micropython-ulab/code/numpy/vector.c
Jeff Epler 1150554ad5
ulab.numpy: implement sinc for creating audio filters
This is useful for generating FIR filters using code snippets generated at
https://fiiir.com/ (at least those with a rectangular window type; other
window types need additional functions but we can revisit it later if needed)

I think this will come in handy for folks who are using the advanced
features of our audio synthesizer module, synthio.

e.g., the following block now gives highly similar results on ulab
or numpy:

```py
try:
    import numpy as np
except:
    from ulab import numpy as np

# Example code, computes the coefficients of a low-pass windowed-sinc filter.

# Configuration.
fS = 48000  # Sampling rate.
fL = 4000  # Cutoff frequency.
N = 23  # Filter length, must be odd.

# Compute sinc filter.
h = np.sinc(2 * fL / fS * (np.arange(N) - (N - 1) / 2))

# Normalize to get unity gain.
h /= np.sum(h)

# Applying the filter to a signal s can be as simple as writing
# s = np.convolve(s, h)
2023-05-15 18:00:59 -05:00

920 lines
33 KiB
C

/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
* 2020 Jeff Epler for Adafruit Industries
* 2020 Scott Shawcroft for Adafruit Industries
* 2020 Taku Fukada
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "py/runtime.h"
#include "py/binary.h"
#include "py/obj.h"
#include "py/objarray.h"
#include "../ulab.h"
#include "../ulab_tools.h"
#include "carray/carray_tools.h"
#include "vector.h"
//| """Element-by-element functions
//|
//| These functions can operate on numbers, 1-D iterables, and arrays of 1 to 4 dimensions by
//| applying the function to every element in the array. This is typically
//| much more efficient than expressing the same operation as a Python loop."""
//|
static mp_obj_t vector_generic_vector(mp_obj_t o_in, mp_float_t (*f)(mp_float_t)) {
// Return a single value, if o_in is not iterable
if(mp_obj_is_float(o_in) || mp_obj_is_int(o_in)) {
return mp_obj_new_float(f(mp_obj_get_float(o_in)));
}
ndarray_obj_t *ndarray = NULL;
if(mp_obj_is_type(o_in, &ulab_ndarray_type)) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(o_in);
COMPLEX_DTYPE_NOT_IMPLEMENTED(source->dtype)
uint8_t *sarray = (uint8_t *)source->array;
ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_FLOAT);
mp_float_t *array = (mp_float_t *)ndarray->array;
#if ULAB_VECTORISE_USES_FUN_POINTER
mp_float_t (*func)(void *) = ndarray_get_float_function(source->dtype);
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t value = func(sarray);
*array++ = f(value);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
#else
if(source->dtype == NDARRAY_UINT8) {
ITERATE_VECTOR(uint8_t, array, source, sarray);
} else if(source->dtype == NDARRAY_INT8) {
ITERATE_VECTOR(int8_t, array, source, sarray);
} else if(source->dtype == NDARRAY_UINT16) {
ITERATE_VECTOR(uint16_t, array, source, sarray);
} else if(source->dtype == NDARRAY_INT16) {
ITERATE_VECTOR(int16_t, array, source, sarray);
} else {
ITERATE_VECTOR(mp_float_t, array, source, sarray);
}
#endif /* ULAB_VECTORISE_USES_FUN_POINTER */
} else {
ndarray = ndarray_from_mp_obj(o_in, 0);
mp_float_t *narray = (mp_float_t *)ndarray->array;
for(size_t i = 0; i < ndarray->len; i++) {
*narray = f(*narray);
narray++;
}
}
return MP_OBJ_FROM_PTR(ndarray);
}
#if ULAB_NUMPY_HAS_ACOS
//| def acos(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the inverse cosine function"""
//| ...
//|
MATH_FUN_1(acos, acos);
MP_DEFINE_CONST_FUN_OBJ_1(vector_acos_obj, vector_acos);
#endif
#if ULAB_NUMPY_HAS_ACOSH
//| def acosh(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the inverse hyperbolic cosine function"""
//| ...
//|
MATH_FUN_1(acosh, acosh);
MP_DEFINE_CONST_FUN_OBJ_1(vector_acosh_obj, vector_acosh);
#endif
#if ULAB_NUMPY_HAS_ASIN
//| def asin(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the inverse sine function"""
//| ...
