1454 lines
59 KiB
C
1454 lines
59 KiB
C
|
|
/*
|
|
* This file is part of the micropython-ulab project,
|
|
*
|
|
* https://github.com/v923z/micropython-ulab
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2019-2020 Zoltán Vörös
|
|
*/
|
|
|
|
#include <unistd.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "py/runtime.h"
|
|
#include "py/binary.h"
|
|
#include "py/obj.h"
|
|
#include "py/objtuple.h"
|
|
#include "ndarray.h"
|
|
|
|
mp_uint_t ndarray_print_threshold = NDARRAY_PRINT_THRESHOLD;
|
|
mp_uint_t ndarray_print_edgeitems = NDARRAY_PRINT_EDGEITEMS;
|
|
|
|
//| """Manipulate numeric data similar to numpy
|
|
//| `ulab` is a numpy-like module for micropython, meant to simplify and
|
|
//| speed up common mathematical operations on arrays. The primary goal was to
|
|
//| implement a small subset of numpy that might be useful in the context of a
|
|
//| microcontroller. This means low-level data processing of linear (array) and
|
|
//| two-dimensional (matrix) data.
|
|
//| `ulab` is adapted from micropython-ulab, and the original project's
|
|
//| documentation can be found at
|
|
//| https://micropython-ulab.readthedocs.io/en/latest/
|
|
//| `ulab` is modeled after numpy, and aims to be a compatible subset where
|
|
//| possible. Numpy's documentation can be found at
|
|
//| https://docs.scipy.org/doc/numpy/index.html"""
|
|
//|
|
|
//| from typing import List
|
|
//|
|
|
//| _DType = int
|
|
//| """`ulab.int8`, `ulab.uint8`, `ulab.int16`, `ulab.uint16`, or `ulab.float`"""
|
|
//|
|
|
//| _Index = Union[int, slice, List[bool], Tuple[Union[int, slice, List[bool]], Union[int, slice, List[bool]]]]
|
|
//| _float = float
|
|
//|
|
|
|
|
//| class array:
|
|
//| """1- and 2- dimensional array"""
|
|
//|
|
|
//| def __init__(
|
|
//| self,
|
|
//| values: Union[array, Iterable[_float], Iterable[Iterable[_float]]],
|
|
//| *,
|
|
//| dtype: _DType = float
|
|
//| ) -> None:
|
|
//| """:param sequence values: Sequence giving the initial content of the array.
|
|
//| :param dtype: The type of array values, ``int8``, ``uint8``, ``int16``, ``uint16``, or ``float``
|
|
//|
|
|
//| The `values` sequence can either be another ~ulab.array, sequence of numbers
|
|
//| (in which case a 1-dimensional array is created), or a sequence where each
|
|
//| subsequence has the same length (in which case a 2-dimensional array is
|
|
//| created).
|
|
//| Passing a ~ulab.array and a different dtype can be used to convert an array
|
|
//| from one dtype to another.
|
|
//| In many cases, it is more convenient to create an array from a function
|
|
//| like `zeros` or `linspace`.
|
|
//| `ulab.array` implements the buffer protocol, so it can be used in many
|
|
//| places an `array.array` can be used."""
|
|
//| ...
|
|
//|
|
|
//| shape: Union[Tuple[int], Tuple[int, int]]
|
|
//| """The size of the array, a tuple of length 1 or 2"""
|
|
//|
|
|
//| size: int
|
|
//| """The number of elements in the array"""
|
|
//|
|
|
//| itemsize: int
|
|
//| """The size of a single item in the array"""
|
|
//|
|
|
//| def flatten(self, *, order: str = "C") -> array:
|
|
//| """:param order: Whether to flatten by rows ('C') or columns ('F')
|
|
//|
|
|
//| Returns a new `ulab.array` object which is always 1 dimensional.
|
|
//| If order is 'C' (the default", then the data is ordered in rows;
|
|
//| If it is 'F', then the data is ordered in columns. "C" and "F" refer
|
|
//| to the typical storage organization of the C and Fortran languages."""
|
|
//| ...
|
|
//|
|
|
//| def reshape(self, shape: Tuple[int, int]) -> array:
|
|
//| """Returns an array containing the same data with a new shape."""
|
|
//| ...
|
|
//|
|
|
//| def sort(self, *, axis: Optional[int] = 1) -> None:
|
|
//| """:param axis: Whether to sort elements within rows (0), columns (1), or elements (None)"""
|
|
//| ...
|
|
//|
|
|
//| def transpose(self) -> array:
|
|
//| """Swap the rows and columns of a 2-dimensional array"""
|
|
//| ...
|
|
//|
|
|
//| def __add__(self, other: Union[array, _float]) -> array:
|
|
//| """Adds corresponding elements of the two arrays, or adds a number to all
|
|
//| elements of the array. If both arguments are arrays, their sizes must match."""
|
|
//| ...
|
|
//| def __radd__(self, other: _float) -> array: ...
|
|
//|
|
|
//| def __sub__(self, other: Union[array, _float]) -> array:
|
|
//| """Subtracts corresponding elements of the two arrays, or subtracts a number from all
|
|
//| elements of the array. If both arguments are arrays, their sizes must match."""
|
|
//| ...
|
|
//| def __rsub__(self, other: _float) -> array: ...
|
|
//|
|
|
//| def __mul__(self, other: Union[array, _float]) -> array:
|
|
//| """Multiplies corresponding elements of the two arrays, or multiplies
|
|
//| all elements of the array by a number. If both arguments are arrays,
|
|
//| their sizes must match."""
|
|
//| ...
|
|
//| def __rmul__(self, other: _float) -> array: ...
|
|
//|
|
|
//| def __div__(self, other: Union[array, _float]) -> array:
|
|
//| """Multiplies corresponding elements of the two arrays, or divides
|
|
//| all elements of the array by a number. If both arguments are arrays,
|
|
//| their sizes must match."""
|
|
//| ...
|
|
//| def __rdiv__(self, other: _float) -> array: ...
|
|
//|
|
|
//| def __pow__(self, other: Union[array, _float]) -> array:
|
|
//| """Computes the power (x**y) of corresponding elements of the the two arrays,
|
|
//| or one number and one array. If both arguments are arrays, their sizes
|
|
//| must match."""
|
|
//| ...
|
|
//| def __rpow__(self, other: _float) -> array: ...
|
|
//|
|
|
//| def __inv__(self) -> array:
|
|
//| ...
|
|
//| def __neg__(self) -> array:
|
|
//| ...
|
|
//| def __pos__(self) -> array:
|
|
//| ...
|
|
//| def __abs__(self) -> array:
|
|
//| ...
|
|
//| def __len__(self) -> array:
|
|
//| ...
|
|
//| def __lt__(self, other: Union[array, _float]) -> List[bool]:
|
|
//| ...
|
|
//| def __le__(self, other: Union[array, _float]) -> List[bool]:
|
|
//| ...
|
|
//| def __gt__(self, other: Union[array, _float]) -> List[bool]:
|
|
//| ...
|
|
//| def __ge__(self, other: Union[array, _float]) -> List[bool]:
|
|
//| ...
|
|
//|
|
|
//| def __iter__(self) -> Union[Iterator[array], Iterator[_float]]:
|
|
//| ...
|
|
//|
|
|
//| def __getitem__(self, index: _Index) -> Union[array, _float]:
|
|
//| """Retrieve an element of the array."""
|
|
//| ...
|
|
//|
|
|
//| def __setitem__(self, index: _Index, value: Union[array, _float]) -> None:
|
|
//| """Set an element of the array."""
|
|
//| ...
