
|
|||
"%%micropython -pyboard 1\n",
|
||||
"\n",
|
||||
"import utime\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"\n",
|
||||
"def timeit(n=1000):\n",
|
||||
" def wrapper(f, *args, **kwargs):\n",
|
||||
|
|
@ -245,14 +244,145 @@
|
|||
"\n",
|
||||
"**WARNING:** Difference to `numpy`: the `out` keyword argument is not implemented.\n",
|
||||
"\n",
|
||||
"These functions follow the same pattern, and work with generic iterables, and `ndarray`s. `min`, and `max` return the minimum or maximum of a sequence. If the input array is two-dimensional, the `axis` keyword argument can be supplied, in which case the minimum/maximum along the given axis will be returned. If `axis=None` (this is also the default value), the minimum/maximum of the flattened array will be determined. The functions also accept the `keepdims=True` or `keepdims=False` keyword argument. The latter case is the default, while the former keeps the dimensions (the number of axes) of the supplied array. \n",
|
||||
"These functions follow the same pattern, and work with generic iterables, and `ndarray`s. `min`, and `max` return the minimum or maximum of a sequence. If the input array is two-dimensional, the `axis` keyword argument can be supplied, in which case the minimum/maximum along the given axis will be returned. If `axis=None` (this is also the default value), the minimum/maximum of the flattened array will be determined.\n",
|
||||
"\n",
|
||||
"`argmin/argmax` return the position (index) of the minimum/maximum in the sequence."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 108,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2020-10-17T21:26:22.507996Z",
|
||||
"start_time": "2020-10-17T21:26:22.492543Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"array([1.0, 2.0, 3.0], dtype=float)\n",
|
||||
"array([], dtype=float)\n",
|
||||
"[] 0\n",
|
||||
"array([1.0, 2.0, 3.0], dtype=float)\n",
|
||||
"array([], dtype=float)\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"import ulab as np\n",
|
||||
"\n",
|
||||
"a = np.array([1, 2, 3])\n",
|
||||
"print(a)\n",
|
||||
"print(a[-1:-1:-3])\n",
|
||||
"try:\n",
|
||||
" sa = list(a[-1:-1:-3])\n",
|
||||
" la = len(sa)\n",
|
||||
"except IndexError as e:\n",
|
||||
" sa = str(e)\n",
|
||||
" la = -1\n",
|
||||
" \n",
|
||||
"print(sa, la)\n",
|
||||
"\n",
|
||||
"a[-1:-1:-3] = np.ones(0)\n",
|
||||
"print(a)\n",
|
||||
"\n",
|
||||
"b = np.ones(0) + 1\n",
|
||||
"print(b)\n",
|
||||
"# print('b', b.shape())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 122,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2020-10-17T21:54:49.123748Z",
|
||||
"start_time": "2020-10-17T21:54:49.093819Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0, 1, -3array([], dtype=float)\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"import ulab as np\n",
|
||||
"a = np.array([1, 2, 3])\n",
|
||||
"print(a[0:1:-3])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 127,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2020-10-17T21:57:01.482277Z",
|
||||
"start_time": "2020-10-17T21:57:01.477362Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[0]"
|
||||
]
|
||||
},
|
||||
"execution_count": 127,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"l = list(range(13))\n",
|
||||
"\n",
|
||||
"l[0:10:113]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 81,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2020-10-17T20:59:58.285134Z",
|
||||
"start_time": "2020-10-17T20:59:58.263605Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(0,)"
|
||||
]
|
||||
},
|
||||
"execution_count": 81,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"a = np.array([1, 2, 3])\n",