//|
MATH_FUN_1(asin, asin);
MP_DEFINE_CONST_FUN_OBJ_1(vector_asin_obj, vector_asin);
#endif
#if ULAB_NUMPY_HAS_ASINH
//| def asinh(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the inverse hyperbolic sine function"""
//| ...
//|
MATH_FUN_1(asinh, asinh);
MP_DEFINE_CONST_FUN_OBJ_1(vector_asinh_obj, vector_asinh);
#endif
#if ULAB_NUMPY_HAS_AROUND
//| def around(a: _ArrayLike, *, decimals: int = 0) -> ulab.numpy.ndarray:
//| """Returns a new float array in which each element is rounded to
//| ``decimals`` places."""
//| ...
//|
mp_obj_t vector_around(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_decimals, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0 } }
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("first argument must be an ndarray"));
}
int8_t n = args[1].u_int;
mp_float_t mul = MICROPY_FLOAT_C_FUN(pow)(10.0, n);
ndarray_obj_t *source = MP_OBJ_TO_PTR(args[0].u_obj);
COMPLEX_DTYPE_NOT_IMPLEMENTED(source->dtype)
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_FLOAT);
mp_float_t *narray = (mp_float_t *)ndarray->array;
uint8_t *sarray = (uint8_t *)source->array;
mp_float_t (*func)(void *) = ndarray_get_float_function(source->dtype);
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t f = func(sarray);
*narray++ = MICROPY_FLOAT_C_FUN(round)(f * mul) / mul;
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(vector_around_obj, 1, vector_around);
#endif
#if ULAB_NUMPY_HAS_ATAN
//| def atan(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the inverse tangent function; the return values are in the
//| range [-pi/2,pi/2]."""
//| ...
//|
MATH_FUN_1(atan, atan);
MP_DEFINE_CONST_FUN_OBJ_1(vector_atan_obj, vector_atan);
#endif
#if ULAB_NUMPY_HAS_ARCTAN2
//| def arctan2(ya: _ArrayLike, xa: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the inverse tangent function of y/x; the return values are in
//| the range [-pi, pi]."""
//| ...
//|
mp_obj_t vector_arctan2(mp_obj_t y, mp_obj_t x) {
if((mp_obj_is_float(y) || mp_obj_is_int(y)) &&
(mp_obj_is_float(x) || mp_obj_is_int(x))) {
mp_float_t _y = mp_obj_get_float(y);
mp_float_t _x = mp_obj_get_float(x);
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(_y, _x));
}
ndarray_obj_t *ndarray_x = ndarray_from_mp_obj(x, 0);
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray_x->dtype)
ndarray_obj_t *ndarray_y = ndarray_from_mp_obj(y, 0);
COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray_y->dtype)
uint8_t ndim = 0;
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
int32_t *xstrides = m_new(int32_t, ULAB_MAX_DIMS);
int32_t *ystrides = m_new(int32_t, ULAB_MAX_DIMS);
if(!ndarray_can_broadcast(ndarray_x, ndarray_y, &ndim, shape, xstrides, ystrides)) {
mp_raise_ValueError(translate("operands could not be broadcast together"));
m_del(size_t, shape, ULAB_MAX_DIMS);
m_del(int32_t, xstrides, ULAB_MAX_DIMS);
m_del(int32_t, ystrides, ULAB_MAX_DIMS);
}
uint8_t *xarray = (uint8_t *)ndarray_x->array;
uint8_t *yarray = (uint8_t *)ndarray_y->array;
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
mp_float_t *rarray = (mp_float_t *)results->array;
mp_float_t (*funcx)(void *) = ndarray_get_float_function(ndarray_x->dtype);
mp_float_t (*funcy)(void *) = ndarray_get_float_function(ndarray_y->dtype);
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t _x = funcx(xarray);
mp_float_t _y = funcy(yarray);
*rarray++ = MICROPY_FLOAT_C_FUN(atan2)(_y, _x);
xarray += xstrides[ULAB_MAX_DIMS - 1];
yarray += ystrides[ULAB_MAX_DIMS - 1];
l++;
} while(l < results->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
xarray -= xstrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];
xarray += xstrides[ULAB_MAX_DIMS - 2];
yarray -= ystrides[ULAB_MAX_DIMS - 1] * results->shape[ULAB_MAX_DIMS-1];
yarray += ystrides[ULAB_MAX_DIMS - 2];
k++;
} while(k < results->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
xarray -= xstrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
xarray += xstrides[ULAB_MAX_DIMS - 3];
yarray -= ystrides[ULAB_MAX_DIMS - 2] * results->shape[ULAB_MAX_DIMS-2];
yarray += ystrides[ULAB_MAX_DIMS - 3];
j++;
} while(j < results->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
xarray -= xstrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];
xarray += xstrides[ULAB_MAX_DIMS - 4];
yarray -= ystrides[ULAB_MAX_DIMS - 3] * results->shape[ULAB_MAX_DIMS-3];
yarray += ystrides[ULAB_MAX_DIMS - 4];
i++;
} while(i < results->shape[ULAB_MAX_DIMS - 4]);
#endif
return MP_OBJ_FROM_PTR(results);
}
MP_DEFINE_CONST_FUN_OBJ_2(vector_arctan2_obj, vector_arctan2);
#endif /* ULAB_VECTORISE_HAS_ARCTAN2 */
#if ULAB_NUMPY_HAS_ATANH
//| def atanh(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the inverse hyperbolic tangent function"""
//| ...