|
|
//|
|
|
//| _ArrayLike = Union[array, List[_float], Tuple[_float], range]
|
|
//|
|
|
//| int8: _DType
|
|
//| """Type code for signed integers in the range -128 .. 127 inclusive, like the 'b' typecode of `array.array`"""
|
|
//|
|
|
//| int16: _DType
|
|
//| """Type code for signed integers in the range -32768 .. 32767 inclusive, like the 'h' typecode of `array.array`"""
|
|
//|
|
|
//| float: _DType
|
|
//| """Type code for floating point values, like the 'f' typecode of `array.array`"""
|
|
//|
|
|
//| uint8: _DType
|
|
//| """Type code for unsigned integers in the range 0 .. 255 inclusive, like the 'H' typecode of `array.array`"""
|
|
//|
|
|
//| uint16: _DType
|
|
//| """Type code for unsigned integers in the range 0 .. 65535 inclusive, like the 'h' typecode of `array.array`"""
|
|
//|
|
|
|
|
#ifdef OPENMV
|
|
void mp_obj_slice_indices(mp_obj_t self_in, mp_int_t length, mp_bound_slice_t *result) {
|
|
mp_obj_slice_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_int_t start, stop, step;
|
|
|
|
if (self->step == mp_const_none) {
|
|
step = 1;
|
|
} else {
|
|
step = mp_obj_get_int(self->step);
|
|
if (step == 0) {
|
|
mp_raise_ValueError(translate("slice step can't be zero"));
|
|
}
|
|
}
|
|
|
|
if (step > 0) {
|
|
// Positive step
|
|
if (self->start == mp_const_none) {
|
|
start = 0;
|
|
} else {
|
|
start = mp_obj_get_int(self->start);
|
|
if (start < 0) {
|
|
start += length;
|
|
}
|
|
start = MIN(length, MAX(start, 0));
|
|
}
|
|
|
|
if (self->stop == mp_const_none) {
|
|
stop = length;
|
|
} else {
|
|
stop = mp_obj_get_int(self->stop);
|
|
if (stop < 0) {
|
|
stop += length;
|
|
}
|
|
stop = MIN(length, MAX(stop, 0));
|
|
}
|
|
} else {
|
|
// Negative step
|
|
if (self->start == mp_const_none) {
|
|
start = length - 1;
|
|
} else {
|
|
start = mp_obj_get_int(self->start);
|
|
if (start < 0) {
|
|
start += length;
|
|
}
|
|
start = MIN(length - 1, MAX(start, -1));
|
|
}
|
|
|
|
if (self->stop == mp_const_none) {
|
|
stop = -1;
|
|
} else {
|
|
stop = mp_obj_get_int(self->stop);
|
|
if (stop < 0) {
|
|
stop += length;
|
|
}
|
|
stop = MIN(length - 1, MAX(stop, -1));
|
|
}
|
|
}
|
|
|
|
result->start = start;
|
|
result->stop = stop;
|
|
result->step = step;
|
|
}
|
|
#endif
|
|
|
|
mp_float_t ndarray_get_float_value(void *data, uint8_t typecode, size_t index) {
|
|
if(typecode == NDARRAY_UINT8) {
|
|
return (mp_float_t)((uint8_t *)data)[index];
|
|
} else if(typecode == NDARRAY_INT8) {
|
|
return (mp_float_t)((int8_t *)data)[index];
|
|
} else if(typecode == NDARRAY_UINT16) {
|
|
return (mp_float_t)((uint16_t *)data)[index];
|
|
} else if(typecode == NDARRAY_INT16) {
|
|
return (mp_float_t)((int16_t *)data)[index];
|
|
} else {
|
|
return (mp_float_t)((mp_float_t *)data)[index];
|
|
}
|
|
}
|
|
|
|
void ndarray_fill_array_iterable(mp_float_t *array, mp_obj_t iterable) {
|
|
mp_obj_iter_buf_t x_buf;
|
|
mp_obj_t x_item, x_iterable = mp_getiter(iterable, &x_buf);
|
|
size_t i=0;
|
|
while ((x_item = mp_iternext(x_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
*array++ = (mp_float_t)mp_obj_get_float(x_item);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
int32_t *strides_from_shape(size_t *shape, uint8_t dtype) {
|
|
// returns a strides array that corresponds to a dense array with the prescribed shape
|
|
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
|
|
strides[ULAB_MAX_DIMS-1] = (int32_t)mp_binary_get_size('@', dtype, NULL);;
|
|
for(uint8_t i=ULAB_MAX_DIMS; i > 1; i--) {
|
|
strides[i-2] = strides[i-1] * shape[i-1];
|
|
}
|
|
return strides;
|
|
}
|
|
|
|
size_t *ndarray_new_coords(uint8_t ndim) {
|
|
size_t *coords = m_new(size_t, ndim);
|
|
memset(coords, 0, ndim*sizeof(size_t));
|
|
return coords;
|
|
}
|
|
|
|
// TODO: should be re-named as array_like
|
|
bool ndarray_object_is_nditerable(mp_obj_t o_in) {
|
|
if(MP_OBJ_IS_TYPE(o_in, &ulab_ndarray_type) ||
|
|
MP_OBJ_IS_TYPE(o_in, &mp_type_tuple) ||
|
|
MP_OBJ_IS_TYPE(o_in, &mp_type_list) ||
|
|
MP_OBJ_IS_TYPE(o_in, &mp_type_range)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void fill_array_iterable(mp_float_t *array, mp_obj_t iterable) {
|
|
mp_obj_iter_buf_t x_buf;
|
|
mp_obj_t x_item, x_iterable = mp_getiter(iterable, &x_buf);
|
|
size_t i=0;
|
|
while ((x_item = mp_iternext(x_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
array[i] = (mp_float_t)mp_obj_get_float(x_item);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
mp_obj_t ndarray_set_printoptions(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_threshold, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} },
|
|
{ MP_QSTR_edgeitems, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
if(args[0].u_rom_obj != mp_const_none) {
|
|
ndarray_print_threshold = mp_obj_get_int(args[0].u_rom_obj);
|
|
}
|
|
if(args[1].u_rom_obj != mp_const_none) {
|
|
ndarray_print_edgeitems = mp_obj_get_int(args[1].u_rom_obj);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(ndarray_set_printoptions_obj, 0, ndarray_set_printoptions);
|
|
|
|
mp_obj_t ndarray_get_printoptions(void) {
|
|
mp_obj_t dict = mp_obj_new_dict(2);
|
|
mp_obj_dict_store(MP_OBJ_FROM_PTR(dict), MP_OBJ_NEW_QSTR(MP_QSTR_threshold), mp_obj_new_int(ndarray_print_threshold));
|
|
mp_obj_dict_store(MP_OBJ_FROM_PTR(dict), MP_OBJ_NEW_QSTR(MP_QSTR_edgeitems), mp_obj_new_int(ndarray_print_edgeitems));
|
|
return dict;
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_0(ndarray_get_printoptions_obj, ndarray_get_printoptions);
|
|
|
|
|
|
void ndarray_print_row(const mp_print_t *print, uint8_t dtype, uint8_t *array, size_t stride, size_t n) {
|
|
mp_print_str(print, "[");
|
|
if((n <= ndarray_print_threshold) || (n <= 2*ndarray_print_edgeitems)) { // if the array is short, print everything
|
|
mp_obj_print_helper(print, mp_binary_get_val_array(dtype, array, 0), PRINT_REPR);
|
|
array += stride;
|
|
for(size_t i=1; i < n; i++, array += stride) {
|
|
mp_print_str(print, ", ");
|
|
mp_obj_print_helper(print, mp_binary_get_val_array(dtype, array, 0), PRINT_REPR);
|
|
}
|
|
} else {
|
|
mp_obj_print_helper(print, mp_binary_get_val_array(dtype, array, 0), PRINT_REPR);
|
|
array += stride;
|
|
for(size_t i=1; i < ndarray_print_edgeitems; i++, array += stride) {
|
|
mp_print_str(print, ", ");