|
||||
"np.ones(0, dtype=uint8) / np.zeros(0, dtype=uint16)\n",
|
||||
"np.ones(0).shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 375,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2019-10-18T13:08:28.113525Z",
|
||||
|
|
@ -264,16 +394,16 @@
|
|||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"a: array([1.0, 2.0, 0.0, 1.0, 10.0], dtype=float64)\n",
|
||||
"a: array([1.0, 2.0, 0.0, 1.0, 10.0], dtype=float)\n",
|
||||
"min of a: 0.0\n",
|
||||
"argmin of a: 2\n",
|
||||
"\n",
|
||||
"b:\n",
|
||||
" array([[1.0, 2.0, 0.0],\n",
|
||||
" [1.0, 10.0, -1.0]], dtype=float64)\n",
|
||||
"\t [1.0, 10.0, -1.0]], dtype=float)\n",
|
||||
"min of b (flattened): -1.0\n",
|
||||
"min of b (axis=0): array([1.0, 2.0, -1.0], dtype=float64)\n",
|
||||
"min of b (axis=1): array([0.0, -1.0], dtype=float64)\n",
|
||||
"min of b (axis=0): array([1.0, 2.0, -1.0], dtype=float)\n",
|
||||
"min of b (axis=1): array([0.0, -1.0], dtype=float)\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
|
|
@ -282,55 +412,19 @@
|
|||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"from ulab import numerical\n",
|
||||
"\n",
|
||||
"a = np.array([1, 2, 0, 1, 10])\n",
|
||||
"print('a:', a)\n",
|
||||
"print('min of a:', np.min(a))\n",
|
||||
"print('argmin of a:', np.argmin(a))\n",
|
||||
"print('min of a:', numerical.min(a))\n",
|
||||
"print('argmin of a:', numerical.argmin(a))\n",
|
||||
"\n",
|
||||
"b = np.array([[1, 2, 0], [1, 10, -1]])\n",
|
||||
"print('\\nb:\\n', b)\n",
|
||||
"print('min of b (flattened):', np.min(b))\n",
|
||||
"print('min of b (axis=0):', np.min(b, axis=0))\n",
|
||||
"print('min of b (axis=1):', np.min(b, axis=1))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"a: array([[0.0, 1.0, 2.0, 3.0],\n",
|
||||
" [4.0, 5.0, 6.0, 7.0],\n",
|
||||
" [8.0, 9.0, 10.0, 11.0]], dtype=float64)\n",
|
||||
"\n",
|
||||
"min of a (axis=1):\n",
|
||||
" array([[0.0],\n",
|
||||
" [4.0],\n",
|
||||
" [8.0]], dtype=float64)\n",
|
||||
"\n",
|
||||
"min of a (axis=0):\n",
|
||||
" array([[0.0, 1.0, 2.0, 3.0]], dtype=float64)\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"\n",
|
||||
"a = np.array(range(12)).reshape((3, 4))\n",
|
||||
"\n",
|
||||
"print('a:', a)\n",
|
||||
"print('\\nmin of a (axis=1):\\n', np.min(a, axis=1, keepdims=True))\n",
|
||||
"print('\\nmin of a (axis=0):\\n', np.min(a, axis=0, keepdims=True))"
|
||||
"print('min of b (flattened):', numerical.min(b))\n",
|
||||
"print('min of b (axis=0):', numerical.min(b, axis=0))\n",
|
||||
"print('min of b (axis=1):', numerical.min(b, axis=1))"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
@ -345,14 +439,12 @@
|
|||
"\n",
|
||||
"`numpy`: https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html\n",
|
||||
"\n",
|
||||
"These three functions follow the same pattern: if the `axis` keyword is not specified, they assume the default value of `None`, and return the result of the computation for the flattened array. Otherwise, the calculation is along the given axis. \n",
|
||||
"\n",
|
||||
"If the `axis` keyword argument is a number (this can also be negative to signify counting from the rightmost axis) the functions contract the arrays, i.e., the results will have one axis fewer than the input array. The only exception to this rule is when the `keepdims` keyword argument is supplied with a value `True`, in which case, the results will have the same number of axis as the input, but the axis specified in `axis` will have a length of 1. This is useful in cases, when the output is to be broadcast with the input in subsequent computations."