//|
MATH_FUN_1(atanh, atanh);
MP_DEFINE_CONST_FUN_OBJ_1(vector_atanh_obj, vector_atanh);
#endif
#if ULAB_NUMPY_HAS_CEIL
//| def ceil(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Rounds numbers up to the next whole number"""
//| ...
//|
MATH_FUN_1(ceil, ceil);
MP_DEFINE_CONST_FUN_OBJ_1(vector_ceil_obj, vector_ceil);
#endif
#if ULAB_NUMPY_HAS_COS
//| def cos(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the cosine function"""
//| ...
//|
MATH_FUN_1(cos, cos);
MP_DEFINE_CONST_FUN_OBJ_1(vector_cos_obj, vector_cos);
#endif
#if ULAB_NUMPY_HAS_COSH
//| def cosh(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the hyperbolic cosine function"""
//| ...
//|
MATH_FUN_1(cosh, cosh);
MP_DEFINE_CONST_FUN_OBJ_1(vector_cosh_obj, vector_cosh);
#endif
#if ULAB_NUMPY_HAS_DEGREES
//| def degrees(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Converts angles from radians to degrees"""
//| ...
//|
static mp_float_t vector_degrees_(mp_float_t value) {
return value * MICROPY_FLOAT_CONST(180.0) / MP_PI;
}
static mp_obj_t vector_degrees(mp_obj_t x_obj) {
return vector_generic_vector(x_obj, vector_degrees_);
}
MP_DEFINE_CONST_FUN_OBJ_1(vector_degrees_obj, vector_degrees);
#endif
#if ULAB_SCIPY_SPECIAL_HAS_ERF
//| def erf(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the error function, which has applications in statistics"""
//| ...
//|
MATH_FUN_1(erf, erf);
MP_DEFINE_CONST_FUN_OBJ_1(vector_erf_obj, vector_erf);
#endif
#if ULAB_SCIPY_SPECIAL_HAS_ERFC
//| def erfc(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the complementary error function, which has applications in statistics"""
//| ...
//|
MATH_FUN_1(erfc, erfc);
MP_DEFINE_CONST_FUN_OBJ_1(vector_erfc_obj, vector_erfc);
#endif
#if ULAB_NUMPY_HAS_EXP
//| def exp(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the exponent function."""
//| ...
//|
static mp_obj_t vector_exp(mp_obj_t o_in) {
#if ULAB_SUPPORTS_COMPLEX
if(mp_obj_is_type(o_in, &mp_type_complex)) {
mp_float_t real, imag;
mp_obj_get_complex(o_in, &real, &imag);
mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real);
return mp_obj_new_complex(exp_real * MICROPY_FLOAT_C_FUN(cos)(imag), exp_real * MICROPY_FLOAT_C_FUN(sin)(imag));
} else if(mp_obj_is_type(o_in, &ulab_ndarray_type)) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(o_in);
if(source->dtype == NDARRAY_COMPLEX) {
uint8_t *sarray = (uint8_t *)source->array;
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_COMPLEX);
mp_float_t *array = (mp_float_t *)ndarray->array;
uint8_t itemsize = sizeof(mp_float_t);
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t real = *(mp_float_t *)sarray;
mp_float_t imag = *(mp_float_t *)(sarray + itemsize);
mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real);
*array++ = exp_real * MICROPY_FLOAT_C_FUN(cos)(imag);
*array++ = exp_real * MICROPY_FLOAT_C_FUN(sin)(imag);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
return MP_OBJ_FROM_PTR(ndarray);
}
}
#endif
return vector_generic_vector(o_in, MICROPY_FLOAT_C_FUN(exp));
}
MP_DEFINE_CONST_FUN_OBJ_1(vector_exp_obj, vector_exp);
#endif
#if ULAB_NUMPY_HAS_EXPM1
//| def expm1(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes $e^x-1$. In certain applications, using this function preserves numeric accuracy better than the `exp` function."""