|
|
mp_obj_print_helper(print, mp_binary_get_val_array(dtype, array, 0), PRINT_REPR);
|
|
}
|
|
mp_printf(print, ", ..., ");
|
|
array += stride * (n - 2 * ndarray_print_edgeitems);
|
|
mp_obj_print_helper(print, mp_binary_get_val_array(dtype, array, 0), PRINT_REPR);
|
|
array += stride;
|
|
for(size_t i=1; i < ndarray_print_edgeitems; i++, array += stride) {
|
|
mp_print_str(print, ", ");
|
|
mp_obj_print_helper(print, mp_binary_get_val_array(dtype, array, 0), PRINT_REPR);
|
|
}
|
|
}
|
|
mp_print_str(print, "]");
|
|
}
|
|
|
|
void ndarray_print_bracket(const mp_print_t *print, const size_t condition, const size_t shape, const char *string) {
|
|
if(condition < shape) {
|
|
mp_print_str(print, string);
|
|
}
|
|
}
|
|
|
|
void ndarray_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
(void)kind;
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
uint8_t *array = (uint8_t *)self->array;
|
|
size_t i=0;
|
|
mp_print_str(print, "array(");
|
|
if(self->shape[ULAB_MAX_DIMS-4] > 0) {
|
|
mp_print_str(print, "[");
|
|
}
|
|
do {
|
|
size_t j = 0;
|
|
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-3], "[");
|
|
do {
|
|
size_t k = 0;
|
|
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-2], "[");
|
|
do {
|
|
ndarray_print_row(print, self->dtype, array, self->strides[ULAB_MAX_DIMS-1], self->shape[ULAB_MAX_DIMS-1]);
|
|
array += self->strides[ULAB_MAX_DIMS-2];
|
|
k++;
|
|
ndarray_print_bracket(print, k, self->shape[ULAB_MAX_DIMS-2], ",\n\t");
|
|
} while(k < self->shape[ULAB_MAX_DIMS-2]);
|
|
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-2], "]");
|
|
j++;
|
|
ndarray_print_bracket(print, j, self->shape[ULAB_MAX_DIMS-3], ",\n\n\t");
|
|
array -= self->strides[ULAB_MAX_DIMS-2] * self->shape[ULAB_MAX_DIMS-2];
|
|
array += self->strides[ULAB_MAX_DIMS-3];
|
|
} while(j < self->shape[ULAB_MAX_DIMS-3]);
|
|
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-3], "]");
|
|
array -= self->strides[ULAB_MAX_DIMS-3] * self->shape[ULAB_MAX_DIMS-3];
|
|
array += self->strides[ULAB_MAX_DIMS-4];
|
|
i++;
|
|
ndarray_print_bracket(print, i, self->shape[ULAB_MAX_DIMS-4], ",\n\n\t");
|
|
} while(i < self->shape[ULAB_MAX_DIMS-4]);
|
|
|
|
if(self->boolean) {
|
|
mp_print_str(print, ", dtype=bool)");
|
|
} else if(self->dtype == NDARRAY_UINT8) {
|
|
mp_print_str(print, ", dtype=uint8)");
|
|
} else if(self->dtype == NDARRAY_INT8) {
|
|
mp_print_str(print, ", dtype=int8)");
|
|
} else if(self->dtype == NDARRAY_UINT16) {
|
|
mp_print_str(print, ", dtype=uint16)");
|
|
} else if(self->dtype == NDARRAY_INT16) {
|
|
mp_print_str(print, ", dtype=int16)");
|
|
} else if(self->dtype == NDARRAY_FLOAT) {
|
|
mp_print_str(print, ", dtype=float)");
|
|
}
|
|
}
|
|
|
|
void ndarray_assign_elements(ndarray_obj_t *ndarray, mp_obj_t iterable, uint8_t dtype, size_t *idx) {
|
|
// assigns a single row in the matrix
|
|
mp_obj_t item;
|
|
if(ndarray->boolean) {
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
array += *idx;
|
|
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
// TODO: this might be wrong here: we have to check for the trueness of item
|
|
if(mp_obj_is_true(item)) {
|
|
*array = 1;
|
|
}
|
|
array++;
|
|
(*idx)++;
|
|
}
|
|
} else {
|
|
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
mp_binary_set_val_array(dtype, ndarray->array, (*idx)++, item);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ndarray_is_dense(ndarray_obj_t *ndarray) {
|
|
// returns true, if the array is dense, false otherwise
|
|
// the array should dense, if the very first stride can be calculated from shape
|
|
int32_t stride = ndarray->itemsize;
|
|
for(uint8_t i=ULAB_MAX_DIMS; i > ULAB_MAX_DIMS-ndarray->ndim; i--) {
|
|
stride *= ndarray->shape[i];
|
|
}
|
|
return stride == ndarray->strides[ULAB_MAX_DIMS-ndarray->ndim-1] ? true : false;
|
|
}
|
|
|
|
ndarray_obj_t *ndarray_new_ndarray(uint8_t ndim, size_t *shape, int32_t *strides, uint8_t dtype) {
|
|
// Creates the base ndarray with shape, and initialises the values to straight 0s
|
|
// the function should work in the general n-dimensional case
|
|
ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
|
|
ndarray->base.type = &ulab_ndarray_type;
|
|
ndarray->dense = 1;
|
|
ndarray->dtype = dtype;
|
|
ndarray->ndim = ndim;
|
|
ndarray->len = 1;
|
|
ndarray->itemsize = mp_binary_get_size('@', dtype, NULL);
|
|
for(uint8_t i=ULAB_MAX_DIMS; i > ULAB_MAX_DIMS-ndim; i--) {
|
|
ndarray->shape[i-1] = shape[i-1];
|
|
ndarray->strides[i-1] = strides[i-1];
|
|
ndarray->len *= shape[i-1];
|
|
}
|
|
if(dtype == NDARRAY_BOOL) {
|
|
dtype = NDARRAY_UINT8;
|
|
ndarray->boolean = NDARRAY_BOOLEAN;
|
|
} else {
|
|
ndarray->boolean = NDARRAY_NUMERIC;
|
|
}
|
|
uint8_t *array = m_new(byte, ndarray->itemsize * ndarray->len);
|
|
// this should set all elements to 0, irrespective of the of the dtype (all bits are zero)
|
|
// we could, perhaps, leave this step out, and initialise the array only, when needed
|
|
memset(array, 0, ndarray->len * ndarray->itemsize);
|
|
ndarray->array = array;
|
|
return ndarray;
|
|
}
|
|
|
|
ndarray_obj_t *ndarray_new_dense_ndarray(uint8_t ndim, size_t *shape, uint8_t dtype) {
|
|
// creates a dense array, i.e., one, where the strides are derived directly from the shapes
|
|
// the function should work in the general n-dimensional case
|
|
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
|
|
strides[ULAB_MAX_DIMS-1] = mp_binary_get_size('@', dtype, NULL);
|
|
for(size_t i=ULAB_MAX_DIMS; i > 1; i--) {
|
|
strides[i-2] = strides[i-1] * shape[i-1];
|
|
}
|
|
return ndarray_new_ndarray(ndim, shape, strides, dtype);
|
|
}
|
|
|
|
ndarray_obj_t *ndarray_new_ndarray_from_tuple(mp_obj_tuple_t *_shape, uint8_t dtype) {
|
|
// creates a dense array from a tuple
|
|
// the function should work in the general n-dimensional case
|
|
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
|
|
for(size_t i=0; i < ULAB_MAX_DIMS; i++) {
|
|
if(i < ULAB_MAX_DIMS - _shape->len) {
|
|
shape[i] = 0;
|
|
} else {
|
|
shape[i] = mp_obj_get_int(_shape->items[i]);
|
|
}
|
|
}
|
|
return ndarray_new_dense_ndarray(_shape->len, shape, dtype);
|
|
}
|
|
|
|
void ndarray_copy_array(ndarray_obj_t *source, ndarray_obj_t *target) {
|
|
// TODO: this won't work for now.