|
||||
"These three functions follow the same pattern: if the axis keyword is not specified, it assumes the default value of `None`, and returns the result of the computation for the flattened array. Otherwise, the calculation is along the given axis."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 527,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2019-10-20T06:51:58.845076Z",
|
||||
|
|
@ -366,73 +458,29 @@
|
|||
"text": [
|
||||
"a: \n",
|
||||
" array([[1.0, 2.0, 3.0],\n",
|
||||
" [4.0, 5.0, 6.0],\n",
|
||||
" [7.0, 8.0, 9.0]], dtype=float64)\n",
|
||||
"\t [4.0, 5.0, 6.0],\n",
|
||||
"\t [7.0, 8.0, 9.0]], dtype=float)\n",
|
||||
"sum, flat array: 45.0\n",
|
||||
"mean, horizontal: array([2.0, 5.0, 8.0], dtype=float64)\n",
|
||||
"std, vertical: array([2.449489742783178, 2.449489742783178, 2.449489742783178], dtype=float64)\n",
|
||||
"\n",
|
||||
"mean, horizontal: array([2.0, 5.0, 8.0], dtype=float)\n",
|
||||
"std, vertical: array([2.44949, 2.44949, 2.44949], dtype=float)\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"%%micropython -pyboard 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"from ulab import numerical\n",
|
||||
"\n",
|
||||
"a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n",
|
||||
"print('a: \\n', a)\n",
|
||||
"\n",
|
||||
"print('sum, flat array: ', np.sum(a))\n",
|
||||
"print('sum, flat array: ', numerical.sum(a))\n",
|
||||
"\n",
|
||||
"print('mean, horizontal: ', np.mean(a, axis=1))\n",
|
||||
"print('mean, horizontal: ', numerical.mean(a, axis=1))\n",
|
||||
"\n",
|
||||
"print('std, vertical: ', np.std(a, axis=0))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"a: \n",
|
||||
" array([[1.0, 2.0, 3.0],\n",
|
||||
" [4.0, 5.0, 6.0],\n",
|
||||
" [7.0, 8.0, 9.0]], dtype=float64)\n",
|
||||
"\n",
|
||||
"std, along 0th axis:\n",
|
||||
" array([2.449489742783178, 2.449489742783178, 2.449489742783178], dtype=float64)\n",
|
||||
"\n",
|
||||
"a: \n",
|
||||
" array([[1.0, 2.0, 3.0],\n",
|
||||
" [4.0, 5.0, 6.0],\n",
|
||||
" [7.0, 8.0, 9.0]], dtype=float64)\n",
|
||||
"\n",
|
||||
"std, along 1st axis, keeping dimensions:\n",
|
||||
" array([[0.8164965809277261],\n",
|
||||
" [0.8164965809277261],\n",
|
||||
" [0.8164965809277261]], dtype=float64)\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"\n",
|
||||
"a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n",
|
||||
"print('a: \\n', a)\n",
|
||||
"print('\\nstd, along 0th axis:\\n', np.std(a, axis=0))\n",
|
||||
"\n",
|
||||
"print('\\na: \\n', a)\n",
|
||||
"print('\\nstd, along 1st axis, keeping dimensions:\\n', np.std(a, axis=1, keepdims=True))"
|
||||
"print('std, vertical: ', numerical.std(a, axis=0))"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
@ -471,12 +519,13 @@
|
|||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"from ulab import numerical\n",
|
||||
"\n",
|
||||
"a = np.array([1, 2, 3, 4, 5, 6, 7, 8])\n",
|
||||
"print(\"a:\\t\\t\\t\", a)\n",
|
||||
"\n",
|
||||
"np.roll(a, 2)\n",
|
||||
"numerical.roll(a, 2)\n",
|
||||
"print(\"a rolled to the left:\\t\", a)\n",
|
||||
"\n",
|
||||
"# this should be the original vector\n",
|
||||
|
|
@ -532,18 +581,19 @@
|
