micropython-ulab/code/utils/utils.c
Jeff Epler 308627c9aa
Fix several build errors in CircuitPython (#533)
* Properly register submodules of ulab

This is related to
 * https://github.com/adafruit/circuitpython/issues/6066

in which, after the merge of 1.18 into CircuitPython, we lost the ability
to import submodules of built-in modules.

While reconstructing the changes we had made locally to enable this,
I discovered that there was an easier way: simply register the dotted
module names via MP_REGISTER_MODULE.

* Fix finding processor count when no `python` executable is installed

debian likes to install only `python3`, and not `python` (which was,
for many decades, python2).

This was previously done for `build.sh` but not for `build-cp.sh`.

* Only use this submodule feature in CircuitPython

.. as it does not work properly in MicroPython.

Also, modules to be const. This saves a small amount of RAM

* Fix -Werror=undef diagnostic

Most CircuitPython ports build with -Werror=undef, so that use of an
undefined preprocessor flag is an error. Also, CircuitPython's micropython
version is old enough that MICROPY_VERSION is not (ever) defined.

Defensively check for this macro being defined, and use the older style
of MP_REGISTER_MODULE when it is not.

* Fix -Werror=discarded-qualifiers diagnostics

Most CircuitPython ports build with -Werror=discarded-qualifiers.
This detected a problem where string constants were passed to functions
with non-constant parameter types.

* bump version number

* Use MicroPython-compatible registration of submodules

* straggler

* Remove spurious casts

these were build errors for micropython

* Run tests for both nanbox and regular variant during CI
2022-07-07 20:17:49 +02:00