|
|
// copies the content of source->array into a new dense void pointer
|
|
// it is assumed that the dtypes in source and target are the same
|
|
size_t *coords = ndarray_new_coords(source->ndim);
|
|
int32_t last_stride = source->strides[source->ndim-1];
|
|
uint8_t itemsize = mp_binary_get_size('@', source->dtype, NULL);
|
|
|
|
uint8_t *array = (uint8_t *)source->array;
|
|
uint8_t *new_array = (uint8_t *)target->array;
|
|
|
|
for(size_t i=0; i < source->len; i++) {
|
|
memcpy(new_array, array, itemsize);
|
|
new_array += itemsize;
|
|
array += last_stride*itemsize;
|
|
coords[source->ndim-1] += 1;
|
|
for(uint8_t j=source->ndim-1; j > 0; j--) {
|
|
if(coords[j] == source->shape[j]) {
|
|
array -= source->shape[j] * source->strides[j] * itemsize;
|
|
array += source->strides[j-1] * itemsize;
|
|
coords[j] = 0;
|
|
coords[j-1] += 1;
|
|
} else { // coordinates can change only, if the last coordinate changes
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
m_del(size_t, coords, source->ndim);
|
|
}
|
|
|
|
ndarray_obj_t *ndarray_new_view(ndarray_obj_t *source, uint8_t ndim, size_t *shape, int32_t *strides, int32_t offset) {
|
|
// creates a new view from the input arguments
|
|
// the function should work in the n-dimensional case
|
|
ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
|
|
ndarray->base.type = &ulab_ndarray_type;
|
|
ndarray->boolean = source->boolean;
|
|
ndarray->dtype = source->dtype;
|
|
ndarray->ndim = ndim;
|
|
ndarray->len = 1;
|
|
for(uint8_t i=ULAB_MAX_DIMS; i > ULAB_MAX_DIMS-ndim; i--) {
|
|
ndarray->shape[i-1] = shape[i-1];
|
|
ndarray->strides[i-1] = strides[i-1];
|
|
ndarray->len *= shape[i-1];
|
|
}
|
|
uint8_t itemsize = mp_binary_get_size('@', source->dtype, NULL);
|
|
ndarray->array = (uint8_t *)source->array + offset * itemsize;
|
|
return ndarray;
|
|
}
|
|
|
|
ndarray_obj_t *ndarray_copy_view(ndarray_obj_t *source) {
|
|
// creates a one-to-one deep copy of the input ndarray or its view
|
|
// the function should work in the general n-dimensional case
|
|
// In order to make it dtype-agnostic, we copy the memory content
|
|
// instead of reading out the values
|
|
|
|
int32_t *strides = strides_from_shape(source->shape, source->ndim);
|
|
|
|
uint8_t dtype = source->dtype;
|
|
if(source->boolean) {
|
|
dtype = NDARRAY_BOOLEAN;
|
|
}
|
|
ndarray_obj_t *ndarray = ndarray_new_ndarray(source->ndim, source->shape, strides, dtype);
|
|
ndarray_copy_array(source, ndarray);
|
|
return ndarray;
|
|
}
|
|
|
|
ndarray_obj_t *ndarray_new_linear_array(size_t len, uint8_t dtype) {
|
|
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
|
|
shape[ULAB_MAX_DIMS-1] = len;
|
|
return ndarray_new_dense_ndarray(1, shape, dtype);
|
|
}
|
|
|
|
STATIC uint8_t ndarray_init_helper(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
|
|
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = NDARRAY_FLOAT } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
uint8_t dtype = args[1].u_int;
|
|
return dtype;
|
|
}
|
|
|
|
STATIC mp_obj_t ndarray_make_new_core(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args, mp_map_t *kw_args) {
|
|
uint8_t dtype = ndarray_init_helper(n_args, args, kw_args);
|
|
|
|
mp_obj_t len_in = mp_obj_len_maybe(args[0]);
|
|
size_t i = 0, len1 = 0, len2 = 0;
|
|
if (len_in == MP_OBJ_NULL) {
|
|
mp_raise_ValueError(translate("first argument must be an iterable"));
|
|
} else {
|
|
// len1 is either the number of rows (for matrices), or the number of elements (row vectors)
|
|
len1 = MP_OBJ_SMALL_INT_VALUE(len_in);
|
|
}
|
|
|
|
ndarray_obj_t *self;
|
|
|
|
// TODO: this doesn't allow dtype conversion.
|
|
if(MP_OBJ_IS_TYPE(args[0], &ulab_ndarray_type)) {
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0]);
|
|
self = ndarray_copy_view(ndarray);
|
|
return MP_OBJ_FROM_PTR(self);
|
|
}
|
|
|
|
// We have to figure out, whether the first element of the iterable is an iterable itself
|
|
// Perhaps, there is a more elegant way of handling this
|
|
mp_obj_iter_buf_t iter_buf1;
|
|
mp_obj_t item1, iterable1 = mp_getiter(args[0], &iter_buf1);
|
|
while ((item1 = mp_iternext(iterable1)) != MP_OBJ_STOP_ITERATION) {
|
|
len_in = mp_obj_len_maybe(item1);
|
|
if(len_in != MP_OBJ_NULL) { // indeed, this seems to be an iterable
|
|
// Next, we have to check, whether all elements in the outer loop have the same length
|
|
if(i > 0) {
|
|
if(len2 != (size_t)MP_OBJ_SMALL_INT_VALUE(len_in)) {
|
|
mp_raise_ValueError(translate("iterables are not of the same length"));
|
|
}
|
|
}
|
|
len2 = MP_OBJ_SMALL_INT_VALUE(len_in);
|
|
i++;
|
|
}
|
|
}
|
|
// By this time, it should be established, what the shape is, so we can now create the array
|
|
if(len2 == 0) {
|
|
self = ndarray_new_linear_array(len1, dtype);
|
|
} else {
|
|
size_t shape[2] = {len1, len2};
|
|
self = ndarray_new_dense_ndarray(2, shape, dtype);
|
|
}
|
|
|
|
size_t idx = 0;
|
|
iterable1 = mp_getiter(args[0], &iter_buf1);
|
|
if(len2 == 0) { // the first argument is a single iterable
|
|
ndarray_assign_elements(self, iterable1, dtype, &idx);
|
|
} else {
|
|
mp_obj_iter_buf_t iter_buf2;
|
|
mp_obj_t iterable2;
|
|
while ((item1 = mp_iternext(iterable1)) != MP_OBJ_STOP_ITERATION) {
|
|
iterable2 = mp_getiter(item1, &iter_buf2);
|
|
ndarray_assign_elements(self, iterable2, dtype, &idx);
|
|
}
|
|
}
|
|
return MP_OBJ_FROM_PTR(self);
|
|
}
|
|
|
|
#ifdef CIRCUITPY
|
|
mp_obj_t ndarray_make_new(const mp_obj_type_t *type, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
|
|
(void) type;
|
|
mp_arg_check_num(n_args, kw_args, 1, 2, true);
|
|
size_t n_kw = 0;
|
|
if (kw_args != 0) {
|
|
n_kw = kw_args->used;
|
|
}
|
|
mp_map_init_fixed_table(kw_args, n_kw, args + n_args);
|
|
return ndarray_make_new_core(type, n_args, n_kw, args, kw_args);
|
|
}
|
|
#else
|
|
mp_obj_t ndarray_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
(void) type;
|
|
mp_arg_check_num(n_args, n_kw, 1, 2, true);
|
|
mp_map_t kw_args;
|
|
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
|
|
return ndarray_make_new_core(type, n_args, n_kw, args, &kw_args);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
static size_t slice_length(mp_bound_slice_t slice) {
|
|
ssize_t len, correction = 1;
|
|
if(slice.step > 0) correction = -1;
|
|
len = (ssize_t)(slice.stop - slice.start + (slice.step + correction)) / slice.step;
|
|
if(len < 0) return 0;
|
|
return (size_t)len;
|
|
}
|
|
|
|
static size_t true_length(mp_obj_t bool_list) {
|
|
// returns the number of Trues in a Boolean list
|
|
// I wonder, wouldn't this be faster, if we looped through bool_list->items instead?