//| ...
//|
MATH_FUN_1(expm1, expm1);
MP_DEFINE_CONST_FUN_OBJ_1(vector_expm1_obj, vector_expm1);
#endif
#if ULAB_NUMPY_HAS_FLOOR
//| def floor(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Rounds numbers up to the next whole number"""
//| ...
//|
MATH_FUN_1(floor, floor);
MP_DEFINE_CONST_FUN_OBJ_1(vector_floor_obj, vector_floor);
#endif
#if ULAB_SCIPY_SPECIAL_HAS_GAMMA
//| def gamma(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the gamma function"""
//| ...
//|
MATH_FUN_1(gamma, tgamma);
MP_DEFINE_CONST_FUN_OBJ_1(vector_gamma_obj, vector_gamma);
#endif
#if ULAB_SCIPY_SPECIAL_HAS_GAMMALN
//| def lgamma(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the natural log of the gamma function"""
//| ...
//|
MATH_FUN_1(lgamma, lgamma);
MP_DEFINE_CONST_FUN_OBJ_1(vector_lgamma_obj, vector_lgamma);
#endif
#if ULAB_NUMPY_HAS_LOG
//| def log(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the natural log"""
//| ...
//|
MATH_FUN_1(log, log);
MP_DEFINE_CONST_FUN_OBJ_1(vector_log_obj, vector_log);
#endif
#if ULAB_NUMPY_HAS_LOG10
//| def log10(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the log base 10"""
//| ...
//|
MATH_FUN_1(log10, log10);
MP_DEFINE_CONST_FUN_OBJ_1(vector_log10_obj, vector_log10);
#endif
#if ULAB_NUMPY_HAS_LOG2
//| def log2(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the log base 2"""
//| ...
//|
MATH_FUN_1(log2, log2);
MP_DEFINE_CONST_FUN_OBJ_1(vector_log2_obj, vector_log2);
#endif
#if ULAB_NUMPY_HAS_RADIANS
//| def radians(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Converts angles from degrees to radians"""
//| ...
//|
static mp_float_t vector_radians_(mp_float_t value) {
return value * MP_PI / MICROPY_FLOAT_CONST(180.0);
}
static mp_obj_t vector_radians(mp_obj_t x_obj) {
return vector_generic_vector(x_obj, vector_radians_);
}
MP_DEFINE_CONST_FUN_OBJ_1(vector_radians_obj, vector_radians);
#endif
#if ULAB_NUMPY_HAS_SIN
//| def sin(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the sine function"""
//| ...
//|
MATH_FUN_1(sin, sin);
MP_DEFINE_CONST_FUN_OBJ_1(vector_sin_obj, vector_sin);
#endif
#if ULAB_NUMPY_HAS_SINC
//| def sin(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the sine function"""
//| ...
//|
static mp_float_t ulab_sinc1(mp_float_t x) {
if (fpclassify(x) == FP_ZERO) {
return MICROPY_FLOAT_CONST(1.);
}
x *= MP_PI;
return MICROPY_FLOAT_C_FUN(sin)(x) / x;
}
static mp_obj_t vector_sinc(mp_obj_t x_obj) {
return vector_generic_vector(x_obj, ulab_sinc1);
}
MP_DEFINE_CONST_FUN_OBJ_1(vector_sinc_obj, vector_sinc);
#endif
#if ULAB_NUMPY_HAS_SINH
//| def sinh(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the hyperbolic sine"""
//| ...
//|
MATH_FUN_1(sinh, sinh);
MP_DEFINE_CONST_FUN_OBJ_1(vector_sinh_obj, vector_sinh);
#endif
#if ULAB_NUMPY_HAS_SQRT
//| def sqrt(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the square root"""
//| ...
