* re-work spectrogram method, so that RAM can be re-used * update docs with spectrogram changes
105 lines
3.4 KiB
C
105 lines
3.4 KiB
C
/*
|
|
* This file is part of the micropython-ulab project,
|
|
*
|
|
* https://github.com/v923z/micropython-ulab
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2019-2024 Zoltán Vörös
|
|
* 2020 Scott Shawcroft for Adafruit Industries
|
|
* 2020 Taku Fukada
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "py/runtime.h"
|
|
#include "py/builtin.h"
|
|
#include "py/binary.h"
|
|
#include "py/obj.h"
|
|
#include "py/objarray.h"
|
|
|
|
#include "../carray/carray_tools.h"
|
|
#include "fft.h"
|
|
|
|
//| """Frequency-domain functions"""
|
|
//|
|
|
//| import ulab.numpy
|
|
//| import ulab.utils
|
|
|
|
|
|
//| def fft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]:
|
|
//| """
|
|
//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
|
|
//| :param ulab.numpy.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
|
|
//| :return tuple (r, c): The real and complex parts of the FFT
|
|
//|
|
|
//| Perform a Fast Fourier Transform from the time domain into the frequency domain
|
|
//|
|
|
//| See also `ulab.utils.spectrogram`, which computes the magnitude of the fft,
|
|
//| rather than separately returning its real and imaginary parts."""
|
|
//| ...
|
|
//|
|
|
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
|
|
static mp_obj_t fft_fft(mp_obj_t arg) {
|
|
return fft_fft_ifft(arg, FFT_FFT);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_1(fft_fft_obj, fft_fft);
|
|
#else
|
|
static mp_obj_t fft_fft(size_t n_args, const mp_obj_t *args) {
|
|
if(n_args == 2) {
|
|
return fft_fft_ifft(n_args, args[0], args[1], FFT_FFT);
|
|
} else {
|
|
return fft_fft_ifft(n_args, args[0], mp_const_none, FFT_FFT);
|
|
}
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj, 1, 2, fft_fft);
|
|
#endif
|
|
|
|
//| def ifft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]:
|
|
//| """
|
|
//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
|
|
//| :param ulab.numpy.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
|
|
//| :return tuple (r, c): The real and complex parts of the inverse FFT
|
|
//|
|
|
//| Perform an Inverse Fast Fourier Transform from the frequeny domain into the time domain"""
|
|
//| ...
|
|
//|
|
|
|
|
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
|
|
static mp_obj_t fft_ifft(mp_obj_t arg) {
|
|
return fft_fft_ifft(arg, FFT_IFFT);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_1(fft_ifft_obj, fft_ifft);
|
|
#else
|
|
static mp_obj_t fft_ifft(size_t n_args, const mp_obj_t *args) {
|
|
NOT_IMPLEMENTED_FOR_COMPLEX()
|
|
if(n_args == 2) {
|
|
return fft_fft_ifft(n_args, args[0], args[1], FFT_IFFT);
|
|
} else {
|
|
return fft_fft_ifft(n_args, args[0], mp_const_none, FFT_IFFT);
|
|
}
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj, 1, 2, fft_ifft);
|
|
#endif
|
|
|
|
static const mp_rom_map_elem_t ulab_fft_globals_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_fft) },
|
|
{ MP_ROM_QSTR(MP_QSTR_fft), MP_ROM_PTR(&fft_fft_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ifft), MP_ROM_PTR(&fft_ifft_obj) },
|
|
};
|
|
|
|
static MP_DEFINE_CONST_DICT(mp_module_ulab_fft_globals, ulab_fft_globals_table);
|
|
|
|
const mp_obj_module_t ulab_fft_module = {
|
|
.base = { &mp_type_module },
|
|
.globals = (mp_obj_dict_t*)&mp_module_ulab_fft_globals,
|
|
};
|
|
#if CIRCUITPY_ULAB
|
|
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy_dot_fft, ulab_fft_module);
|
|
#endif
|