260 lines
9.8 KiB
C

/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "utils.h"
#include "../numpy/fft/fft_tools.h"
#if ULAB_HAS_UTILS_MODULE
enum UTILS_BUFFER_TYPE {
UTILS_INT16_BUFFER,
UTILS_UINT16_BUFFER,
UTILS_INT32_BUFFER,
UTILS_UINT32_BUFFER,
};
#if ULAB_UTILS_HAS_FROM_INT16_BUFFER | ULAB_UTILS_HAS_FROM_UINT16_BUFFER | ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER
static mp_obj_t utils_from_intbuffer_helper(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, uint8_t buffer_type) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } } ,
{ MP_QSTR_count, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(-1) } },
{ MP_QSTR_offset, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(0) } },
{ MP_QSTR_out, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_byteswap, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_FALSE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
ndarray_obj_t *ndarray = NULL;
if(args[3].u_obj != mp_const_none) {
ndarray = MP_OBJ_TO_PTR(args[3].u_obj);
if((ndarray->dtype != NDARRAY_FLOAT) || !ndarray_is_dense(ndarray)) {
mp_raise_TypeError(translate("out must be a float dense array"));
}
}
size_t offset = mp_obj_get_int(args[2].u_obj);
mp_buffer_info_t bufinfo;
if(mp_get_buffer(args[0].u_obj, &bufinfo, MP_BUFFER_READ)) {
if(bufinfo.len < offset) {
mp_raise_ValueError(translate("offset is too large"));
}
uint8_t sz = sizeof(int16_t);
#if ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER
if((buffer_type == UTILS_INT32_BUFFER) || (buffer_type == UTILS_UINT32_BUFFER)) {
sz = sizeof(int32_t);
}
#endif
size_t len = (bufinfo.len - offset) / sz;
if((len * sz) != (bufinfo.len - offset)) {
mp_raise_ValueError(translate("buffer size must be a multiple of element size"));
}
if(mp_obj_get_int(args[1].u_obj) > 0) {
size_t count = mp_obj_get_int(args[1].u_obj);
if(len < count) {
mp_raise_ValueError(translate("buffer is smaller than requested size"));
} else {
len = count;
}
}
if(args[3].u_obj == mp_const_none) {
ndarray = ndarray_new_linear_array(len, NDARRAY_FLOAT);
} else {
if(ndarray->len < len) {
mp_raise_ValueError(translate("out array is too small"));
}
}
uint8_t *buffer = bufinfo.buf;
mp_float_t *array = (mp_float_t *)ndarray->array;
if(args[4].u_obj == mp_const_true) {
// swap the bytes before conversion
uint8_t *tmpbuff = m_new(uint8_t, sz);
#if ULAB_UTILS_HAS_FROM_INT16_BUFFER | ULAB_UTILS_HAS_FROM_UINT16_BUFFER
if((buffer_type == UTILS_INT16_BUFFER) || (buffer_type == UTILS_UINT16_BUFFER)) {
for(size_t i = 0; i < len; i++) {
tmpbuff += sz;
for(uint8_t j = 0; j < sz; j++) {
memcpy(--tmpbuff, buffer++, 1);
}
if(buffer_type == UTILS_INT16_BUFFER) {
*array++ = (mp_float_t)(*(int16_t *)tmpbuff);
} else {
*array++ = (mp_float_t)(*(uint16_t *)tmpbuff);
}
}
}
#endif
#if ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER
if((buffer_type == UTILS_INT32_BUFFER) || (buffer_type == UTILS_UINT32_BUFFER)) {
for(size_t i = 0; i < len; i++) {
tmpbuff += sz;
for(uint8_t j = 0; j < sz; j++) {
memcpy(--tmpbuff, buffer++, 1);
}
if(buffer_type == UTILS_INT32_BUFFER) {
*array++ = (mp_float_t)(*(int32_t *)tmpbuff);
} else {
*array++ = (mp_float_t)(*(uint32_t *)tmpbuff);
}
}
}
#endif
} else {
#if ULAB_UTILS_HAS_FROM_INT16_BUFFER
if(buffer_type == UTILS_INT16_BUFFER) {
for(size_t i = 0; i < len; i++) {
*array++ = (mp_float_t)(*(int16_t *)buffer);
buffer += sz;
}
}
#endif
#if ULAB_UTILS_HAS_FROM_UINT16_BUFFER
if(buffer_type == UTILS_UINT16_BUFFER) {
for(size_t i = 0; i < len; i++) {
*array++ = (mp_float_t)(*(uint16_t *)buffer);
buffer += sz;
}
}
#endif
#if ULAB_UTILS_HAS_FROM_INT32_BUFFER
if(buffer_type == UTILS_INT32_BUFFER) {
for(size_t i = 0; i < len; i++) {
*array++ = (mp_float_t)(*(int32_t *)buffer);
buffer += sz;
}
}
#endif
#if ULAB_UTILS_HAS_FROM_UINT32_BUFFER
if(buffer_type == UTILS_UINT32_BUFFER) {
for(size_t i = 0; i < len; i++) {
*array++ = (mp_float_t)(*(uint32_t *)buffer);
buffer += sz;
}
}
#endif
}
return MP_OBJ_FROM_PTR(ndarray);
}
return mp_const_none;
}
#ifdef ULAB_UTILS_HAS_FROM_INT16_BUFFER
static mp_obj_t utils_from_int16_buffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return utils_from_intbuffer_helper(n_args, pos_args, kw_args, UTILS_INT16_BUFFER);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_int16_buffer_obj, 1, utils_from_int16_buffer);
#endif
#ifdef ULAB_UTILS_HAS_FROM_UINT16_BUFFER
static mp_obj_t utils_from_uint16_buffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return utils_from_intbuffer_helper(n_args, pos_args, kw_args, UTILS_UINT16_BUFFER);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_uint16_buffer_obj, 1, utils_from_uint16_buffer);
#endif
#ifdef ULAB_UTILS_HAS_FROM_INT32_BUFFER
static mp_obj_t utils_from_int32_buffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return utils_from_intbuffer_helper(n_args, pos_args, kw_args, UTILS_INT32_BUFFER);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_int32_buffer_obj, 1, utils_from_int32_buffer);
#endif
#ifdef ULAB_UTILS_HAS_FROM_UINT32_BUFFER
static mp_obj_t utils_from_uint32_buffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return utils_from_intbuffer_helper(n_args, pos_args, kw_args, UTILS_UINT32_BUFFER);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_uint32_buffer_obj, 1, utils_from_uint32_buffer);
#endif
#endif /* ULAB_UTILS_HAS_FROM_INT16_BUFFER | ULAB_UTILS_HAS_FROM_UINT16_BUFFER | ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER */
#if ULAB_UTILS_HAS_SPECTROGRAM
//| import ulab.numpy
//|
//| def spectrogram(r: ulab.numpy.ndarray) -> ulab.numpy.ndarray:
//| """
//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
//|
//| Computes the spectrum of the input signal. This is the absolute value of the (complex-valued) fft of the signal.
//| This function is similar to scipy's ``scipy.signal.welch`` https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html."""
//| ...
//|
mp_obj_t utils_spectrogram(size_t n_args, const mp_obj_t *args) {
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
return fft_fft_ifft_spectrogram(args[0], FFT_SPECTROGRAM);
#else
if(n_args == 2) {
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_SPECTROGRAM);
} else {
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_SPECTROGRAM);
}
#endif
}
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(utils_spectrogram_obj, 1, 1, utils_spectrogram);
#else
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(utils_spectrogram_obj, 1, 2, utils_spectrogram);
#endif
#endif /* ULAB_UTILS_HAS_SPECTROGRAM */
static const mp_rom_map_elem_t ulab_utils_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_utils) },
#if ULAB_UTILS_HAS_FROM_INT16_BUFFER
{ MP_ROM_QSTR(MP_QSTR_from_int16_buffer), MP_ROM_PTR(&utils_from_int16_buffer_obj) },
#endif
#if ULAB_UTILS_HAS_FROM_UINT16_BUFFER
{ MP_ROM_QSTR(MP_QSTR_from_uint16_buffer), MP_ROM_PTR(&utils_from_uint16_buffer_obj) },
#endif
#if ULAB_UTILS_HAS_FROM_INT32_BUFFER
{ MP_ROM_QSTR(MP_QSTR_from_int32_buffer), MP_ROM_PTR(&utils_from_int32_buffer_obj) },
#endif
#if ULAB_UTILS_HAS_FROM_UINT32_BUFFER
{ MP_ROM_QSTR(MP_QSTR_from_uint32_buffer), MP_ROM_PTR(&utils_from_uint32_buffer_obj) },
#endif
#if ULAB_UTILS_HAS_SPECTROGRAM
{ MP_ROM_QSTR(MP_QSTR_spectrogram), MP_ROM_PTR(&utils_spectrogram_obj) },
#endif
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_utils_globals, ulab_utils_globals_table);
const mp_obj_module_t ulab_utils_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_utils_globals,
};
#if CIRCUITPY_ULAB
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_utils, ulab_utils_module, MODULE_ULAB_ENABLED);
#else
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_utils, ulab_utils_module);
#endif
#endif
#endif /* ULAB_HAS_UTILS_MODULE */