/* * This file is part of the micropython-ulab project, * * https://github.com/v923z/micropython-ulab * * The MIT License (MIT) * * Copyright (c) 2019 Zoltán Vörös */ #include #include #include #include #include "py/runtime.h" #include "py/binary.h" #include "py/obj.h" #include "py/objtuple.h" #include "ndarray.h" // This function is copied verbatim from objarray.c STATIC mp_obj_array_t *array_new(char typecode, size_t n) { int typecode_size = mp_binary_get_size('@', typecode, NULL); mp_obj_array_t *o = m_new_obj(mp_obj_array_t); // this step could probably be skipped: we are never going to store a bytearray per se #if MICROPY_PY_BUILTINS_BYTEARRAY && MICROPY_PY_ARRAY o->base.type = (typecode == BYTEARRAY_TYPECODE) ? &mp_type_bytearray : &mp_type_array; #elif MICROPY_PY_BUILTINS_BYTEARRAY o->base.type = &mp_type_bytearray; #else o->base.type = &mp_type_array; #endif o->typecode = typecode; o->free = 0; o->len = n; o->items = m_new(byte, typecode_size * o->len); return o; } float ndarray_get_float_value(void *data, uint8_t typecode, size_t index) { if(typecode == NDARRAY_UINT8) { return (float)((uint8_t *)data)[index]; } else if(typecode == NDARRAY_INT8) { return (float)((int8_t *)data)[index]; } else if(typecode == NDARRAY_UINT16) { return (float)((uint16_t *)data)[index]; } else if(typecode == NDARRAY_INT16) { return (float)((int16_t *)data)[index]; } else { return (float)((float_t *)data)[index]; } } void ndarray_print_row(const mp_print_t *print, mp_obj_array_t *data, size_t n0, size_t n) { mp_print_str(print, "["); size_t i; if(n < PRINT_MAX) { // if the array is short, print everything mp_obj_print_helper(print, mp_binary_get_val_array(data->typecode, data->items, n0), PRINT_REPR); for(i=1; itypecode, data->items, n0+i), PRINT_REPR); } } else { mp_obj_print_helper(print, mp_binary_get_val_array(data->typecode, data->items, n0), PRINT_REPR); for(i=1; i<3; i++) { mp_print_str(print, ", "); mp_obj_print_helper(print, mp_binary_get_val_array(data->typecode, data->items, n0+i), PRINT_REPR); } mp_printf(print, ", ..., "); mp_obj_print_helper(print, mp_binary_get_val_array(data->typecode, data->items, n0+n-3), PRINT_REPR); for(size_t i=1; i<3; i++) { mp_print_str(print, ", "); mp_obj_print_helper(print, mp_binary_get_val_array(data->typecode, data->items, n0+n-3+i), PRINT_REPR); } } mp_print_str(print, "]"); } void ndarray_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_print_str(print, "ndarray("); if((self->m == 1) || (self->n == 1)) { ndarray_print_row(print, self->data, 0, self->data->len); } else { // TODO: add vertical ellipses for the case, when self->m > PRINT_MAX mp_print_str(print, "["); ndarray_print_row(print, self->data, 0, self->n); for(size_t i=1; i < self->m; i++) { mp_print_str(print, ",\n\t "); ndarray_print_row(print, self->data, i*self->n, self->n); } mp_print_str(print, "]"); } // TODO: print typecode if(self->data->typecode == NDARRAY_UINT8) { printf(", dtype=uint8)"); } else if(self->data->typecode == NDARRAY_INT8) { printf(", dtype=int8)"); } if(self->data->typecode == NDARRAY_UINT16) { printf(", dtype=uint16)"); } if(self->data->typecode == NDARRAY_INT16) { printf(", dtype=int16)"); } if(self->data->typecode == NDARRAY_FLOAT) { printf(", dtype=float)"); } } void ndarray_assign_elements(mp_obj_array_t *data, mp_obj_t iterable, uint8_t typecode, size_t *idx) { // assigns a single row in the matrix mp_obj_t item; while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { mp_binary_set_val_array(typecode, data->items, (*idx)++, item); } } ndarray_obj_t *create_new_ndarray(size_t m, size_t n, uint8_t typecode) { // Creates the base ndarray with shape (m, n), and initialises the values to straight 0s ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t); ndarray->base.type = &ulab_ndarray_type; ndarray->m = m; ndarray->n = n; mp_obj_array_t *data = array_new(typecode, m*n); ndarray->bytes = m * n * mp_binary_get_size('@', typecode, NULL); // this should set all elements to 0, irrespective