|
|
mp_obj_iter_buf_t iter_buf;
|
|
mp_obj_t item, iterable = mp_getiter(bool_list, &iter_buf);
|
|
size_t trues = 0;
|
|
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(!mp_obj_is_bool(item)) {
|
|
// numpy seems to be a little bit inconsistent in when an index is considered
|
|
// to be True/False. Bail out immediately, if the items are not True/False
|
|
mp_raise_TypeError(translate("wrong index type"));
|
|
}
|
|
if(mp_obj_is_true(item)) {
|
|
trues++;
|
|
}
|
|
}
|
|
return trues;
|
|
}
|
|
|
|
static mp_bound_slice_t generate_slice(mp_int_t n, mp_obj_t index) {
|
|
// micropython seems to have difficulties with negative steps
|
|
mp_bound_slice_t slice;
|
|
if(MP_OBJ_IS_TYPE(index, &mp_type_slice)) {
|
|
mp_obj_slice_indices(index, n, &slice);
|
|
} else if(MP_OBJ_IS_INT(index)) {
|
|
mp_int_t _index = mp_obj_get_int(index);
|
|
if(_index < 0) {
|
|
_index += n;
|
|
}
|
|
if((_index >= n) || (_index < 0)) {
|
|
mp_raise_msg(&mp_type_IndexError, translate("index is out of bounds"));
|
|
}
|
|
slice.start = _index;
|
|
slice.stop = _index + 1;
|
|
slice.step = 1;
|
|
} else {
|
|
mp_raise_msg(&mp_type_IndexError, translate("indices must be integers, slices, or Boolean lists"));
|
|
}
|
|
return slice;
|
|
}
|
|
|
|
static mp_bound_slice_t simple_slice(int16_t start, int16_t stop, int16_t step) {
|
|
mp_bound_slice_t slice;
|
|
slice.start = start;
|
|
slice.stop = stop;
|
|
slice.step = step;
|
|
return slice;
|
|
}
|
|
|
|
static void insert_binary_value(ndarray_obj_t *ndarray, size_t nd_index, ndarray_obj_t *values, size_t value_index) {
|
|
// there is probably a more elegant implementation...
|
|
mp_obj_t tmp = mp_binary_get_val_array(values->array->typecode, values->array->items, value_index);
|
|
if((values->array->typecode == NDARRAY_FLOAT) && (ndarray->array->typecode != NDARRAY_FLOAT)) {
|
|
// workaround: rounding seems not to work in the arm compiler
|
|
int32_t x = (int32_t)MICROPY_FLOAT_C_FUN(floor)(mp_obj_get_float(tmp)+MICROPY_FLOAT_CONST(0.5));
|
|
tmp = mp_obj_new_int(x);
|
|
}
|
|
mp_binary_set_val_array(ndarray->array->typecode, ndarray->array->items, nd_index, tmp);
|
|
}
|
|
|
|
static mp_obj_t insert_slice_list(ndarray_obj_t *ndarray, size_t m, size_t n,
|
|
mp_bound_slice_t row, mp_bound_slice_t column,
|
|
mp_obj_t row_list, mp_obj_t column_list,
|
|
ndarray_obj_t *values) {
|
|
if((m != values->m) && (n != values->n)) {
|
|
if(values->array->len != 1) { // not a single item
|
|
mp_raise_ValueError(translate("could not broadast input array from shape"));
|
|
}
|
|
}
|
|
size_t cindex, rindex;
|
|
// M, and N are used to manipulate how the source index is incremented in the loop
|
|
uint8_t M = 1, N = 1;
|
|
if(values->m == 1) {
|
|
M = 0;
|
|
}
|
|
if(values->n == 1) {
|
|
N = 0;
|
|
}
|
|
|
|
if(row_list == mp_const_none) { // rows are indexed by a slice
|
|
rindex = row.start;
|
|
if(column_list == mp_const_none) { // columns are indexed by a slice
|
|
for(size_t i=0; i < m; i++) {
|
|
cindex = column.start;
|
|
for(size_t j=0; j < n; j++) {
|
|
insert_binary_value(ndarray, rindex*ndarray->n+cindex, values, i*M*n+j*N);
|
|
cindex += column.step;
|
|
}
|
|
rindex += row.step;
|
|
}
|
|
} else { // columns are indexed by a Boolean list
|
|
mp_obj_iter_buf_t column_iter_buf;
|
|
mp_obj_t column_item, column_iterable;
|
|
for(size_t i=0; i < m; i++) {
|
|
column_iterable = mp_getiter(column_list, &column_iter_buf);
|
|
size_t j = 0;
|
|
cindex = 0;
|
|
while((column_item = mp_iternext(column_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(column_item)) {
|
|
insert_binary_value(ndarray, rindex*ndarray->n+cindex, values, i*M*n+j*N);
|
|
j++;
|
|
}
|
|
cindex++;
|
|
}
|
|
rindex += row.step;
|
|
}
|
|
}
|
|
} else { // rows are indexed by a Boolean list
|
|
mp_obj_iter_buf_t row_iter_buf;
|
|
mp_obj_t row_item, row_iterable;
|
|
row_iterable = mp_getiter(row_list, &row_iter_buf);
|
|
size_t i = 0;
|
|
rindex = 0;
|
|
if(column_list == mp_const_none) { // columns are indexed by a slice
|
|
while((row_item = mp_iternext(row_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(row_item)) {
|
|
cindex = column.start;
|
|
for(size_t j=0; j < n; j++) {
|
|
insert_binary_value(ndarray, rindex*ndarray->n+cindex, values, i*M*n+j*N);
|
|
cindex += column.step;
|
|
}
|
|
i++;
|
|
}
|
|
rindex++;
|
|
}
|
|
} else { // columns are indexed by a list
|
|
mp_obj_iter_buf_t column_iter_buf;
|
|
mp_obj_t column_item, column_iterable;
|
|
size_t j = 0;
|
|
cindex = 0;
|
|
while((row_item = mp_iternext(row_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(row_item)) {
|
|
column_iterable = mp_getiter(column_list, &column_iter_buf);
|
|
while((column_item = mp_iternext(column_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(column_item)) {
|
|
insert_binary_value(ndarray, rindex*ndarray->n+cindex, values, i*M*n+j*N);
|
|
j++;
|
|
}
|
|
cindex++;
|
|
}
|
|
i++;
|
|
}
|
|
rindex++;
|
|
}
|
|
}
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
|
|
static mp_obj_t iterate_slice_list(ndarray_obj_t *ndarray, size_t m, size_t n,
|
|
mp_bound_slice_t row, mp_bound_slice_t column,
|
|
mp_obj_t row_list, mp_obj_t column_list,
|
|
ndarray_obj_t *values) {
|
|
if(values != NULL) {
|
|
return insert_slice_list(ndarray, m, n, row, column, row_list, column_list, values);
|
|
}
|
|
uint8_t _sizeof = mp_binary_get_size('@', ndarray->array->typecode, NULL);
|
|
ndarray_obj_t *out = create_new_ndarray(m, n, ndarray->array->typecode);
|
|
uint8_t *target = (uint8_t *)out->array->items;
|
|
uint8_t *source = (uint8_t *)ndarray->array->items;
|
|
size_t cindex, rindex;
|
|
if(row_list == mp_const_none) { // rows are indexed by a slice
|
|
rindex = row.start;
|
|
if(column_list == mp_const_none) { // columns are indexed by a slice
|
|
for(size_t i=0; i < m; i++) {
|
|
cindex = column.start;
|
|
for(size_t j=0; j < n; j++) {
|
|
memcpy(target+(i*n+j)*_sizeof, source+(rindex*ndarray->n+cindex)*_sizeof, _sizeof);
|
|
cindex += column.step;
|
|
}
|
|
rindex += row.step;
|
|
}
|
|
} else { // columns are indexed by a Boolean list
|
|
// TODO: the list must be exactly as long as the axis
|
|
mp_obj_iter_buf_t column_iter_buf;
|
|
mp_obj_t column_item, column_iterable;
|
|
for(size_t i=0; i < m; i++) {
|
|
column_iterable = mp_getiter(column_list, &column_iter_buf);
|
|
size_t j = 0;
|
|
cindex = 0;
|
|