//|
#if ULAB_SUPPORTS_COMPLEX
mp_obj_t vector_sqrt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(NDARRAY_FLOAT) } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t o_in = args[0].u_obj;
uint8_t dtype = mp_obj_get_int(args[1].u_obj);
if((dtype != NDARRAY_FLOAT) && (dtype != NDARRAY_COMPLEX)) {
mp_raise_TypeError(translate("dtype must be float, or complex"));
}
if(mp_obj_is_type(o_in, &mp_type_complex)) {
mp_float_t real, imag;
mp_obj_get_complex(o_in, &real, &imag);
mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(sqrt)(real * real + imag * imag);
sqrt_abs = MICROPY_FLOAT_C_FUN(sqrt)(sqrt_abs);
mp_float_t theta = MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(atan2)(imag, real);
return mp_obj_new_complex(sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta), sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta));
} else if(mp_obj_is_type(o_in, &ulab_ndarray_type)) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(o_in);
if((source->dtype == NDARRAY_COMPLEX) && (dtype == NDARRAY_FLOAT)) {
mp_raise_TypeError(translate("can't convert complex to float"));
}
if(dtype == NDARRAY_COMPLEX) {
if(source->dtype == NDARRAY_COMPLEX) {
uint8_t *sarray = (uint8_t *)source->array;
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_COMPLEX);
mp_float_t *array = (mp_float_t *)ndarray->array;
uint8_t itemsize = sizeof(mp_float_t);
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t real = *(mp_float_t *)sarray;
mp_float_t imag = *(mp_float_t *)(sarray + itemsize);
mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(sqrt)(real * real + imag * imag);
sqrt_abs = MICROPY_FLOAT_C_FUN(sqrt)(sqrt_abs);
mp_float_t theta = MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(atan2)(imag, real);
*array++ = sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta);
*array++ = sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta);
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
return MP_OBJ_FROM_PTR(ndarray);
} else if(source->dtype == NDARRAY_FLOAT) {
uint8_t *sarray = (uint8_t *)source->array;
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_COMPLEX);
mp_float_t *array = (mp_float_t *)ndarray->array;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_float_t value = *(mp_float_t *)sarray;
if(value >= MICROPY_FLOAT_CONST(0.0)) {
*array++ = MICROPY_FLOAT_C_FUN(sqrt)(value);
array++;
} else {
array++;
*array++ = MICROPY_FLOAT_C_FUN(sqrt)(-value);
}
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
return MP_OBJ_FROM_PTR(ndarray);
} else {
mp_raise_TypeError(translate("input dtype must be float or complex"));
}
}
}
return vector_generic_vector(o_in, MICROPY_FLOAT_C_FUN(sqrt));
}
MP_DEFINE_CONST_FUN_OBJ_KW(vector_sqrt_obj, 1, vector_sqrt);
#else
MATH_FUN_1(sqrt, sqrt);
MP_DEFINE_CONST_FUN_OBJ_1(vector_sqrt_obj, vector_sqrt);
#endif /* ULAB_SUPPORTS_COMPLEX */
#endif /* ULAB_NUMPY_HAS_SQRT */
#if ULAB_NUMPY_HAS_TAN
//| def tan(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the tangent"""
//| ...
//|
MATH_FUN_1(tan, tan);
MP_DEFINE_CONST_FUN_OBJ_1(vector_tan_obj, vector_tan);
#endif
#if ULAB_NUMPY_HAS_TANH
//| def tanh(a: _ArrayLike) -> ulab.numpy.ndarray:
//| """Computes the hyperbolic tangent"""
//| ...
