micropython-ulab/code/numpy/numerical.h
2022-04-18 10:18:19 +02:00

653 lines
24 KiB
C

/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*/
#ifndef _NUMERICAL_
#define _NUMERICAL_
#include "../ulab.h"
#include "../ndarray.h"
// TODO: implement cumsum
#define RUN_ARGMIN1(ndarray, type, array, results, rarray, index, op)\
({\
uint16_t best_index = 0;\
type best_value = *((type *)(array));\
if(((op) == NUMERICAL_MAX) || ((op) == NUMERICAL_ARGMAX)) {\
for(uint16_t i=0; i < (ndarray)->shape[(index)]; i++) {\
if(*((type *)(array)) > best_value) {\
best_index = i;\
best_value = *((type *)(array));\
}\
(array) += (ndarray)->strides[(index)];\
}\
} else {\
for(uint16_t i=0; i < (ndarray)->shape[(index)]; i++) {\
if(*((type *)(array)) < best_value) {\
best_index = i;\
best_value = *((type *)(array));\
}\
(array) += (ndarray)->strides[(index)];\
}\
}\
if(((op) == NUMERICAL_ARGMAX) || ((op) == NUMERICAL_ARGMIN)) {\
memcpy((rarray), &best_index, (results)->itemsize);\
} else {\
memcpy((rarray), &best_value, (results)->itemsize);\
}\
(rarray) += (results)->itemsize;\
})
#define RUN_SUM1(type, array, results, rarray, ss)\
({\
type sum = 0;\
for(size_t i=0; i < (ss).shape[0]; i++) {\
sum += *((type *)(array));\
(array) += (ss).strides[0];\
}\
memcpy((rarray), &sum, (results)->itemsize);\
(rarray) += (results)->itemsize;\
})
// The mean could be calculated by simply dividing the sum by
// the number of elements, but that method is numerically unstable
#define RUN_MEAN1(type, array, rarray, ss)\
({\
mp_float_t M = 0.0;\
for(size_t i=0; i < (ss).shape[0]; i++) {\
mp_float_t value = (mp_float_t)(*(type *)(array));\
M = M + (value - M) / (mp_float_t)(i+1);\
(array) += (ss).strides[0];\
}\
*(rarray)++ = M;\
})
// Instead of the straightforward implementation of the definition,
// we take the numerically stable Welford algorithm here
// https://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
#define RUN_STD1(type, array, rarray, ss, div)\
({\
mp_float_t M = 0.0, m = 0.0, S = 0.0;\
for(size_t i=0; i < (ss).shape[0]; i++) {\
mp_float_t value = (mp_float_t)(*(type *)(array));\
m = M + (value - M) / (mp_float_t)(i+1);\
S = S + (value - M) * (value - m);\
M = m;\
(array) += (ss).strides[0];\
}\
*(rarray)++ = MICROPY_FLOAT_C_FUN(sqrt)(S / (div));\
})
#define RUN_MEAN_STD1(type, array, rarray, ss, div, isStd)\
({\
mp_float_t M = 0.0, m = 0.0, S = 0.0;\
for(size_t i=0; i < (ss).shape[0]; i++) {\
mp_float_t value = (mp_float_t)(*(type *)(array));\
m = M + (value - M) / (mp_float_t)(i+1);\
if(isStd) {\
S += (value - M) * (value - m);\
}\
M = m;\
(array) += (ss).strides[0];\
}\
*(rarray)++ = isStd ? MICROPY_FLOAT_C_FUN(sqrt)(S / (div)) : M;\
})
#define RUN_DIFF1(ndarray, type, array, results, rarray, index, stencil, N)\
({\
for(size_t i=0; i < (results)->shape[ULAB_MAX_DIMS - 1]; i++) {\
type sum = 0;\
uint8_t *source = (array);\
for(uint8_t d=0; d < (N)+1; d++) {\
sum -= (stencil)[d] * *((type *)source);\
source += (ndarray)->strides[(index)];\
}\
(array) += (ndarray)->strides[ULAB_MAX_DIMS - 1];\
*(type *)(rarray) = sum;\
(rarray) += (results)->itemsize;\
}\
})
#define HEAPSORT1(type, array, increment, N)\
({\
type *_array = (type *)array;\
type tmp;\
size_t c, q = (N), p, r = (N) >> 1;\
for (;;) {\
if (r > 0) {\
tmp = _array[(--r)*(increment)];\
} else {\
q--;\
if(q == 0) {\
break;\
}\
tmp = _array[q*(increment)];\
_array[q*(increment)] = _array[0];\
}\
p = r;\
c = r + r + 1;\
while (c < q) {\
if((c + 1 < q) && (_array[(c+1)*(increment)] > _array[c*(increment)])) {\
c++;\
}\
if(_array[c*(increment)] > tmp) {\
_array[p*(increment)] = _array[c*(increment)];\
p = c;\
c = p + p + 1;\
} else {\
break;\
}\
}\
_array[p*(increment)] = tmp;\
}\
})
#define HEAP_ARGSORT1(type, array, increment, N, iarray, iincrement)\
({\
type *_array = (type *)array;\
type tmp;\
uint16_t itmp, c, q = (N), p, r = (N) >> 1;\
assert(N);\
for (;;) {\
if (r > 0) {\
r--;\
itmp = (iarray)[r*(iincrement)];\
tmp = _array[itmp*(increment)];\
} else {\
q--;\
if(q == 0) {\
break;\
}\
itmp = (iarray)[q*(iincrement)];\
tmp = _array[itmp*(increment)];\
(iarray)[q*(iincrement)] = (iarray)[0];\
}\
p = r;\
c = r + r + 1;\
while (c < q) {\