while((column_item = mp_iternext(column_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(column_item)) {
|
|
memcpy(target+(i*n+j)*_sizeof, source+(rindex*ndarray->n+cindex)*_sizeof, _sizeof);
|
|
j++;
|
|
}
|
|
cindex++;
|
|
}
|
|
rindex += row.step;
|
|
}
|
|
}
|
|
} else { // rows are indexed by a Boolean list
|
|
mp_obj_iter_buf_t row_iter_buf;
|
|
mp_obj_t row_item, row_iterable;
|
|
row_iterable = mp_getiter(row_list, &row_iter_buf);
|
|
size_t i = 0;
|
|
rindex = 0;
|
|
if(column_list == mp_const_none) { // columns are indexed by a slice
|
|
while((row_item = mp_iternext(row_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(row_item)) {
|
|
cindex = column.start;
|
|
for(size_t j=0; j < n; j++) {
|
|
memcpy(target+(i*n+j)*_sizeof, source+(rindex*ndarray->n+cindex)*_sizeof, _sizeof);
|
|
cindex += column.step;
|
|
}
|
|
i++;
|
|
}
|
|
rindex++;
|
|
}
|
|
} else { // columns are indexed by a list
|
|
mp_obj_iter_buf_t column_iter_buf;
|
|
mp_obj_t column_item, column_iterable;
|
|
size_t j = 0;
|
|
cindex = 0;
|
|
while((row_item = mp_iternext(row_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(row_item)) {
|
|
column_iterable = mp_getiter(column_list, &column_iter_buf);
|
|
while((column_item = mp_iternext(column_iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(mp_obj_is_true(column_item)) {
|
|
memcpy(target+(i*n+j)*_sizeof, source+(rindex*ndarray->n+cindex)*_sizeof, _sizeof);
|
|
j++;
|
|
}
|
|
cindex++;
|
|
}
|
|
i++;
|
|
}
|
|
rindex++;
|
|
}
|
|
}
|
|
}
|
|
return MP_OBJ_FROM_PTR(out);
|
|
}
|
|
|
|
static mp_obj_t ndarray_get_slice(ndarray_obj_t *ndarray, mp_obj_t index, ndarray_obj_t *values) {
|
|
mp_bound_slice_t row_slice = simple_slice(0, 0, 1), column_slice = simple_slice(0, 0, 1);
|
|
|
|
size_t m = 0, n = 0;
|
|
if(MP_OBJ_IS_INT(index) && (ndarray->m == 1) && (values == NULL)) {
|
|
// we have a row vector, and don't want to assign
|
|
column_slice = generate_slice(ndarray->n, index);
|
|
if(slice_length(column_slice) == 1) { // we were asked for a single item
|
|
// subscribe returns an mp_obj_t, if and only, if the index is an integer, and we have a row vector
|
|
return mp_binary_get_val_array(ndarray->array->typecode, ndarray->array->items, column_slice.start);
|
|
}
|
|
}
|
|
|
|
if(MP_OBJ_IS_INT(index) || MP_OBJ_IS_TYPE(index, &mp_type_slice)) {
|
|
if(ndarray->m == 1) { // we have a row vector
|
|
column_slice = generate_slice(ndarray->n, index);
|
|
row_slice = simple_slice(0, 1, 1);
|
|
} else { // we have a matrix
|
|
row_slice = generate_slice(ndarray->m, index);
|
|
column_slice = simple_slice(0, ndarray->n, 1); // take all columns
|
|
}
|
|
m = slice_length(row_slice);
|
|
n = slice_length(column_slice);
|
|
return iterate_slice_list(ndarray, m, n, row_slice, column_slice, mp_const_none, mp_const_none, values);
|
|
} else if(MP_OBJ_IS_TYPE(index, &mp_type_list)) {
|
|
n = true_length(index);
|
|
if(ndarray->m == 1) { // we have a flat array
|
|
// we might have to separate the n == 1 case
|
|
row_slice = simple_slice(0, 1, 1);
|
|
return iterate_slice_list(ndarray, 1, n, row_slice, column_slice, mp_const_none, index, values);
|
|
} else { // we have a matrix
|
|
return iterate_slice_list(ndarray, 1, n, row_slice, column_slice, mp_const_none, index, values);
|
|
}
|
|
}
|
|
else { // we certainly have a tuple, so let us deal with it
|
|
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(index);
|
|
if(tuple->len != 2) {
|
|
mp_raise_msg(&mp_type_IndexError, translate("too many indices"));
|
|
}
|
|
if(!(MP_OBJ_IS_TYPE(tuple->items[0], &mp_type_list) ||
|
|
MP_OBJ_IS_TYPE(tuple->items[0], &mp_type_slice) ||
|
|
MP_OBJ_IS_INT(tuple->items[0])) ||
|
|
!(MP_OBJ_IS_TYPE(tuple->items[1], &mp_type_list) ||
|
|
MP_OBJ_IS_TYPE(tuple->items[1], &mp_type_slice) ||
|
|
MP_OBJ_IS_INT(tuple->items[1]))) {
|
|
mp_raise_msg(&mp_type_IndexError, translate("indices must be integers, slices, or Boolean lists"));
|
|
}
|
|
if(MP_OBJ_IS_TYPE(tuple->items[0], &mp_type_list)) { // rows are indexed by Boolean list
|
|
m = true_length(tuple->items[0]);
|
|
if(MP_OBJ_IS_TYPE(tuple->items[1], &mp_type_list)) {
|
|
n = true_length(tuple->items[1]);
|
|
return iterate_slice_list(ndarray, m, n, row_slice, column_slice,
|
|
tuple->items[0], tuple->items[1], values);
|
|
} else { // the column is indexed by an integer, or a slice
|
|
column_slice = generate_slice(ndarray->n, tuple->items[1]);
|
|
n = slice_length(column_slice);
|
|
return iterate_slice_list(ndarray, m, n, row_slice, column_slice,
|
|
tuple->items[0], mp_const_none, values);
|
|
}
|
|
|
|
} else { // rows are indexed by a slice, or an integer
|
|
row_slice = generate_slice(ndarray->m, tuple->items[0]);
|
|
m = slice_length(row_slice);
|
|
if(MP_OBJ_IS_TYPE(tuple->items[1], &mp_type_list)) { // columns are indexed by a Boolean list
|
|
n = true_length(tuple->items[1]);
|
|
return iterate_slice_list(ndarray, m, n, row_slice, column_slice,
|
|
mp_const_none, tuple->items[1], values);
|
|
} else { // columns are indexed by an integer, or a slice
|
|
column_slice = generate_slice(ndarray->n, tuple->items[1]);
|
|
n = slice_length(column_slice);
|
|
return iterate_slice_list(ndarray, m, n, row_slice, column_slice,
|
|
mp_const_none, mp_const_none, values);
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_obj_t ndarray_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
if (value == MP_OBJ_SENTINEL) { // return value(s)
|
|
return ndarray_get_slice(self, index, NULL);
|
|
} else { // assignment to slices; the value must be an ndarray, or a scalar
|
|
if(!MP_OBJ_IS_TYPE(value, &ulab_ndarray_type) &&
|
|
!MP_OBJ_IS_INT(value) && !mp_obj_is_float(value)) {
|
|
mp_raise_ValueError(translate("right hand side must be an ndarray, or a scalar"));
|
|
} else {
|
|
ndarray_obj_t *values = NULL;
|
|
if(MP_OBJ_IS_INT(value)) {
|
|
values = create_new_ndarray(1, 1, self->array->typecode);
|
|
mp_binary_set_val_array(values->array->typecode, values->array->items, 0, value);
|
|
} else if(mp_obj_is_float(value)) {
|
|
values = create_new_ndarray(1, 1, NDARRAY_FLOAT);
|
|
mp_binary_set_val_array(NDARRAY_FLOAT, values->array->items, 0, value);
|
|
} else {
|
|
values = MP_OBJ_TO_PTR(value);
|
|
}
|
|
return ndarray_get_slice(self, index, values);
|
|
}
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
#endif
|
|
|
|
// itarray iterator
|
|
