* Properly register submodules of ulab This is related to * https://github.com/adafruit/circuitpython/issues/6066 in which, after the merge of 1.18 into CircuitPython, we lost the ability to import submodules of built-in modules. While reconstructing the changes we had made locally to enable this, I discovered that there was an easier way: simply register the dotted module names via MP_REGISTER_MODULE. * Fix finding processor count when no `python` executable is installed debian likes to install only `python3`, and not `python` (which was, for many decades, python2). This was previously done for `build.sh` but not for `build-cp.sh`. * Only use this submodule feature in CircuitPython .. as it does not work properly in MicroPython. Also, modules to be const. This saves a small amount of RAM * Fix -Werror=undef diagnostic Most CircuitPython ports build with -Werror=undef, so that use of an undefined preprocessor flag is an error. Also, CircuitPython's micropython version is old enough that MICROPY_VERSION is not (ever) defined. Defensively check for this macro being defined, and use the older style of MP_REGISTER_MODULE when it is not. * Fix -Werror=discarded-qualifiers diagnostics Most CircuitPython ports build with -Werror=discarded-qualifiers. This detected a problem where string constants were passed to functions with non-constant parameter types. * bump version number * Use MicroPython-compatible registration of submodules * straggler * Remove spurious casts these were build errors for micropython * Run tests for both nanbox and regular variant during CI
109 lines
3.7 KiB
C
109 lines
3.7 KiB
C
/*
|
|
* This file is part of the micropython-ulab project,
|
|
*
|
|
* https://github.com/v923z/micropython-ulab
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2019-2021 Zoltán Vörös
|
|
* 2020 Scott Shawcroft for Adafruit Industries
|
|
* 2020 Taku Fukada
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "py/runtime.h"
|
|
#include "py/builtin.h"
|
|
#include "py/binary.h"
|
|
#include "py/obj.h"
|
|
#include "py/objarray.h"
|
|
|
|
#include "../carray/carray_tools.h"
|
|
#include "fft.h"
|
|
|
|
//| """Frequency-domain functions"""
|
|
//|
|
|
//| import ulab.numpy
|
|
//| import ulab.utils
|
|
|
|
|
|
//| def fft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]:
|
|
//| """
|
|
//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
|
|
//| :param ulab.numpy.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
|
|
//| :return tuple (r, c): The real and complex parts of the FFT
|
|
//|
|
|
//| Perform a Fast Fourier Transform from the time domain into the frequency domain
|
|
//|
|
|
//| See also `ulab.utils.spectrogram`, which computes the magnitude of the fft,
|
|
//| rather than separately returning its real and imaginary parts."""
|
|
//| ...
|
|
//|
|
|
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
|
|
static mp_obj_t fft_fft(mp_obj_t arg) {
|
|
return fft_fft_ifft_spectrogram(arg, FFT_FFT);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_1(fft_fft_obj, fft_fft);
|
|
#else
|
|
static mp_obj_t fft_fft(size_t n_args, const mp_obj_t *args) {
|
|
if(n_args == 2) {
|
|
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_FFT);
|
|
} else {
|
|
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_FFT);
|
|
}
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj, 1, 2, fft_fft);
|
|
#endif
|
|
|
|
//| def ifft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]:
|
|
//| """
|
|
//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
|
|
//| :param ulab.numpy.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
|
|
//| :return tuple (r, c): The real and complex parts of the inverse FFT
|
|
//|
|
|
//| Perform an Inverse Fast Fourier Transform from the frequeny domain into the time domain"""
|
|
//| ...
|
|
//|
|
|
|
|
#if ULAB_SUPPORTS_COMPLEX & ULAB_FFT_IS_NUMPY_COMPATIBLE
|
|
static mp_obj_t fft_ifft(mp_obj_t arg) {
|
|
return fft_fft_ifft_spectrogram(arg, FFT_IFFT);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_1(fft_ifft_obj, fft_ifft);
|
|
#else
|
|
static mp_obj_t fft_ifft(size_t n_args, const mp_obj_t *args) {
|
|
NOT_IMPLEMENTED_FOR_COMPLEX()
|
|
if(n_args == 2) {
|
|
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_IFFT);
|
|
} else {
|
|
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_IFFT);
|
|
}
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj, 1, 2, fft_ifft);
|
|
#endif
|
|
|
|
STATIC const mp_rom_map_elem_t ulab_fft_globals_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_fft) },
|
|
{ MP_ROM_QSTR(MP_QSTR_fft), MP_ROM_PTR(&fft_fft_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ifft), MP_ROM_PTR(&fft_ifft_obj) },
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_fft_globals, ulab_fft_globals_table);
|
|
|
|
const mp_obj_module_t ulab_fft_module = {
|
|
.base = { &mp_type_module },
|
|
.globals = (mp_obj_dict_t*)&mp_module_ulab_fft_globals,
|
|
};
|
|
#if CIRCUITPY_ULAB
|
|
#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144
|
|
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy_dot_fft, ulab_fft_module, MODULE_ULAB_ENABLED);
|
|
#else
|
|
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy_dot_fft, ulab_fft_module);
|
|
#endif
|
|
#endif
|