if((c + 1 < q) && (_array[(iarray)[(c+1)*(iincrement)]*(increment)] > _array[(iarray)[c*(iincrement)]*(increment)])) {\
c++;\
}\
if(_array[(iarray)[c*(iincrement)]*(increment)] > tmp) {\
(iarray)[p*(iincrement)] = (iarray)[c*(iincrement)];\
p = c;\
c = p + p + 1;\
} else {\
break;\
}\
}\
(iarray)[p*(iincrement)] = itmp;\
}\
})
#if ULAB_MAX_DIMS == 1
#define RUN_SUM(type, array, results, rarray, ss) do {\
RUN_SUM1(type, (array), (results), (rarray), (ss));\
} while(0)
#define RUN_MEAN(type, array, rarray, ss) do {\
RUN_MEAN1(type, (array), (rarray), (ss));\
} while(0)
#define RUN_STD(type, array, rarray, ss, div) do {\
RUN_STD1(type, (array), (results), (rarray), (ss), (div));\
} while(0)
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
RUN_MEAN_STD1(type, (array), (rarray), (ss), (div), (isStd));\
} while(0)
#define RUN_ARGMIN(ndarray, type, array, results, rarray, shape, strides, index, op) do {\
RUN_ARGMIN1((ndarray), type, (array), (results), (rarray), (index), (op));\
} while(0)
#define RUN_DIFF(ndarray, type, array, results, rarray, shape, strides, index, stencil, N) do {\
RUN_DIFF1((ndarray), type, (array), (results), (rarray), (index), (stencil), (N));\
} while(0)
#define HEAPSORT(ndarray, type, array, shape, strides, index, increment, N) do {\
HEAPSORT1(type, (array), (increment), (N));\
} while(0)
#define HEAP_ARGSORT(ndarray, type, array, shape, strides, index, increment, N, iarray, istrides, iincrement) do {\
HEAP_ARGSORT1(type, (array), (increment), (N), (iarray), (iincrement));\
} while(0)
#endif
#if ULAB_MAX_DIMS == 2
#define RUN_SUM(type, array, results, rarray, ss) do {\
size_t l = 0;\
do {\
RUN_SUM1(type, (array), (results), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_MEAN(type, array, rarray, ss) do {\
size_t l = 0;\
do {\
RUN_MEAN1(type, (array), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_STD(type, array, rarray, ss, div) do {\
size_t l = 0;\
do {\
RUN_STD1(type, (array), (rarray), (ss), (div));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
size_t l = 0;\
do {\
RUN_MEAN_STD1(type, (array), (rarray), (ss), (div), (isStd));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_ARGMIN(ndarray, type, array, results, rarray, shape, strides, index, op) do {\
size_t l = 0;\
do {\
RUN_ARGMIN1((ndarray), type, (array), (results), (rarray), (index), (op));\
(array) -= (ndarray)->strides[(index)] * (ndarray)->shape[(index)];\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
} while(0)
#define RUN_DIFF(ndarray, type, array, results, rarray, shape, strides, index, stencil, N) do {\
size_t l = 0;\
do {\
RUN_DIFF1((ndarray), type, (array), (results), (rarray), (index), (stencil), (N));\
(array) -= (ndarray)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(array) += (ndarray)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (results)->strides[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (results)->shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define HEAPSORT(ndarray, type, array, shape, strides, index, increment, N) do {\
size_t l = 0;\
do {\
HEAPSORT1(type, (array), (increment), (N));\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
} while(0)
#define HEAP_ARGSORT(ndarray, type, array, shape, strides, index, increment, N, iarray, istrides, iincrement) do {\
size_t l = 0;\
do {\
HEAP_ARGSORT1(type, (array), (increment), (N), (iarray), (iincrement));\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
(iarray) += (istrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
} while(0)
#endif
#if ULAB_MAX_DIMS == 3
#define RUN_SUM(type, array, results, rarray, ss) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_SUM1(type, (array), (results), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_MEAN(type, array, rarray, ss) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_MEAN1(type, (array), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_STD(type, array, rarray, ss, div) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_STD1(type, (array), (rarray), (ss), (div));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_MEAN_STD1(type, (array), (rarray), (ss), (div), (isStd));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_ARGMIN(ndarray, type, array, results, rarray, shape, strides, index, op) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_ARGMIN1((ndarray), type, (array), (results), (rarray), (index), (op));\