mp_obj_t ndarray_getiter(mp_obj_t o_in, mp_obj_iter_buf_t *iter_buf) {
|
|
return ndarray_new_ndarray_iterator(o_in, 0, iter_buf);
|
|
}
|
|
|
|
typedef struct _mp_obj_ndarray_it_t {
|
|
mp_obj_base_t base;
|
|
mp_fun_1_t iternext;
|
|
mp_obj_t ndarray;
|
|
size_t cur;
|
|
} mp_obj_ndarray_it_t;
|
|
|
|
mp_obj_t ndarray_iternext(mp_obj_t self_in) {
|
|
mp_obj_ndarray_it_t *self = MP_OBJ_TO_PTR(self_in);
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(self->ndarray);
|
|
size_t iter_end = ndarray->shape[0];
|
|
if(self->cur < iter_end) {
|
|
if(ndarray->ndim == 1) { // we have a linear array
|
|
// read the current value
|
|
self->cur++;
|
|
return mp_binary_get_val_array(ndarray->dtype, ndarray->array, self->cur-1);
|
|
} else { // we have a tensor, return the reduced view
|
|
size_t offset = self->cur * ndarray->strides[0];
|
|
self->cur++;
|
|
ndarray_obj_t *value = ndarray_new_view(ndarray, ndarray->ndim-1, ndarray->shape+1, ndarray->strides+1, offset);
|
|
return MP_OBJ_FROM_PTR(value);
|
|
}
|
|
} else {
|
|
return MP_OBJ_STOP_ITERATION;
|
|
}
|
|
}
|
|
|
|
mp_obj_t ndarray_new_ndarray_iterator(mp_obj_t ndarray, size_t cur, mp_obj_iter_buf_t *iter_buf) {
|
|
assert(sizeof(mp_obj_ndarray_it_t) <= sizeof(mp_obj_iter_buf_t));
|
|
mp_obj_ndarray_it_t *o = (mp_obj_ndarray_it_t*)iter_buf;
|
|
o->base.type = &mp_type_polymorph_iter;
|
|
o->iternext = ndarray_iternext;
|
|
o->ndarray = ndarray;
|
|
o->cur = cur;
|
|
return MP_OBJ_FROM_PTR(o);
|
|
}
|
|
|
|
mp_obj_t ndarray_shape(mp_obj_t self_in) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_obj_t *items = m_new(mp_obj_t, self->ndim);
|
|
for(uint8_t i=0; i < self->ndim; i++) {
|
|
items[i] = mp_obj_new_int(self->shape[i]);
|
|
}
|
|
mp_obj_t tuple = mp_obj_new_tuple(self->ndim, items);
|
|
m_del(mp_obj_t, items, self->ndim);
|
|
return tuple;
|
|
}
|
|
|
|
mp_obj_t ndarray_strides(mp_obj_t self_in) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_obj_t *items = m_new(mp_obj_t, self->ndim);
|
|
for(int8_t i=0; i < self->ndim; i++) {
|
|
items[i] = mp_obj_new_int(self->strides[ULAB_MAX_DIMS - self->ndim + i]);
|
|
}
|
|
mp_obj_t tuple = mp_obj_new_tuple(self->ndim, items);
|
|
m_del(mp_obj_t, items, self->ndim);
|
|
return tuple;
|
|
}
|
|
|
|
mp_obj_t ndarray_size(mp_obj_t self_in) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return mp_obj_new_int(self->len);
|
|
}
|
|
|
|
mp_obj_t ndarray_itemsize(mp_obj_t self_in) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return MP_OBJ_NEW_SMALL_INT(self->itemsize);
|
|
}
|
|
|
|
/*
|
|
mp_obj_t ndarray_flatten(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_order, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_QSTR(MP_QSTR_C)} },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
mp_obj_t self_copy = ndarray_copy(pos_args[0]);
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(self_copy);
|
|
|
|
GET_STR_DATA_LEN(args[0].u_obj, order, len);
|
|
if((len != 1) || ((memcmp(order, "C", 1) != 0) && (memcmp(order, "F", 1) != 0))) {
|
|
mp_raise_ValueError(translate("flattening order must be either 'C', or 'F'"));
|
|
}
|
|
|
|
// if order == 'C', we simply have to set m, and n, there is nothing else to do
|
|
if(memcmp(order, "F", 1) == 0) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
|
|
uint8_t _sizeof = mp_binary_get_size('@', self->array->typecode, NULL);
|
|
// get the data of self_in: we won't need a temporary buffer for the transposition
|
|
uint8_t *self_array = (uint8_t *)self->array->items;
|
|
uint8_t *array = (uint8_t *)ndarray->array->items;
|
|
size_t i=0;
|
|
for(size_t n=0; n < self->n; n++) {
|
|
for(size_t m=0; m < self->m; m++) {
|
|
memcpy(array+_sizeof*i, self_array+_sizeof*(m*self->n + n), _sizeof);
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
ndarray->n = ndarray->array->len;
|
|
ndarray->m = 1;
|
|
return self_copy;
|
|
}
|
|
*/
|
|
|
|
// Binary operations
|
|
ndarray_obj_t *ndarray_from_mp_obj(mp_obj_t obj) {
|
|
// creates an ndarray from an micropython int or float
|
|
// if the input is an ndarray, it is returned
|
|
ndarray_obj_t *ndarray;
|
|
if(MP_OBJ_IS_INT(obj)) {
|
|
int32_t ivalue = mp_obj_get_int(obj);
|
|
if((ivalue > 0) && (ivalue < 256)) {
|
|
ndarray = ndarray_new_linear_array(1, NDARRAY_UINT8);
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
array[0] = (uint8_t)ivalue;
|
|
} else if((ivalue > 255) && (ivalue < 65535)) {
|
|
ndarray = ndarray_new_linear_array(1, NDARRAY_UINT16);
|
|
uint16_t *array = (uint16_t *)ndarray->array;
|
|
array[0] = (uint16_t)ivalue;
|
|
} else if((ivalue < 0) && (ivalue > -128)) {
|
|
ndarray = ndarray_new_linear_array(1, NDARRAY_INT8);
|
|
int8_t *array = (int8_t *)ndarray->array;
|
|
array[0] = (int8_t)ivalue;
|
|
} else if((ivalue < -127) && (ivalue > -32767)) {
|
|
ndarray = ndarray_new_linear_array(1, NDARRAY_INT16);
|
|
int16_t *array = (int16_t *)ndarray->array;
|
|
array[0] = (int16_t)ivalue;
|
|
} else { // the integer value clearly does not fit the ulab types, so move on to float
|
|
ndarray = ndarray_new_linear_array(1, NDARRAY_FLOAT);
|
|
mp_float_t *array = (mp_float_t *)ndarray->array;
|
|
array[0] = (mp_float_t)ivalue;
|
|
}
|
|
} else if(mp_obj_is_float(obj)) {
|
|
mp_float_t fvalue = mp_obj_get_float(obj);
|
|
ndarray = ndarray_new_linear_array(1, NDARRAY_FLOAT);
|
|
mp_float_t *array = (mp_float_t *)ndarray->array;
|
|
array[0] = (mp_float_t)fvalue;
|
|
} else if(MP_OBJ_IS_TYPE(obj, &ulab_ndarray_type)){
|
|
ndarray = MP_OBJ_TO_PTR(obj);
|
|
} else {
|
|
mp_raise_TypeError(translate("wrong operand type"));
|
|
}
|
|
return ndarray;
|
|
}
|
|
|
|
#if 0
|
|
mp_obj_t ndarray_binary_op(mp_binary_op_t _op, mp_obj_t lhs, mp_obj_t rhs) {
|
|
// if the ndarray stands on the right hand side of the expression, simply swap the operands
|
|
ndarray_obj_t *ol, *or;
|
|
mp_binary_op_t op = _op;
|
|
if((op == MP_BINARY_OP_REVERSE_ADD) || (op == MP_BINARY_OP_REVERSE_MULTIPLY) ||
|
|
(op == MP_BINARY_OP_REVERSE_POWER) || (op == MP_BINARY_OP_REVERSE_SUBTRACT) ||
|
|
(op == MP_BINARY_OP_REVERSE_TRUE_DIVIDE)) {
|
|
ol = ndarray_from_mp_obj(rhs);
|
|
or = ndarray_from_mp_obj(lhs);
|
|
} else {
|
|
ol = ndarray_from_mp_obj(lhs);
|
|
or = ndarray_from_mp_obj(rhs);
|
|
}
|
|
if(op == MP_BINARY_OP_REVERSE_ADD) {
|
|
op = MP_BINARY_OP_ADD;
|
|
} else if(op == MP_BINARY_OP_REVERSE_MULTIPLY) {
|
|
op = MP_BINARY_OP_MULTIPLY;
|
