{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T09:27:13.438054Z", "start_time": "2020-05-01T09:27:13.191491Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Notebook magic" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2022-01-07T18:24:48.499467Z", "start_time": "2022-01-07T18:24:48.488004Z" } }, "outputs": [], "source": [ "from IPython.core.magic import Magics, magics_class, line_cell_magic\n", "from IPython.core.magic import cell_magic, register_cell_magic, register_line_magic\n", "from IPython.core.magic_arguments import argument, magic_arguments, parse_argstring\n", "import subprocess\n", "import os" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2020-07-23T20:31:25.296014Z", "start_time": "2020-07-23T20:31:25.265937Z" } }, "outputs": [], "source": [ "@magics_class\n", "class PyboardMagic(Magics):\n", " @cell_magic\n", " @magic_arguments()\n", " @argument('-skip')\n", " @argument('-unix')\n", " @argument('-pyboard')\n", " @argument('-file')\n", " @argument('-data')\n", " @argument('-time')\n", " @argument('-memory')\n", " def micropython(self, line='', cell=None):\n", " args = parse_argstring(self.micropython, line)\n", " if args.skip: # doesn't care about the cell's content\n", " print('skipped execution')\n", " return None # do not parse the rest\n", " if args.unix: # tests the code on the unix port. Note that this works on unix only\n", " with open('/dev/shm/micropython.py', 'w') as fout:\n", " fout.write(cell)\n", " proc = subprocess.Popen([\"../micropython/ports/unix/build-2/micropython-2\", \"/dev/shm/micropython.py\"], \n", " stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n", " print(proc.stdout.read().decode(\"utf-8\"))\n", " print(proc.stderr.read().decode(\"utf-8\"))\n", " return None\n", " if args.file: # can be used to copy the cell content onto the pyboard's flash\n", " spaces = \" \"\n", " try:\n", " with open(args.file, 'w') as fout:\n", " fout.write(cell.replace('\\t', spaces))\n", " printf('written cell to {}'.format(args.file))\n", " except:\n", " print('Failed to write to disc!')\n", " return None # do not parse the rest\n", " if args.data: # can be used to load data from the pyboard directly into kernel space\n", " message = pyb.exec(cell)\n", " if len(message) == 0:\n", " print('pyboard >>>')\n", " else:\n", " print(message.decode('utf-8'))\n", " # register new variable in user namespace\n", " self.shell.user_ns[args.data] = string_to_matrix(message.decode(\"utf-8\"))\n", " \n", " if args.time: # measures the time of executions\n", " pyb.exec('import utime')\n", " message = pyb.exec('t = utime.ticks_us()\\n' + cell + '\\ndelta = utime.ticks_diff(utime.ticks_us(), t)' + \n", " \"\\nprint('execution time: {:d} us'.format(delta))\")\n", " print(message.decode('utf-8'))\n", " \n", " if args.memory: # prints out memory information \n", " message = pyb.exec('from micropython import mem_info\\nprint(mem_info())\\n')\n", " print(\"memory before execution:\\n========================\\n\", message.decode('utf-8'))\n", " message = pyb.exec(cell)\n", " print(\">>> \", message.decode('utf-8'))\n", " message = pyb.exec('print(mem_info())')\n", " print(\"memory after execution:\\n========================\\n\", message.decode('utf-8'))\n", "\n", " if args.pyboard:\n", " message = pyb.exec(cell)\n", " print(message.decode('utf-8'))\n", "\n", "ip = get_ipython()\n", "ip.register_magics(PyboardMagic)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## pyboard" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "ExecuteTime": { "end_time": "2020-05-07T07:35:35.126401Z", "start_time": "2020-05-07T07:35:35.105824Z" } }, "outputs": [], "source": [ "import pyboard\n", "pyb = pyboard.Pyboard('/dev/ttyACM0')\n", "pyb.enter_raw_repl()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2020-05-19T19:11:18.145548Z", "start_time": "2020-05-19T19:11:18.137468Z" } }, "outputs": [], "source": [ "pyb.exit_raw_repl()\n", "pyb.close()" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "ExecuteTime": { "end_time": "2020-05-07T07:35:38.725924Z", "start_time": "2020-05-07T07:35:38.645488Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "%%micropython -pyboard 1\n", "\n", "import utime\n", "import ulab as np\n", "\n", "def timeit(n=1000):\n", " def wrapper(f, *args, **kwargs):\n", " func_name = str(f).split(' ')[1]\n", " def new_func(*args, **kwargs):\n", " run_times = np.zeros(n, dtype=np.uint16)\n", " for i in range(n):\n", " t = utime.ticks_us()\n", " result = f(*args, **kwargs)\n", " run_times[i] = utime.ticks_diff(utime.ticks_us(), t)\n", " print('{}() execution times based on {} cycles'.format(func_name, n, (delta2-delta1)/n))\n", " print('\\tbest: %d us'%np.min(run_times))\n", " print('\\tworst: %d us'%np.max(run_times))\n", " print('\\taverage: %d us'%np.mean(run_times))\n", " print('\\tdeviation: +/-%.3f us'%np.std(run_times)) \n", " return result\n", " return new_func\n", " return wrapper\n", "\n", "def timeit(f, *args, **kwargs):\n", " func_name = str(f).split(' ')[1]\n", " def new_func(*args, **kwargs):\n", " t = utime.ticks_us()\n", " result = f(*args, **kwargs)\n", " print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')\n", " return result\n", " return new_func" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__END_OF_DEFS__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# numpy.random\n", "\n", "Random numbers drawn specific distributions can be generated by instantiating a `Generator` object, and calling its methods. The module defines the following three functions:\n", "\n", "1. [numpy.random.Generator.normal](#normal)\n", "1. [numpy.random.Generator.random](#random)\n", "1. [numpy.random.Generator.uniform](#uniform)\n", "\n", "\n", "The `Generator` object, when instantiated, takes a single integer as its argument. This integer is the seed, which will be fed to the 32-bit or 64-bit routine. More details can be found under https://www.pcg-random.org/index.html. The generator is a standard `python` object that keeps track of its state.\n", "\n", "`numpy`: https://numpy.org/doc/stable/reference/random/index.html" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## normal\n", "\n", "A random set of number from the `normal` distribution can be generated by calling the generator's `normal` method. The method takes three optional arguments, `loc=0.0`, the centre of the distribution, `scale=1.0`, the width of the distribution, and `size=None`, a tuple containing the shape of the returned array. In case `size` is `None`, a single floating point number is returned.\n", "\n", "The `normal` method of the `Generator` object is based on the [Box-Muller transform](https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform).\n", "\n", "`numpy`: https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.normal.html" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2019-10-19T13:08:17.647416Z", "start_time": "2019-10-19T13:08:17.597456Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gnerator() at 0x7fa9dae05340\n", "-6.285246229407202\n", "array([[24.95816273705659, 15.2670302229426, 14.81001577336041],\n", " [20.17589833056986, 23.14539083787544, 26.37772041367461],\n", " [41.94894234387275, 37.11027030608206, 25.65889562100477]], dtype=float64)\n", "array([[21.52562779033434, 12.74685887865834, 24.08404670765186],\n", " [4.728112596365396, 7.667757906857082, 21.61576094228444],\n", " [2.432338873595267, 27.75945683572574, 5.730827584659245]], dtype=float64)\n", "\n", "\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "\n", "rng = np.random.Generator(123456)\n", "print(rng)\n", "\n", "# return single number from a distribution of scale 1, and location 0\n", "print(rng.normal())\n", "\n", "print(rng.normal(loc=20.0, scale=10.0, size=(3,3)))\n", "# same as above, with positional arguments\n", "print(rng.normal(20.0, 10.0, (3,3)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## random\n", "\n", "A random set of number from the uniform distribution in the interval [0, 1] can be generated by calling the generator's `random` method. The method takes two optional arguments, `size=None`, a tuple containing the shape of the returned array, and `out`. In case `size` is `None`, a single floating point number is returned. \n", "\n", "`out` can be used, if a floating point array is available. An exception will be raised, if the array is not of `float` `dtype`, or if both `size` and `out` are supplied, and there is a conflict in their shapes.