/* * This file is part of the micropython-ulab project, * * https://github.com/v923z/micropython-ulab * * The MIT License (MIT) * * Copyright (c) 2019-2021 Zoltán Vörös * */ #include #include #include #include "py/obj.h" #include "py/runtime.h" #include "py/misc.h" #include "../../ulab.h" #include "../../ulab_tools.h" #include "transform.h" #if ULAB_NUMPY_HAS_DOT //| def dot(m1: ulab.array, m2: ulab.array) -> Union[ulab.array, float]: //| """ //| :param ~ulab.array m1: a matrix, or a vector //| :param ~ulab.array m2: a matrix, or a vector //| //| Computes the product of two matrices, or two vectors. In the letter case, the inner product is returned.""" //| ... //| mp_obj_t transform_dot(mp_obj_t _m1, mp_obj_t _m2) { // TODO: should the results be upcast? // This implements 2D operations only! if(!MP_OBJ_IS_TYPE(_m1, &ulab_ndarray_type) || !MP_OBJ_IS_TYPE(_m2, &ulab_ndarray_type)) { mp_raise_TypeError(translate("arguments must be ndarrays")); } ndarray_obj_t *m1 = MP_OBJ_TO_PTR(_m1); ndarray_obj_t *m2 = MP_OBJ_TO_PTR(_m2); #if ULAB_MAX_DIMS > 1 if ((m1->ndim == 1) && (m2->ndim == 1)) { #endif // 2 vectors if (m1->len != m2->len) { mp_raise_ValueError(translate("vectors must have same lengths")); } mp_float_t dot = 0.0; uint8_t *array1 = (uint8_t *)m1->array; uint8_t *array2 = (uint8_t *)m2->array; for (size_t i=0; i < m1->len; i++) { dot += ndarray_get_float_value(array1, m1->dtype)*ndarray_get_float_value(array2, m2->dtype); array1 += m1->strides[ULAB_MAX_DIMS - 1]; array2 += m2->strides[ULAB_MAX_DIMS - 1]; } return mp_obj_new_float(dot); #if ULAB_MAX_DIMS > 1 } else { // 2 matrices if(m1->shape[ULAB_MAX_DIMS - 1] != m2->shape[ULAB_MAX_DIMS - 2]) { mp_raise_ValueError(translate("matrix dimensions do not match")); } size_t *shape = ndarray_shape_vector(0, 0, m1->shape[ULAB_MAX_DIMS - 2], m2->shape[ULAB_MAX_DIMS - 1]); ndarray_obj_t *out = ndarray_new_dense_ndarray(2, shape, NDARRAY_FLOAT); mp_float_t *outdata = (mp_float_t *)out->array; for(size_t i=0; i < m1->shape[ULAB_MAX_DIMS - 2]; i++) { // rows of m1 for(size_t j=0; j < m2->shape[ULAB_MAX_DIMS - 1]; j++) { // columns of m2 mp_float_t sum = 0.0, v1, v2; for(size_t k=0; k < m2->shape[ULAB_MAX_DIMS - 2]; k++) { // (i, k) * (k, j) size_t pos1 = i*m1->shape[ULAB_MAX_DIMS - 1]+k; size_t pos2 = k*m2->shape[ULAB_MAX_DIMS - 1]+j; v1 = ndarray_get_float_index(m1->array, m1->dtype, pos1); v2 = ndarray_get_float_index(m2->array, m2->dtype, pos2); sum += v1 * v2; } *outdata++ = sum; } } return MP_OBJ_FROM_PTR(out); } #endif } MP_DEFINE_CONST_FUN_OBJ_2(transform_dot_obj, transform_dot); #endif