63 lines
1.6 KiB
Python
63 lines
1.6 KiB
Python
import sys
|
|
|
|
use_ulab = False
|
|
|
|
try:
|
|
from ubinascii import b2a_base64 as b64encode
|
|
from ubinascii import hexlify
|
|
import ujson as json
|
|
from ulab import numpy as np
|
|
use_ulab = True
|
|
except:
|
|
from base64 import b64encode
|
|
import json
|
|
import numpy as np
|
|
from numpy.lib.format import dtype_to_descr
|
|
|
|
def ulab_dtype_to_descr(dtype):
|
|
desc = '>'
|
|
if sys.byteorder == 'little':
|
|
desc = '<'
|
|
|
|
if dtype == ord('B'):
|
|
desc = '|u1'
|
|
elif dtype == ord('b'):
|
|
desc = '|i1'
|
|
elif dtype == ord('H'):
|
|
desc = desc + 'u2'
|
|
elif dtype == ord('h'):
|
|
desc = desc + 'i2'
|
|
elif dtype == ord('d'):
|
|
desc = desc + 'f8'
|
|
elif dtype == ord('f'):
|
|
desc = desc + 'f4'
|
|
elif dtype == ord('c'):
|
|
desc = desc + 'c16'
|
|
if np.array([1], dtype=np.float).itemsize == 4:
|
|
desc = desc + 'c8'
|
|
|
|
return desc
|
|
|
|
def ndarray_to_json(obj, b64=False):
|
|
if not isinstance(obj, np.ndarray):
|
|
raise TypeError('input argument must be an ndarray')
|
|
|
|
if use_ulab:
|
|
dtype_desciptor = ulab_dtype_to_descr(obj.dtype)
|
|
else:
|
|
dtype_desciptor = dtype_to_descr(obj.dtype)
|
|
|
|
if not b64:
|
|
data = hexlify(obj.tobytes())
|
|
else:
|
|
data = b64encode(obj.tobytes())
|
|
|
|
return json.dumps({'__numpy__': data, 'dtype': dtype_desciptor, 'shape': obj.shape})
|
|
|
|
|
|
dtypes = (np.uint8, np.int8, np.uint16, np.int16, np.float)
|
|
|
|
for dtype in dtypes:
|
|
ndarray = np.array(range(9), dtype=dtype).reshape((3,3))
|
|
print(ndarray_to_json(ndarray))
|
|
print(ndarray_to_json(ndarray, b64=True))
|