of the of the typecode (all bits are zero) // we could, perhaps, leave this step out, and initialise the array, only, when needed memset(data->items, 0, ndarray->bytes); ndarray->data = data; return ndarray; } mp_obj_t ndarray_copy(mp_obj_t self_in) { // returns a verbatim (shape and typecode) copy of self_in ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in); ndarray_obj_t *out = create_new_ndarray(self->m, self->n, self->data->typecode); int typecode_size = mp_binary_get_size('@', self->data->typecode, NULL); memcpy(out->data->items, self->data->items, self->data->len*typecode_size); return MP_OBJ_FROM_PTR(out); } STATIC uint8_t ndarray_init_helper(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_oin, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} }, { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = NDARRAY_FLOAT } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(1, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); uint8_t dtype = args[1].u_int; return dtype; } mp_obj_t ndarray_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, 2, true); mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); uint8_t dtype = ndarray_init_helper(n_args, args, &kw_args); size_t len1, len2=0, i=0; mp_obj_t len_in = mp_obj_len_maybe(args[0]); if (len_in == MP_OBJ_NULL) { mp_raise_ValueError("first argument must be an iterable"); } else { len1 = MP_OBJ_SMALL_INT_VALUE(len_in); } // We have to figure out, whether the first element of the iterable is an iterable itself // Perhaps, there is a more elegant way of handling this mp_obj_iter_buf_t iter_buf1; mp_obj_t item1, iterable1 = mp_getiter(args[0], &iter_buf1); while ((item1 = mp_iternext(iterable1)) != MP_OBJ_STOP_ITERATION) { len_in = mp_obj_len_maybe(item1); if(len_in != MP_OBJ_NULL) { // indeed, this seems to be an iterable // Next, we have to check, whether all elements in the outer loop have the same length if(i > 0) { if(len2 != MP_OBJ_SMALL_INT_VALUE(len_in)) { mp_raise_ValueError("iterables are not of the same length"); } } len2 = MP_OBJ_SMALL_INT_VALUE(len_in); i++; } } // By this time, it should be established, what the shape is, so we can now create the array ndarray_obj_t *self = create_new_ndarray(len1, (len2 == 0) ? 1 : len2, dtype); iterable1 = mp_getiter(args[0], &iter_buf1); i = 0; if(len2 == 0) { // the first argument is a single iterable ndarray_assign_elements(self->data, iterable1, dtype, &i); } else { mp_obj_iter_buf_t iter_buf2; mp_obj_t iterable2; while ((item1 = mp_iternext(iterable1)) != MP_OBJ_STOP_ITERATION) { iterable2 = mp_getiter(item1, &iter_buf2); ndarray_assign_elements(self->data, iterable2, dtype, &i); } } return MP_OBJ_FROM_PTR(self); } mp_obj_t ndarray_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) { // NOTE: this will work only on the flattened array! ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in); if (value == MP_OBJ_SENTINEL) { // simply return the values at index, no assignment if (MP_OBJ_IS_TYPE(index, &mp_type_slice)) { mp_bound_slice_t slice; mp_seq_get_fast_slice_indexes(self->data->len, index, &slice); // TODO: this won't work with index reversion!!! size_t len = (slice.stop - slice.start) / slice.step; ndarray_obj_t *out = create_new_ndarray(1, len, self->data->typecode); int _sizeof = mp_binary_get_size('@', self->data->typecode, NULL); uint8_t *indata = (uint8_t *)self->data->items; uint8_t *outdata = (uint8_t *)out->data->items; for(size_t i=0; i < len; i++) { memcpy(outdata+(i*_sizeof), indata+(slice.start+i*slice.step)*_sizeof, _sizeof); } return MP_OBJ_FROM_PTR(out); } // we have a single index, return either a single number (arrays), or an array (matrices) int16_t idx = mp_obj_get_int(index); if(idx < 0) { idx = self->m > 1 ? self->m + idx : self->n + idx; } if(self->m > 1) { // we do have a matrix if(idx >= self->m) { mp_raise_ValueError("index is out of range"); } if(self->n == 1) { // the matrix is actually a column vector return mp_binary_get_val_array(self->data->typecode, self->data->items, idx); } // return an array ndarray_obj_t *out = create_new_ndarray(1, self->n, self->data->typecode); int _sizeof = mp_binary_get_size('@', self->data->typecode, NULL); uint8_t *indata = (uint8_t *)self->data->items; uint8_t *outdata = (uint8_t *)out->data->items; memcpy(outdata, &indata[idx*self->n*_sizeof], self->n*_sizeof); return MP_OBJ_FROM_PTR(out); } // since self->m == 1, we have a flat array, hence, we've got to return a single number if(idx >= self->n) { mp_raise_ValueError("index is out of range"); } return mp_binary_get_val_array(self->data->typecode, self->data->items, idx); } else { int16_t idx = mp_obj_get_int(index); if((self->m == 1) || (self->n == 1)) { if(idx < 0) { idx = self->m > 1 ? self->m + idx : self->n + idx; } if((idx > self->m) && (idx > self->n)) { mp_raise_ValueError("index is out of range"); } mp_binary_set_val_array(self->data->typecode, self->data->items, idx, value); } else { // do not deal with assignment, bail out, if the array is two-dimensional mp_raise_NotImplementedError("subcript assignment is not implemented for 2D arrays"); } } return mp_const_none; } // itarray iterator mp_obj_t ndarray_getiter(mp_obj_t o_in, mp_obj_iter_buf_t *iter_buf) { return mp_obj_new_ndarray_iterator(o_in, 0, iter_buf); } typedef struct _mp_obj_ndarray_it_t { mp_obj_base_t base; mp_fun_1_t iternext; mp_obj_t ndarray; size_t cur; } mp_obj_ndarray_it_t; mp_obj_t ndarray_iternext(mp_obj_t self_in) { mp_obj_ndarray_it_t *self = MP_OBJ_TO_PTR(self_in); ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(self->ndarray); // TODO: in numpy, ndarrays are iterated with respect to the first axis. size_t iter_end = 0; if((ndarray->m == 1) || (ndarray->n ==1)) { iter_end = ndarray->data->len; } else { iter_end = ndarray->m; } if(self->cur < iter_end) { if(ndarray->m == ndarray->data->len) { // we are have a linear array // read the current value mp_obj_t value; value = mp_binary_get_val_array(ndarray->data->typecode, ndarray->data->items, self->cur); self->cur++; return value; } else { // we have a matrix, return the ndarray_obj_t *value = create_new_ndarray(1, ndarray->n, ndarray->data->typecode); // copy the memory content here uint8_t *tmp = (uint8_t *)ndarray->data->items; size_t strip_size = ndarray->n * mp_binary_get_size('@', ndarray->data->typecode, NULL); memcpy(value->data->items, &tmp[self->cur*strip_size], strip_size); self->cur++; return value; } } else { return MP_OBJ_STOP_ITERATION; } } mp_obj_t mp_obj_new_ndarray_iterator(mp_obj_t ndarray, size_t cur, mp_obj_iter_buf_t *iter_buf) { assert(sizeof(mp_obj_ndarray_it_t) <= sizeof(mp_obj_iter_buf_t)); mp_obj_ndarray_it_t *o = (mp_obj_ndarray_it_t*)iter_buf; o->base.type = &mp_type_polymorph_iter; o->iternext = ndarray_iternext; o->ndarray = ndarray; o->cur = cur; return MP_OBJ_FROM_PTR(o); } mp_obj_t ndarray_shape(mp_obj_t self_in) { ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_t tuple[2] = { mp_obj_new_int(self->m), mp_obj_new_int(self->n) }; return mp_obj_new_tuple(2, tuple); } mp_obj_t ndarray_size(mp_obj_t self_in, mp_obj_t axis) { ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in); uint8_t ax = mp_obj_get_int(axis); if(ax == 0) { return mp_obj_new_int(self->data->len); } else if(ax == 1) { return mp_obj_new_int(self->m); } else if(ax == 2) { return mp_obj_new_int(self->n); } else { return mp_const_none; } } mp_obj_t ndarray_rawsize(mp_obj_t self_in) { // returns a 5-tuple with the // // 1. number of rows // 2. number of columns // 3. length of the storage (should be equal to the product of 1. and 2.) // 4. length of the data storage in bytes // 5. datum size in bytes ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(5, NULL)); tuple->items[0] = MP_OBJ_NEW_SMALL_INT(self->m); tuple->items[1] = MP_OBJ_NEW_SMALL_INT(self->n); tuple->items[2] = MP_OBJ_NEW_SMALL_INT(self->bytes); tuple->items[3] = MP_OBJ_NEW_SMALL_INT(self->data->len); tuple->items[4] = MP_OBJ_NEW_SMALL_INT(mp_binary_get_size('@', self->data->typecode, NULL)); return