(array) -= (ndarray)->strides[(index)] * (ndarray)->shape[(index)];\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
(array) -= (strides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(array) += (strides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 2]);\
} while(0)
#define RUN_DIFF(ndarray, type, array, results, rarray, shape, strides, index, stencil, N) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_DIFF1((ndarray), type, (array), (results), (rarray), (index), (stencil), (N));\
(array) -= (ndarray)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(array) += (ndarray)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (results)->strides[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 2]);\
(array) -= (ndarray)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS-2];\
(array) += (ndarray)->strides[ULAB_MAX_DIMS - 3];\
(rarray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (results)->strides[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 3]);\
} while(0)
#define HEAPSORT(ndarray, type, array, shape, strides, index, increment, N) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
HEAPSORT1(type, (array), (increment), (N));\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
(array) -= (strides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(array) += (strides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 2]);\
} while(0)
#define HEAP_ARGSORT(ndarray, type, array, shape, strides, index, increment, N, iarray, istrides, iincrement) do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
HEAP_ARGSORT1(type, (array), (increment), (N), (iarray), (iincrement));\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
(iarray) += (istrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
(iarray) -= (istrides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(iarray) += (istrides)[ULAB_MAX_DIMS - 2];\
(array) -= (strides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(array) += (strides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 2]);\
} while(0)
#endif
#if ULAB_MAX_DIMS == 4
#define RUN_SUM(type, array, results, rarray, ss) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_SUM1(type, (array), (results), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 2] * (ss).shape[ULAB_MAX_DIMS - 2];\
(array) += (ss).strides[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_MEAN(type, array, rarray, ss) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_MEAN1(type, (array), (rarray), (ss));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 2] * (ss).shape[ULAB_MAX_DIMS - 2];\
(array) += (ss).strides[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_STD(type, array, rarray, ss, div) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_STD1(type, (array), (rarray), (ss), (div));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 2] * (ss).shape[ULAB_MAX_DIMS - 2];\
(array) += (ss).strides[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_MEAN_STD(type, array, rarray, ss, div, isStd) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_MEAN_STD1(type, (array), (rarray), (ss), (div), (isStd));\
(array) -= (ss).strides[0] * (ss).shape[0];\
(array) += (ss).strides[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (ss).shape[ULAB_MAX_DIMS - 1]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 1] * (ss).shape[ULAB_MAX_DIMS - 1];\
(array) += (ss).strides[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (ss).shape[ULAB_MAX_DIMS - 2]);\
(array) -= (ss).strides[ULAB_MAX_DIMS - 2] * (ss).shape[ULAB_MAX_DIMS - 2];\
(array) += (ss).strides[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (ss).shape[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_ARGMIN(ndarray, type, array, results, rarray, shape, strides, index, op) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_ARGMIN1((ndarray), type, (array), (results), (rarray), (index), (op));\