|||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"from ulab import numerical\n",
|
||||
"\n",
|
||||
"a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])\n",
|
||||
"print(\"a:\\n\", a)\n",
|
||||
"\n",
|
||||
"np.roll(a, 2)\n",
|
||||
"numerical.roll(a, 2)\n",
|
||||
"print(\"\\na rolled to the left:\\n\", a)\n",
|
||||
"\n",
|
||||
"np.roll(a, -1, axis=1)\n",
|
||||
"numerical.roll(a, -1, axis=1)\n",
|
||||
"print(\"\\na rolled up:\\n\", a)\n",
|
||||
"\n",
|
||||
"np.roll(a, 1, axis=None)\n",
|
||||
"numerical.roll(a, 1, axis=None)\n",
|
||||
"print(\"\\na rolled with None:\\n\", a)"
|
||||
]
|
||||
},
|
||||
|
|
@ -599,7 +649,9 @@
|
|||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"from ulab import numerical\n",
|
||||
"from ulab import vector\n",
|
||||
"\n",
|
||||
"def dummy_adc():\n",
|
||||
" # dummy adc function, so that the results are reproducible\n",
|
||||
|
|
@ -607,8 +659,8 @@
|
|||
" \n",
|
||||
"n = 10\n",
|
||||
"# These are the normalised weights; the last entry is the most dominant\n",
|
||||
"weight = np.exp([1, 2, 3, 4, 5])\n",
|
||||
"weight = weight/np.sum(weight)\n",
|
||||
"weight = vector.exp([1, 2, 3, 4, 5])\n",
|
||||
"weight = weight/numerical.sum(weight)\n",
|
||||
"\n",
|
||||
"print(weight)\n",
|
||||
"# initial array of samples\n",
|
||||
|
|
@ -617,10 +669,10 @@
|
|||
"for i in range(n):\n",
|
||||
" # a new datum is inserted on the right hand side. This simply overwrites whatever was in the last slot\n",
|
||||
" samples[-1] = dummy_adc()\n",
|
||||
" print(np.mean(samples[-5:]*weight))\n",
|
||||
" print(numerical.mean(samples[-5:]*weight))\n",
|
||||
" print(samples[-5:])\n",
|
||||
" # the data are shifted by one position to the left\n",
|
||||
" numerical.np(samples, 1)"
|
||||
" numerical.roll(samples, 1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
@ -673,16 +725,17 @@
|
|||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"from ulab import numerical\n",
|
||||
"\n",
|
||||
"a = np.array([1, 2, 3, 4, 5])\n",
|
||||
"print(\"a: \\t\", a)\n",
|
||||
"print(\"a flipped:\\t\", np.flip(a))\n",
|
||||
"\n",
|
||||
"a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.uint8)\n",
|
||||
"print(\"\\na flipped horizontally\\n\", np.flip(a, axis=1))\n",
|
||||
"print(\"\\na flipped vertically\\n\", np.flip(a, axis=0))\n",
|
||||
"print(\"\\na flipped horizontally+vertically\\n\", np.flip(a))"
|
||||
"print(\"\\na flipped horizontally\\n\", numerical.flip(a, axis=1))\n",
|
||||
"print(\"\\na flipped vertically\\n\", numerical.flip(a, axis=0))\n",
|
||||
"print(\"\\na flipped horizontally+vertically\\n\", numerical.flip(a))"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
@ -747,18 +800,19 @@
|
|||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"from ulab import numerical\n",
|
||||
"\n",
|
||||
"a = np.array(range(9), dtype=np.uint8)\n",
|
||||
"print('a:\\n', a)\n",
|
||||
"\n",
|
||||
"print('\\nfirst derivative:\\n', np.diff(a, n=1))\n",
|
||||
"print('\\nsecond derivative:\\n', np.diff(a, n=2))\n",
|
||||
"print('\\nfirst derivative:\\n', numerical.diff(a, n=1))\n",
|
||||
"print('\\nsecond derivative:\\n', numerical.diff(a, n=2))\n",
|
||||
"\n",
|
||||