tuple; } // Binary operations STATIC uint8_t upcasting(uint8_t type_left, uint8_t type_right) { // returns the upcast typecode // Now we have to collect 25 cases. Perhaps there is a more elegant solution for this if(type_left == type_right) { // 5 cases return type_left; } else if((type_left == NDARRAY_FLOAT) || (type_right == NDARRAY_FLOAT)) { // 8 cases ('f' AND 'f' has already been accounted for) return NDARRAY_FLOAT; } else if(((type_left == NDARRAY_UINT8) && (type_right == NDARRAY_INT8)) || ((type_left == NDARRAY_INT8) && (type_right == NDARRAY_UINT8)) || ((type_left == NDARRAY_UINT8) && (type_right == NDARRAY_INT16)) || ((type_left == NDARRAY_INT16) && (type_right == NDARRAY_UINT8)) || ((type_left == NDARRAY_UINT8) && (type_right == NDARRAY_UINT16)) || ((type_left == NDARRAY_UINT16) && (type_right == NDARRAY_UINT8)) || ((type_left == NDARRAY_INT8) && (type_right == NDARRAY_UINT16)) || ((type_left == NDARRAY_UINT16) && (type_right == NDARRAY_INT8)) ) { // 8 cases return NDARRAY_UINT16; } else if ( ((type_left == NDARRAY_INT8) && (type_right == NDARRAY_INT16)) || ((type_left == NDARRAY_INT16) && (type_right == NDARRAY_INT8)) ) { // 2 cases return NDARRAY_INT16; } else if ( ((type_left == NDARRAY_INT16) && (type_right == NDARRAY_UINT16)) || ((type_left == NDARRAY_UINT16) && (type_right == NDARRAY_INT16)) ) { // 2 cases return NDARRAY_FLOAT; } return NDARRAY_FLOAT; // we are never going to reach this statement, but we have to make the compiler happy } mp_obj_t ndarray_binary_op(mp_binary_op_t op, mp_obj_t lhs, mp_obj_t rhs) { ndarray_obj_t *ol = MP_OBJ_TO_PTR(lhs); uint8_t typecode; float value; // First, the right hand side is a native micropython object, i.e, an integer, or a float if (mp_obj_is_int(rhs) || mp_obj_is_float(rhs)) { // we have to split the two cases here... if(mp_obj_is_int(rhs)) { typecode = upcasting(ol->data->typecode, NDARRAY_INT16); value = (float)mp_obj_get_int(rhs); } else { typecode = upcasting(ol->data->typecode, NDARRAY_FLOAT); value = mp_obj_get_float(rhs); } if((op == MP_BINARY_OP_ADD) || (op == MP_BINARY_OP_MULTIPLY) || (op == MP_BINARY_OP_SUBTRACT) || (op == MP_BINARY_OP_TRUE_DIVIDE)) { ndarray_obj_t *out = create_new_ndarray(ol->m, ol->n, typecode); if(op == MP_BINARY_OP_SUBTRACT) value *= -1.0; if(op == MP_BINARY_OP_TRUE_DIVIDE) value = 1.0/value; if(typecode == NDARRAY_INT16) { int16_t *outdata = (int16_t *)out->data->items; if((op == MP_BINARY_OP_ADD) || (op == MP_BINARY_OP_SUBTRACT)) { for(size_t i=0; i < ol->data->len; i++) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) + value; } } else if((op == MP_BINARY_OP_MULTIPLY) || (op == MP_BINARY_OP_TRUE_DIVIDE)) { for(size_t i=0; i < ol->data->len; i++) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) * value; } } } else if(typecode == NDARRAY_FLOAT) { float *outdata = (float *)out->data->items; if((op == MP_BINARY_OP_ADD) || (op == MP_BINARY_OP_SUBTRACT)) { for(size_t i=0; i < ol->data->len; i++) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) + value; } } else if((op == MP_BINARY_OP_MULTIPLY) || (op == MP_BINARY_OP_TRUE_DIVIDE)) { for(size_t i=0; i < ol->data->len; i++) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) * value; } } } return MP_OBJ_FROM_PTR(out); } else { return MP_OBJ_NULL; // op not supported } } else if(mp_obj_is_type(rhs, &ulab_ndarray_type)) { // next, the ndarray stuff ndarray_obj_t *or = MP_OBJ_TO_PTR(rhs); if((ol->m != or->m) || (ol->n != or->n)) { mp_raise_ValueError("operands could not be broadcast together"); } // At this point, the operands should have the same shape typecode = upcasting(or->data->typecode, ol->data->typecode); if(op == MP_BINARY_OP_EQUAL) { // Two arrays are equal, if their shape, typecode, and elements are equal if((ol->m != or->m) || (ol->n != or->n) || (ol->data->typecode != or->data->typecode)) { return mp_const_false; } else { size_t i = ol->bytes; uint8_t *l = (uint8_t *)ol->data->items; uint8_t *r = (uint8_t *)or->data->items; while(i) { // At this point, we can simply compare the bytes, the type is irrelevant if(*l++ != *r++) { return mp_const_false; } i--; } return mp_const_true; } } else if((op == MP_BINARY_OP_ADD) || (op == MP_BINARY_OP_SUBTRACT) || (op == MP_BINARY_OP_TRUE_DIVIDE) || (op == MP_BINARY_OP_MULTIPLY)) { // for in-place operations, we won't need this!!! typecode = upcasting(or->data->typecode, ol->data->typecode); ndarray_obj_t *out = create_new_ndarray(ol->m, ol->n, typecode); if(typecode == NDARRAY_UINT8) { uint8_t *outdata = (uint8_t *)out->data->items; for(size_t i=0; i < ol->data->len; i++) { value = ndarray_get_float_value(or->data->items, or->data->typecode, i); if(op == MP_BINARY_OP_ADD) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) + value; } else if(op == MP_BINARY_OP_SUBTRACT) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) - value; } else if(op == MP_BINARY_OP_MULTIPLY) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) * value; } else if(op == MP_BINARY_OP_TRUE_DIVIDE) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) / value; } } } else if(typecode == NDARRAY_INT8) { int8_t *outdata = (int8_t *)out->data->items; for(size_t i=0; i < ol->data->len; i++) { value = ndarray_get_float_value(or->data->items, or->data->typecode, i); if(op == MP_BINARY_OP_ADD) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) + value; } else if(op == MP_BINARY_OP_SUBTRACT) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) - value; } else if(op == MP_BINARY_OP_MULTIPLY) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) * value; } else if(op == MP_BINARY_OP_TRUE_DIVIDE) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) / value; } } } else if(typecode == NDARRAY_UINT16) { uint16_t *outdata = (uint16_t *)out->data->items; for(size_t i=0; i < ol->data->len; i++) { value = ndarray_get_float_value(or->data->items, or->data->typecode, i); if(op == MP_BINARY_OP_ADD) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) + value; } else if(op == MP_BINARY_OP_SUBTRACT) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) - value; } else if(op == MP_BINARY_OP_MULTIPLY) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) * value; } else if(op == MP_BINARY_OP_TRUE_DIVIDE) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) / value; } } } else if(typecode == NDARRAY_INT16) { int16_t *outdata = (int16_t *)out->data->items; for(size_t i=0; i < ol->data->len; i++) { value = ndarray_get_float_value(or->data->items, or->data->typecode, i); if(op == MP_BINARY_OP_ADD) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) + value; } else if(op == MP_BINARY_OP_SUBTRACT) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) - value; } else if(op == MP_BINARY_OP_MULTIPLY) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) * value; } else if(op == MP_BINARY_OP_TRUE_DIVIDE) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) / value; } } } else if(typecode == NDARRAY_FLOAT) { float *outdata = (float *)out->data->items; for(size_t i=0; i < ol->data->len; i++) { value = ndarray_get_float_value(or->data->items, or->data->typecode, i); if(op == MP_BINARY_OP_ADD) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) + value; } else if(op == MP_BINARY_OP_SUBTRACT) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) - value; } else if(op == MP_BINARY_OP_MULTIPLY) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) * value; } else if(op == MP_BINARY_OP_TRUE_DIVIDE) { outdata[i] = ndarray_get_float_value(ol->data->items, ol->data->typecode, i) / value; } } } return MP_OBJ_FROM_PTR(out); } else { return MP_OBJ_NULL; // op not supported } } else { mp_raise_TypeError("wrong operand type on the right hand side"); } } mp_obj_t ndarray_unary_op(mp_unary_op_t op, mp_obj_t self_in) { ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in); switch (op) { case MP_UNARY_OP_LEN: if(self->m > 1) { return mp_obj_new_int(self->m); } else { return mp_obj_new_int(self->n); } default: return MP_OBJ_NULL; // operator not supported } }