\n", "\n", "If `size` is `None`, a single floating point number will be returned.\n", "\n", "\n", "`numpy`: https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.random.html" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gnerator() at 0x7f299de05340\n", "6.384615058863119e-11\n", "\n", " array([[0.4348157846574171, 0.7906325931024071, 0.878697619856133],\n", " [0.8738606263361598, 0.4946080034142021, 0.7765890156101152],\n", " [0.1770783715717074, 0.02080447648492112, 0.1053837559005948]], dtype=float64)\n", "\n", "buffer array before:\n", " array([[0.0, 1.0, 2.0],\n", " [3.0, 4.0, 5.0],\n", " [6.0, 7.0, 8.0]], dtype=float64)\n", "\n", "buffer array after:\n", " array([[0.8508024287393201, 0.9848489829156055, 0.7598167589604003],\n", " [0.782995698302952, 0.2866337782847831, 0.7915884498022229],\n", " [0.4614071706315902, 0.4792657443088592, 0.1581582066230718]], dtype=float64)\n", "\n", "\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "\n", "rng = np.random.Generator(123456)\n", "print(rng)\n", "\n", "# returning new objects\n", "print(rng.random())\n", "print('\\n', rng.random(size=(3,3)))\n", "\n", "# supplying a buffer\n", "a = np.array(range(9), dtype=np.float).reshape((3,3))\n", "print('\\nbuffer array before:\\n', a)\n", "rng.random(out=a)\n", "print('\\nbuffer array after:\\n', a)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## uniform\n", "\n", "`uniform` is similar to `random`, except that the interval over which the numbers are distributed can be specified, while the `out` argument cannot. In addition to `size` specifying the shape of the output, `low=0.0`, and `high=1.0` are accepted arguments. With the indicated defaults, `uniform` is identical to `random`, which can be seen from the fact that the first 3-by-3 tensor below is the same as the one produced by `rng.random(size=(3,3))` above.\n", "\n", "\n", "If `size` is `None`, a single floating point number will be returned.\n", "\n", "\n", "`numpy`: https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.uniform.html" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gnerator() at 0x7f1891205340\n", "6.384615058863119e-11\n", "\n", " array([[0.4348157846574171, 0.7906325931024071, 0.878697619856133],\n", " [0.8738606263361598, 0.4946080034142021, 0.7765890156101152],\n", " [0.1770783715717074, 0.02080447648492112, 0.1053837559005948]], dtype=float64)\n", "\n", " array([[18.5080242873932, 19.84848982915605, 17.598167589604],\n", " [17.82995698302952, 12.86633778284783, 17.91588449802223],\n", " [14.6140717063159, 14.79265744308859, 11.58158206623072]], dtype=float64)\n", "\n", " array([[14.3380400319162, 12.72487657409978, 15.77119643621117],\n", " [13.61835831436355, 18.96062889255558, 15.78847796795966],\n", " [12.59435855187034, 17.68262037443622, 14.77943040598734]], dtype=float64)\n", "\n", "\n" ] } ], "source": [ "%%micropython -unix 1\n", "\n", "from ulab import numpy as np\n", "\n", "rng = np.random.Generator(123456)\n", "print(rng)\n", "\n", "print(rng.uniform())\n", "# returning numbers between 0, and 1\n", "print('\\n', rng.uniform(size=(3,3)))\n", "\n", "# returning numbers between 10, and 20\n", "print('\\n', rng.uniform(low=10, high=20, size=(3,3)))\n", "\n", "# same as above, without the keywords\n", "print('\\n', rng.uniform(10, 20, (3,3)))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": { "height": "calc(100% - 180px)", "left": "10px", "top": "150px", "width": "382.797px" }, "toc_section_display": true, "toc_window_display": true }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }