/* * This file is part of the micropython-ulab project, * * https://github.com/v923z/micropython-ulab * * The MIT License (MIT) * * Copyright (c) 2020 Jeff Epler for Adafruit Industries * 2020 Scott Shawcroft for Adafruit Industries * 2020-2021 Zoltán Vörös * 2020 Taku Fukada */ #include #include #include #include "py/obj.h" #include "py/runtime.h" #include "py/misc.h" #include "../ulab.h" #include "../scipy/signal/signal.h" #include "carray/carray_tools.h" #include "filter.h" #if ULAB_NUMPY_HAS_CONVOLVE mp_obj_t filter_convolve(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_a, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, { MP_QSTR_v, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type) || !mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) { mp_raise_TypeError(translate("convolve arguments must be ndarrays")); } ndarray_obj_t *a = MP_OBJ_TO_PTR(args[0].u_obj); ndarray_obj_t *c = MP_OBJ_TO_PTR(args[1].u_obj); // deal with linear arrays only #if ULAB_MAX_DIMS > 1 if((a->ndim != 1) || (c->ndim != 1)) { mp_raise_TypeError(translate("convolve arguments must be linear arrays")); } #endif size_t len_a = a->len; size_t len_c = c->len; if(len_a == 0 || len_c == 0) { mp_raise_TypeError(translate("convolve arguments must not be empty")); } int len = len_a + len_c - 1; // convolve mode "full" int32_t off = len_c - 1; uint8_t dtype = NDARRAY_FLOAT; #if ULAB_SUPPORTS_COMPLEX if((a->dtype == NDARRAY_COMPLEX) || (c->dtype == NDARRAY_COMPLEX)) { dtype = NDARRAY_COMPLEX; } #endif ndarray_obj_t *ndarray = ndarray_new_linear_array(len, dtype); mp_float_t *array = (mp_float_t *)ndarray->array; uint8_t *aarray = (uint8_t *)a->array; uint8_t *carray = (uint8_t *)c->array; int32_t as = a->strides[ULAB_MAX_DIMS - 1] / a->itemsize; int32_t cs = c->strides[ULAB_MAX_DIMS - 1] / c->itemsize; #if ULAB_SUPPORTS_COMPLEX if(dtype == NDARRAY_COMPLEX) { mp_float_t a_real, a_imag; mp_float_t c_real, c_imag = MICROPY_FLOAT_CONST(0.0); for(int32_t k = -off; k < len-off; k++) { mp_float_t accum_real = MICROPY_FLOAT_CONST(0.0); mp_float_t accum_imag = MICROPY_FLOAT_CONST(0.0); int32_t top_n = MIN(len_c, len_a - k); int32_t bot_n = MAX(-k, 0); for(int32_t n = bot_n; n < top_n; n++) { int32_t idx_c = (len_c - n - 1) * cs; int32_t idx_a = (n + k) * as; if(a->dtype != NDARRAY_COMPLEX) { a_real = ndarray_get_float_index(aarray, a->dtype, idx_a); a_imag = MICROPY_FLOAT_CONST(0.0); } else { a_real = ndarray_get_float_index(aarray, NDARRAY_FLOAT, 2 * idx_a); a_imag = ndarray_get_float_index(aarray, NDARRAY_FLOAT, 2 * idx_a + 1); } if(c->dtype != NDARRAY_COMPLEX) { c_real = ndarray_get_float_index(carray, c->dtype, idx_c); c_imag = MICROPY_FLOAT_CONST(0.0); } else { c_real = ndarray_get_float_index(carray, NDARRAY_FLOAT, 2 * idx_c); c_imag = ndarray_get_float_index(carray, NDARRAY_FLOAT, 2 * idx_c + 1); } accum_real += a_real * c_real - a_imag * c_imag; accum_imag += a_real * c_imag + a_imag * c_real; } *array++ = accum_real; *array++ = accum_imag; } return MP_OBJ_FROM_PTR(ndarray); } #endif for(int32_t k = -off; k < len-off; k++) { mp_float_t accum = MICROPY_FLOAT_CONST(0.0); int32_t top_n = MIN(len_c, len_a - k); int32_t bot_n = MAX(-k, 0); for(int32_t n = bot_n; n < top_n; n++) { int32_t idx_c = (len_c - n - 1) * cs; int32_t idx_a = (n + k) * as; mp_float_t ai = ndarray_get_float_index(aarray, a->dtype, idx_a); mp_float_t ci = ndarray_get_float_index(carray, c->dtype, idx_c); accum += ai * ci; } *array++ = accum; } return MP_OBJ_FROM_PTR(ndarray); } MP_DEFINE_CONST_FUN_OBJ_KW(filter_convolve_obj, 2, filter_convolve); #endif