"c = np.array([[1, 2, 3, 4], [4, 3, 2, 1], [1, 4, 9, 16], [0, 0, 0, 0]])\n",
|
||||
"print('\\nc:\\n', c)\n",
|
||||
"print('\\nfirst derivative, first axis:\\n', np.diff(c, axis=0))\n",
|
||||
"print('\\nfirst derivative, second axis:\\n', np.diff(c, axis=1))"
|
||||
"print('\\nfirst derivative, first axis:\\n', numerical.diff(c, axis=0))\n",
|
||||
"print('\\nfirst derivative, second axis:\\n', numerical.diff(c, axis=1))"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
@ -804,7 +858,7 @@
|
|||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"\n",
|
||||
"a = np.array(range(12), dtype=np.int8).reshape((3, 4))\n",
|
||||
"print('a:\\n', a)\n",
|
||||
|
|
@ -871,17 +925,18 @@
|
|||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"from ulab import numerical\n",
|
||||
"\n",
|
||||
"a = np.array([[1, 12, 3, 0], [5, 3, 4, 1], [9, 11, 1, 8], [7, 10, 0, 1]], dtype=np.float)\n",
|
||||
"print('\\na:\\n', a)\n",
|
||||
"b = np.sort(a, axis=0)\n",
|
||||
"b = numerical.sort(a, axis=0)\n",
|
||||
"print('\\na sorted along vertical axis:\\n', b)\n",
|
||||
"\n",
|
||||
"c = np.sort(a, axis=1)\n",
|
||||
"c = numerical.sort(a, axis=1)\n",
|
||||
"print('\\na sorted along horizontal axis:\\n', c)\n",
|
||||
"\n",
|
||||
"c = np.sort(a, axis=None)\n",
|
||||
"c = numerical.sort(a, axis=None)\n",
|
||||
"print('\\nflattened a sorted:\\n', c)"
|
||||
]
|
||||
},
|
||||
|
|
@ -900,13 +955,15 @@
|
|||
"source": [
|
||||
"%%micropython -pyboard 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"from ulab import vector\n",
|
||||
"from ulab import numerical\n",
|
||||
"\n",
|
||||
"@timeit\n",
|
||||
"def sort_time(array):\n",
|
||||
" return np.sort(array)\n",
|
||||
" return numerical.sort(array)\n",
|
||||
"\n",
|
||||
"b = np.sin(np.linspace(0, 6.28, num=1000))\n",
|
||||
"b = vector.sin(np.linspace(0, 6.28, num=1000))\n",
|
||||
"print('b: ', b)\n",
|
||||
"sort_time(b)\n",
|
||||
"print('\\nb sorted:\\n', b)"
|
||||
|
|
@ -968,17 +1025,18 @@
|
|||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"from ulab import numerical\n",
|
||||
"\n",
|
||||
"a = np.array([[1, 12, 3, 0], [5, 3, 4, 1], [9, 11, 1, 8], [7, 10, 0, 1]], dtype=np.float)\n",
|
||||
"print('\\na:\\n', a)\n",
|
||||
"b = np.argsort(a, axis=0)\n",
|
||||
"b = numerical.argsort(a, axis=0)\n",
|
||||
"print('\\na sorted along vertical axis:\\n', b)\n",
|
||||
"\n",
|
||||
"c = np.argsort(a, axis=1)\n",
|
||||
"c = numerical.argsort(a, axis=1)\n",
|
||||
"print('\\na sorted along horizontal axis:\\n', c)\n",
|
||||
"\n",
|
||||
"c = np.argsort(a, axis=None)\n",
|
||||
"c = numerical.argsort(a, axis=None)\n",
|
||||
"print('\\nflattened a sorted:\\n', c)"
|
||||
]
|
||||
},
|
||||
|
|
@ -1020,11 +1078,12 @@
|
|||
"source": [
|
||||
"%%micropython -unix 1\n",
|
||||
"\n",
|
||||
"from ulab import numpy as np\n",
|
||||
"import ulab as np\n",
|
||||
"from ulab import numerical\n",
|
||||
"\n",
|
||||
"a = np.array([0, 5, 1, 3, 2, 4], dtype=np.uint8)\n",
|
||||
"print('\\na:\\n', a)\n",
|
||||
"b = np.argsort(a, axis=1)\n",
|
||||
"b = numerical.argsort(a, axis=1)\n",
|
||||
"print('\\nsorting indices:\\n', b)\n",
|
||||
"print('\\nthe original array:\\n', a)"
|
||||
]
|
||||
|
|
@ -1032,7 +1091,7 @@
|
|||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "base",
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
|
|
@ -1046,7 +1105,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
"version": "3.8.5"
|
||||
},
|
||||
"toc": {
|
||||
"base_numbering": 1,
|
||||
|
|
|
|||
|
|
@ -1,26 +0,0 @@
|
|||
try:
|
||||
from ulab import numpy as np
|
||||
except:
|
||||
import numpy as np
|
||||
|
||||
|
||||
dtypes = (np.uint8, np.int8, np.uint16, np.int16, np.float)
|
||||
|
||||
for dtype1 in dtypes:
|
||||
x1 = np.array(range(6), dtype=dtype1).reshape((2, 3))
|
||||
for dtype2 in dtypes:
|
||||
x2 = np.array(range(1, 4), dtype=dtype2)
|
||||
print(x1 % x2)
|
||||
|
||||
print()
|
||||
print('=' * 30)
|
||||
print('inplace modulo')
|
||||
print('=' * 30)
|
||||
print()
|
||||
|
||||
for dtype1 in dtypes:
|
||||
x1 = np.array(range(6), dtype=dtype1).reshape((2, 3))
|
||||
for dtype2 in dtypes:
|
||||
x2 = np.array(range(1, 4), dtype=dtype2)
|
||||
x1 %= x2
|
||||
print(x1)
|
||||
|
|
@ -1,105 +0,0 @@
|
|||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=uint8)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=uint16)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int8)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0, 0, 1],
|
||||
[0, 2, 0]], dtype=uint8)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=uint16)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
|
||||
==============================
|
||||
inplace modulo
|
||||
==============================
|
||||
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=uint8)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0, 0, 1],
|
||||
[0, 2, 0]], dtype=uint8)
|
||||
array([[0, 0, 1],
|
||||
[0, 0, 0]], dtype=int16)
|
||||
array([[0.0, 0.0, 1.0],
|
||||
[0.0, 0.0, 0.0]], dtype=float64)
|
||||
array([[0.0, 0.0, 1.0],
|
||||
[0.0, 0.0, 0.0]], dtype=float64)
|
||||
array([[0.0, 0.0, 1.0],
|
||||
[0.0, 0.0, 0.0]], dtype=float64)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0, 1, 2],
|
||||
[0, 0, 2]], dtype=int16)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0],
|
||||
[0.0, 0.0, 2.0]], dtype=float64)
|
||||
|
|
@ -1,10 +0,0 @@
|
|||
try:
|
||||
from ulab import numpy as np
|
||||
except ImportError:
|
||||
import numpy as np
|
||||
|
||||
rng = np.random.Generator(1234)
|
||||
|
||||
for generator in (rng.normal, rng.random, rng.uniform):
|
||||
random_array = generator(size=(1, 2))
|
||||
print("array shape:", random_array.shape)
|
||||
|
|
@ -1,3 +0,0 @@
|
|||
array shape: (1, 2)
|
||||
array shape: (1, 2)
|
||||
array shape: (1, 2)
|
||||
|
|
@ -1,23 +0,0 @@
|
|||
try:
|
||||
from ulab import numpy as np
|
||||
except ImportError:
|
||||
import numpy as np
|
||||
|
||||
for dtype in (np.uint8, np.int8, np.uint16, np.int8, np.float):
|
||||
a = np.array(range(12), dtype=dtype)
|
||||
b = a.reshape((3, 4))
|
||||
|
||||
print(a)
|
||||
print(b)
|
||||
print()
|
||||
|
||||
print(np.sum(a))
|
||||
print(np.sum(a, axis=0))
|
||||
print(np.sum(a, axis=0, keepdims=True))
|
||||
|
||||
print()
|
||||
print(np.sum(b))
|
||||
print(np.sum(b, axis=0))
|
||||
print(np.sum(b, axis=1))
|
||||
print(np.sum(b, axis=0, keepdims=True))
