95 lines
3.2 KiB
C
95 lines
3.2 KiB
C
|
|
/*
|
|
* This file is part of the micropython-ulab project,
|
|
*
|
|
* https://github.com/v923z/micropython-ulab
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2020-2021 Zoltán Vörös
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "py/obj.h"
|
|
#include "py/runtime.h"
|
|
#include "py/misc.h"
|
|
#include "user.h"
|
|
|
|
#if ULAB_USER_MODULE
|
|
|
|
//| """This module should hold arbitrary user-defined functions."""
|
|
//|
|
|
|
|
static mp_obj_t user_square(mp_obj_t arg) {
|
|
// the function takes a single dense ndarray, and calculates the
|
|
// element-wise square of its entries
|
|
|
|
// raise a TypeError exception, if the input is not an ndarray
|
|
if(!MP_OBJ_IS_TYPE(arg, &ulab_ndarray_type)) {
|
|
mp_raise_TypeError(translate("input must be an ndarray"));
|
|
}
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(arg);
|
|
|
|
// make sure that the input is a dense array
|
|
if(!ndarray_is_dense(ndarray)) {
|
|
mp_raise_TypeError(translate("input must be a dense ndarray"));
|
|
}
|
|
|
|
// if the input is a dense array, create `results` with the same number of
|
|
// dimensions, shape, and dtype
|
|
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndarray->ndim, ndarray->shape, ndarray->dtype);
|
|
|
|
// since in a dense array the iteration over the elements is trivial, we
|
|
// can cast the data arrays ndarray->array and results->array to the actual type
|
|
if(ndarray->dtype == NDARRAY_UINT8) {
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
uint8_t *rarray = (uint8_t *)results->array;
|
|
for(size_t i=0; i < ndarray->len; i++, array++) {
|
|
*rarray++ = (*array) * (*array);
|
|
}
|
|
} else if(ndarray->dtype == NDARRAY_INT8) {
|
|
int8_t *array = (int8_t *)ndarray->array;
|
|
int8_t *rarray = (int8_t *)results->array;
|
|
for(size_t i=0; i < ndarray->len; i++, array++) {
|
|
*rarray++ = (*array) * (*array);
|
|
}
|
|
} else if(ndarray->dtype == NDARRAY_UINT16) {
|
|
uint16_t *array = (uint16_t *)ndarray->array;
|
|
uint16_t *rarray = (uint16_t *)results->array;
|
|
for(size_t i=0; i < ndarray->len; i++, array++) {
|
|
*rarray++ = (*array) * (*array);
|
|
}
|
|
} else if(ndarray->dtype == NDARRAY_INT16) {
|
|
int16_t *array = (int16_t *)ndarray->array;
|
|
int16_t *rarray = (int16_t *)results->array;
|
|
for(size_t i=0; i < ndarray->len; i++, array++) {
|
|
*rarray++ = (*array) * (*array);
|
|
}
|
|
} else { // if we end up here, the dtype is NDARRAY_FLOAT
|
|
mp_float_t *array = (mp_float_t *)ndarray->array;
|
|
mp_float_t *rarray = (mp_float_t *)results->array;
|
|
for(size_t i=0; i < ndarray->len; i++, array++) {
|
|
*rarray++ = (*array) * (*array);
|
|
}
|
|
}
|
|
// at the end, return a micrppython object
|
|
return MP_OBJ_FROM_PTR(results);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_1(user_square_obj, user_square);
|
|
|
|
STATIC const mp_rom_map_elem_t ulab_user_globals_table[] = {
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_user) },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_square), (mp_obj_t)&user_square_obj },
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_user_globals, ulab_user_globals_table);
|
|
|
|
mp_obj_module_t ulab_user_module = {
|
|
.base = { &mp_type_module },
|
|
.globals = (mp_obj_dict_t*)&mp_module_ulab_user_globals,
|
|
};
|
|
|
|
#endif
|