micropython-ulab/code/user/user.c
Jeff Epler 308627c9aa
Fix several build errors in CircuitPython (#533)
* Properly register submodules of ulab

This is related to
 * https://github.com/adafruit/circuitpython/issues/6066

in which, after the merge of 1.18 into CircuitPython, we lost the ability
to import submodules of built-in modules.

While reconstructing the changes we had made locally to enable this,
I discovered that there was an easier way: simply register the dotted
module names via MP_REGISTER_MODULE.

* Fix finding processor count when no `python` executable is installed

debian likes to install only `python3`, and not `python` (which was,
for many decades, python2).

This was previously done for `build.sh` but not for `build-cp.sh`.

* Only use this submodule feature in CircuitPython

.. as it does not work properly in MicroPython.

Also, modules to be const. This saves a small amount of RAM

* Fix -Werror=undef diagnostic

Most CircuitPython ports build with -Werror=undef, so that use of an
undefined preprocessor flag is an error. Also, CircuitPython's micropython
version is old enough that MICROPY_VERSION is not (ever) defined.

Defensively check for this macro being defined, and use the older style
of MP_REGISTER_MODULE when it is not.

* Fix -Werror=discarded-qualifiers diagnostics

Most CircuitPython ports build with -Werror=discarded-qualifiers.
This detected a problem where string constants were passed to functions
with non-constant parameter types.

* bump version number

* Use MicroPython-compatible registration of submodules

* straggler

* Remove spurious casts

these were build errors for micropython

* Run tests for both nanbox and regular variant during CI
2022-07-07 20:17:49 +02:00

102 lines
3.5 KiB
C

/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "user.h"
#if ULAB_HAS_USER_MODULE
//| """This module should hold arbitrary user-defined functions."""
//|
static mp_obj_t user_square(mp_obj_t arg) {
// the function takes a single dense ndarray, and calculates the
// element-wise square of its entries
// raise a TypeError exception, if the input is not an ndarray
if(!mp_obj_is_type(arg, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("input must be an ndarray"));
}
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(arg);
// make sure that the input is a dense array
if(!ndarray_is_dense(ndarray)) {
mp_raise_TypeError(translate("input must be a dense ndarray"));
}
// if the input is a dense array, create `results` with the same number of
// dimensions, shape, and dtype
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndarray->ndim, ndarray->shape, ndarray->dtype);
// since in a dense array the iteration over the elements is trivial, we
// can cast the data arrays ndarray->array and results->array to the actual type
if(ndarray->dtype == NDARRAY_UINT8) {
uint8_t *array = (uint8_t *)ndarray->array;
uint8_t *rarray = (uint8_t *)results->array;
for(size_t i=0; i < ndarray->len; i++, array++) {
*rarray++ = (*array) * (*array);
}
} else if(ndarray->dtype == NDARRAY_INT8) {
int8_t *array = (int8_t *)ndarray->array;
int8_t *rarray = (int8_t *)results->array;
for(size_t i=0; i < ndarray->len; i++, array++) {
*rarray++ = (*array) * (*array);
}
} else if(ndarray->dtype == NDARRAY_UINT16) {
uint16_t *array = (uint16_t *)ndarray->array;
uint16_t *rarray = (uint16_t *)results->array;
for(size_t i=0; i < ndarray->len; i++, array++) {
*rarray++ = (*array) * (*array);
}
} else if(ndarray->dtype == NDARRAY_INT16) {
int16_t *array = (int16_t *)ndarray->array;
int16_t *rarray = (int16_t *)results->array;
for(size_t i=0; i < ndarray->len; i++, array++) {
*rarray++ = (*array) * (*array);
}
} else { // if we end up here, the dtype is NDARRAY_FLOAT
mp_float_t *array = (mp_float_t *)ndarray->array;
mp_float_t *rarray = (mp_float_t *)results->array;
for(size_t i=0; i < ndarray->len; i++, array++) {
*rarray++ = (*array) * (*array);
}
}
// at the end, return a micrppython object
return MP_OBJ_FROM_PTR(results);
}
MP_DEFINE_CONST_FUN_OBJ_1(user_square_obj, user_square);
static const mp_rom_map_elem_t ulab_user_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_user) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_square), (mp_obj_t)&user_square_obj },
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_user_globals, ulab_user_globals_table);
const mp_obj_module_t ulab_user_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_user_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_user, ulab_user_module, ULAB_HAS_USER_MODULE);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_user, ulab_user_module);
#endif
#endif
#endif