|
||||
print(np.sum(b, axis=1, keepdims=True))
|
||||
|
|
@ -1,80 +0,0 @@
|
|||
array([0, 1, 2, ..., 9, 10, 11], dtype=uint8)
|
||||
array([[0, 1, 2, 3],
|
||||
[4, 5, 6, 7],
|
||||
[8, 9, 10, 11]], dtype=uint8)
|
||||
|
||||
66
|
||||
66
|
||||
array([66], dtype=uint8)
|
||||
|
||||
66
|
||||
array([12, 15, 18, 21], dtype=uint8)
|
||||
array([6, 22, 38], dtype=uint8)
|
||||
array([[12, 15, 18, 21]], dtype=uint8)
|
||||
array([[6],
|
||||
[22],
|
||||
[38]], dtype=uint8)
|
||||
array([0, 1, 2, ..., 9, 10, 11], dtype=int8)
|
||||
array([[0, 1, 2, 3],
|
||||
[4, 5, 6, 7],
|
||||
[8, 9, 10, 11]], dtype=int8)
|
||||
|
||||
66
|
||||
66
|
||||
array([66], dtype=int8)
|
||||
|
||||
66
|
||||
array([12, 15, 18, 21], dtype=int8)
|
||||
array([6, 22, 38], dtype=int8)
|
||||
array([[12, 15, 18, 21]], dtype=int8)
|
||||
array([[6],
|
||||
[22],
|
||||
[38]], dtype=int8)
|
||||
array([0, 1, 2, ..., 9, 10, 11], dtype=uint16)
|
||||
array([[0, 1, 2, 3],
|
||||
[4, 5, 6, 7],
|
||||
[8, 9, 10, 11]], dtype=uint16)
|
||||
|
||||
66
|
||||
66
|
||||
array([66], dtype=uint16)
|
||||
|
||||
66
|
||||
array([12, 15, 18, 21], dtype=uint16)
|
||||
array([6, 22, 38], dtype=uint16)
|
||||
array([[12, 15, 18, 21]], dtype=uint16)
|
||||
array([[6],
|
||||
[22],
|
||||
[38]], dtype=uint16)
|
||||
array([0, 1, 2, ..., 9, 10, 11], dtype=int8)
|
||||
array([[0, 1, 2, 3],
|
||||
[4, 5, 6, 7],
|
||||
[8, 9, 10, 11]], dtype=int8)
|
||||
|
||||
66
|
||||
66
|
||||
array([66], dtype=int8)
|
||||
|
||||
66
|
||||
array([12, 15, 18, 21], dtype=int8)
|
||||
array([6, 22, 38], dtype=int8)
|
||||
array([[12, 15, 18, 21]], dtype=int8)
|
||||
array([[6],
|
||||
[22],
|
||||
[38]], dtype=int8)
|
||||
array([0.0, 1.0, 2.0, ..., 9.0, 10.0, 11.0], dtype=float64)
|
||||
array([[0.0, 1.0, 2.0, 3.0],
|
||||
[4.0, 5.0, 6.0, 7.0],
|
||||
[8.0, 9.0, 10.0, 11.0]], dtype=float64)
|
||||
|
||||
66.0
|
||||
66.0
|
||||
array([66.0], dtype=float64)
|
||||
|
||||
66.0
|
||||
array([12.0, 15.0, 18.0, 21.0], dtype=float64)
|
||||
array([6.0, 22.0, 38.0], dtype=float64)
|
||||
array([[12.0, 15.0, 18.0, 21.0]], dtype=float64)
|
||||
array([[6.0],
|
||||
[22.0],
|
||||
[38.0]], dtype=float64)
|
||||
|
|
@ -1,28 +0,0 @@
|
|||
import sys
|
||||
from math import *
|
||||
|
||||
try:
|
||||
from ulab import scipy
|
||||
except ImportError:
|
||||
import scipy
|
||||
|
||||
f = lambda x: x * sin(x) * exp(x)
|
||||
a=1
|
||||
b=2
|
||||
|
||||
(res, err) = scipy.integrate.tanhsinh(f, a, b)
|
||||
if isclose (res, 7.11263821415851) and isclose (err, 5.438231077315757e-14):
|
||||
print (res, err)
|
||||
|
||||
res = scipy.integrate.romberg(f, a, b)
|
||||
if isclose (res, 7.112638214158507):
|
||||
print (res)
|
||||
|
||||
res = scipy.integrate.simpson(f, a, b)
|
||||
if isclose (res, 7.112638214158494):
|
||||
print (res)
|
||||
|
||||
(res, err) = scipy.integrate.quad(f, a, b)
|
||||
if isclose (res, 7.112638214158507) and isclose (err, 7.686723611780195e-14):
|
||||
print (res, err)
|
||||
|
||||
|
|
@ -1,4 +0,0 @@
|
|||
7.11263821415851 5.438231077315757e-14
|
||||
7.112638214158507
|
||||
7.112638214158494
|
||||
7.112638214158507 7.686723611780195e-14
|
||||
Loading…
Reference in a new issue