MATH_FUN_1(tanh, tanh);
MP_DEFINE_CONST_FUN_OBJ_1(vector_tanh_obj, vector_tanh);
#endif
#if ULAB_NUMPY_HAS_VECTORIZE
static mp_obj_t vector_vectorized_function_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
(void) n_args;
(void) n_kw;
vectorized_function_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_t avalue[1];
mp_obj_t fvalue;
if(mp_obj_is_type(args[0], &ulab_ndarray_type)) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(args[0]);
COMPLEX_DTYPE_NOT_IMPLEMENTED(source->dtype)
ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, self->otypes);
uint8_t *sarray = (uint8_t *)source->array;
uint8_t *narray = (uint8_t *)ndarray->array;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
avalue[0] = mp_binary_get_val_array(source->dtype, sarray, 0);
fvalue = MP_OBJ_TYPE_GET_SLOT(self->type, call)(self->fun, 1, 0, avalue);
ndarray_set_value(self->otypes, narray, 0, fvalue);
sarray += source->strides[ULAB_MAX_DIMS - 1];
narray += ndarray->itemsize;
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS - 1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS - 2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif /* ULAB_MAX_DIMS > 2 */
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS - 3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif /* ULAB_MAX_DIMS > 3 */
return MP_OBJ_FROM_PTR(ndarray);
} else if(mp_obj_is_type(args[0], &mp_type_tuple) || mp_obj_is_type(args[0], &mp_type_list) ||
mp_obj_is_type(args[0], &mp_type_range)) { // i.e., the input is a generic iterable
size_t len = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[0]));
ndarray_obj_t *ndarray = ndarray_new_linear_array(len, self->otypes);
mp_obj_iter_buf_t iter_buf;
mp_obj_t iterable = mp_getiter(args[0], &iter_buf);
size_t i=0;
while ((avalue[0] = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
fvalue = MP_OBJ_TYPE_GET_SLOT(self->type, call)(self->fun, 1, 0, avalue);
ndarray_set_value(self->otypes, ndarray->array, i, fvalue);
i++;
}
return MP_OBJ_FROM_PTR(ndarray);
} else if(mp_obj_is_int(args[0]) || mp_obj_is_float(args[0])) {
ndarray_obj_t *ndarray = ndarray_new_linear_array(1, self->otypes);
fvalue = MP_OBJ_TYPE_GET_SLOT(self->type, call)(self->fun, 1, 0, args);
ndarray_set_value(self->otypes, ndarray->array, 0, fvalue);
return MP_OBJ_FROM_PTR(ndarray);
} else {
mp_raise_ValueError(translate("wrong input type"));
}
return mp_const_none;
}
#if defined(MP_DEFINE_CONST_OBJ_TYPE)
MP_DEFINE_CONST_OBJ_TYPE(
vector_function_type,
MP_QSTR_,
MP_TYPE_FLAG_NONE,
call, vector_vectorized_function_call
);
#else
const mp_obj_type_t vector_function_type = {
{ &mp_type_type },
.flags = MP_TYPE_FLAG_EXTENDED,
.name = MP_QSTR_,
MP_TYPE_EXTENDED_FIELDS(
.call = vector_vectorized_function_call,
)
};
#endif
//| def vectorize(
//| f: Union[Callable[[int], _float], Callable[[_float], _float]],
//| *,
//| otypes: Optional[_DType] = None
//| ) -> Callable[[_ArrayLike], ulab.numpy.ndarray]:
//| """
//| :param callable f: The function to wrap
//| :param otypes: List of array types that may be returned by the function. None is interpreted to mean the return value is float.
//|
//| Wrap a Python function ``f`` so that it can be applied to arrays.
//| The callable must return only values of the types specified by ``otypes``, or the result is undefined."""
//| ...
//|
static mp_obj_t vector_vectorize(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_otypes, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
const mp_obj_type_t *type = mp_obj_get_type(args[0].u_obj);
if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) {
mp_raise_TypeError(translate("first argument must be a callable"));
}
mp_obj_t _otypes = args[1].u_obj;
uint8_t otypes = NDARRAY_FLOAT;
if(_otypes == mp_const_none) {
// TODO: is this what numpy does?
otypes = NDARRAY_FLOAT;
} else if(mp_obj_is_int(_otypes)) {
otypes = mp_obj_get_int(_otypes);
if(otypes != NDARRAY_FLOAT && otypes != NDARRAY_UINT8 && otypes != NDARRAY_INT8 &&
otypes != NDARRAY_UINT16 && otypes != NDARRAY_INT16) {
mp_raise_ValueError(translate("wrong output type"));
}
}
else {
mp_raise_ValueError(translate("wrong output type"));
}
vectorized_function_obj_t *function = m_new_obj(vectorized_function_obj_t);
function->base.type = &vector_function_type;
function->otypes = otypes;
function->fun = args[0].u_obj;
function->type = type;
return MP_OBJ_FROM_PTR(function);
}
MP_DEFINE_CONST_FUN_OBJ_KW(vector_vectorize_obj, 1, vector_vectorize);
#endif