(array) -= (ndarray)->strides[(index)] * (ndarray)->shape[(index)];\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
(array) -= (strides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(array) += (strides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 2]);\
(array) -= (strides)[ULAB_MAX_DIMS - 2] * (shape)[ULAB_MAX_DIMS-2];\
(array) += (strides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (shape)[ULAB_MAX_DIMS - 3]);\
} while(0)
#define RUN_DIFF(ndarray, type, array, results, rarray, shape, strides, index, stencil, N) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
RUN_DIFF1((ndarray), type, (array), (results), (rarray), (index), (stencil), (N));\
(array) -= (ndarray)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(array) += (ndarray)->strides[ULAB_MAX_DIMS - 2];\
(rarray) -= (results)->strides[ULAB_MAX_DIMS - 1] * (results)->shape[ULAB_MAX_DIMS - 1];\
(rarray) += (results)->strides[ULAB_MAX_DIMS - 2];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 2]);\
(array) -= (strides)[ULAB_MAX_DIMS - 2] * (shape)[ULAB_MAX_DIMS-2];\
(array) += (strides)[ULAB_MAX_DIMS - 3];\
(rarray) -= (results)->strides[ULAB_MAX_DIMS - 2] * (results)->shape[ULAB_MAX_DIMS - 2];\
(rarray) += (results)->strides[ULAB_MAX_DIMS - 3];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 3]);\
(array) -= (strides)[ULAB_MAX_DIMS - 3] * (shape)[ULAB_MAX_DIMS-3];\
(array) += (strides)[ULAB_MAX_DIMS - 4];\
(rarray) -= (results)->strides[ULAB_MAX_DIMS - 3] * (results)->shape[ULAB_MAX_DIMS - 3];\
(rarray) += (results)->strides[ULAB_MAX_DIMS - 4];\
j++;\
} while(j < (shape)[ULAB_MAX_DIMS - 4]);\
} while(0)
#define HEAPSORT(ndarray, type, array, shape, strides, index, increment, N) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
HEAPSORT1(type, (array), (increment), (N));\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
(array) -= (strides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(array) += (strides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 2]);\
(array) -= (strides)[ULAB_MAX_DIMS - 2] * (shape)[ULAB_MAX_DIMS-2];\
(array) += (strides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (shape)[ULAB_MAX_DIMS - 3]);\
} while(0)
#define HEAP_ARGSORT(ndarray, type, array, shape, strides, index, increment, N, iarray, istrides, iincrement) do {\
size_t j = 0;\
do {\
size_t k = 0;\
do {\
size_t l = 0;\
do {\
HEAP_ARGSORT1(type, (array), (increment), (N), (iarray), (iincrement));\
(array) += (strides)[ULAB_MAX_DIMS - 1];\
(iarray) += (istrides)[ULAB_MAX_DIMS - 1];\
l++;\
} while(l < (shape)[ULAB_MAX_DIMS - 1]);\
(iarray) -= (istrides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(iarray) += (istrides)[ULAB_MAX_DIMS - 2];\
(array) -= (strides)[ULAB_MAX_DIMS - 1] * (shape)[ULAB_MAX_DIMS-1];\
(array) += (strides)[ULAB_MAX_DIMS - 2];\
k++;\
} while(k < (shape)[ULAB_MAX_DIMS - 2]);\
(iarray) -= (istrides)[ULAB_MAX_DIMS - 2] * (shape)[ULAB_MAX_DIMS-2];\
(iarray) += (istrides)[ULAB_MAX_DIMS - 3];\
(array) -= (strides)[ULAB_MAX_DIMS - 2] * (shape)[ULAB_MAX_DIMS-2];\
(array) += (strides)[ULAB_MAX_DIMS - 3];\
j++;\
} while(j < (shape)[ULAB_MAX_DIMS - 3]);\
} while(0)
#endif
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_all_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_any_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_argmax_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_argmin_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_argsort_obj);
MP_DECLARE_CONST_FUN_OBJ_2(numerical_cross_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_diff_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_flip_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_max_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_mean_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_median_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_min_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_roll_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_std_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_sum_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_sort_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(numerical_sort_inplace_obj);
#endif