|
} else if(op == MP_BINARY_OP_REVERSE_POWER) {
|
|
op = MP_BINARY_OP_POWER;
|
|
} else if(op == MP_BINARY_OP_REVERSE_SUBTRACT) {
|
|
op = MP_BINARY_OP_SUBTRACT;
|
|
} else if(op == MP_BINARY_OP_REVERSE_TRUE_DIVIDE) {
|
|
op = MP_BINARY_OP_TRUE_DIVIDE;
|
|
}
|
|
// One of the operands is a scalar
|
|
// TODO: conform to numpy with the upcasting
|
|
// TODO: implement in-place operators
|
|
// these are partial broadcasting rules: either the two arrays
|
|
// are of the same shape, or one of them is of length 1
|
|
if(((ol->m != or->m) || (ol->n != or->n))) {
|
|
if((ol->array->len != 1) && (or->array->len != 1)) {
|
|
if(op == MP_BINARY_OP_EQUAL) {
|
|
return mp_const_false;
|
|
} else if(op == MP_BINARY_OP_NOT_EQUAL) {
|
|
return mp_const_true;
|
|
}
|
|
mp_raise_ValueError(translate("operands could not be broadcast together"));
|
|
}
|
|
}
|
|
uint8_t linc = ol->array->len == 1 ? 0 : 1;
|
|
uint8_t rinc = or->array->len == 1 ? 0 : 1;
|
|
// do the partial broadcasting here
|
|
size_t m = MAX(ol->m, or->m);
|
|
size_t n = MAX(ol->n, or->n);
|
|
size_t len = MAX(ol->array->len, or->array->len);
|
|
if((ol->array->len == 0) || (or->array->len == 0)) {
|
|
len = 0;
|
|
}
|
|
switch(op) {
|
|
case MP_BINARY_OP_EQUAL:
|
|
case MP_BINARY_OP_NOT_EQUAL:
|
|
case MP_BINARY_OP_LESS:
|
|
case MP_BINARY_OP_LESS_EQUAL:
|
|
case MP_BINARY_OP_MORE:
|
|
case MP_BINARY_OP_MORE_EQUAL:
|
|
case MP_BINARY_OP_ADD:
|
|
case MP_BINARY_OP_SUBTRACT:
|
|
case MP_BINARY_OP_TRUE_DIVIDE:
|
|
case MP_BINARY_OP_MULTIPLY:
|
|
case MP_BINARY_OP_POWER:
|
|
// TODO: I believe, this part can be made significantly smaller (compiled size)
|
|
// by doing only the typecasting in the large ifs, and moving the loops outside
|
|
// These are the upcasting rules
|
|
// float always becomes float
|
|
// operation on identical types preserves type
|
|
// uint8 + int8 => int16
|
|
// uint8 + int16 => int16
|
|
// uint8 + uint16 => uint16
|
|
// int8 + int16 => int16
|
|
// int8 + uint16 => uint16
|
|
// uint16 + int16 => float
|
|
// The parameters of RUN_BINARY_LOOP are
|
|
// typecode of result, type_out, type_left, type_right, lhs operand, rhs operand, operator
|
|
if(ol->array->typecode == NDARRAY_UINT8) {
|
|
if(or->array->typecode == NDARRAY_UINT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_UINT8, uint8_t, uint8_t, uint8_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_INT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, uint8_t, int8_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_UINT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint8_t, uint16_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_INT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, uint8_t, int16_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_FLOAT) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint8_t, mp_float_t, ol, or, op, m, n, len, linc, rinc);
|
|
}
|
|
} else if(ol->array->typecode == NDARRAY_INT8) {
|
|
if(or->array->typecode == NDARRAY_UINT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int8_t, uint8_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_INT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT8, int8_t, int8_t, int8_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_UINT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int8_t, uint16_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_INT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int8_t, int16_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_FLOAT) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, int8_t, mp_float_t, ol, or, op, m, n, len, linc, rinc);
|
|
}
|
|
} else if(ol->array->typecode == NDARRAY_UINT16) {
|
|
if(or->array->typecode == NDARRAY_UINT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, uint8_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_INT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, int8_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_UINT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, uint16_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_INT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, int16_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_FLOAT) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, mp_float_t, ol, or, op, m, n, len, linc, rinc);
|
|
}
|
|
} else if(ol->array->typecode == NDARRAY_INT16) {
|
|
if(or->array->typecode == NDARRAY_UINT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int16_t, uint8_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_INT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int16_t, int8_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_UINT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, int16_t, uint16_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_INT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int16_t, int16_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_FLOAT) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, mp_float_t, ol, or, op, m, n, len, linc, rinc);
|
|
}
|
|
} else if(ol->array->typecode == NDARRAY_FLOAT) {
|
|
if(or->array->typecode == NDARRAY_UINT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, uint8_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_INT8) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, int8_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_UINT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, uint16_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_INT16) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, int16_t, ol, or, op, m, n, len, linc, rinc);
|
|
} else if(or->array->typecode == NDARRAY_FLOAT) {
|
|
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, mp_float_t, ol, or, op, m, n, len, linc, rinc);
|
|
}
|
|
}
|
|
// this instruction should never be reached, but we have to make the compiler happy
|
|
return MP_OBJ_NULL;
|
|
break;
|
|
default:
|
|
return MP_OBJ_NULL; // op not supported
|
|
break;
|
|
}
|
|
return MP_OBJ_NULL;
|
|
}
|
|
#endif
|
|
|
|
mp_obj_t ndarray_unary_op(mp_unary_op_t op, mp_obj_t self_in) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
uint8_t itemsize = mp_binary_get_size('@', self->dtype, NULL);
|
|
ndarray_obj_t *ndarray = NULL;
|
|
switch (op) {
|
|
case MP_UNARY_OP_LEN:
|
|
if(self->ndim > 1) {
|
|
return mp_obj_new_int(self->ndim);
|
|
} else {
|
|
return mp_obj_new_int(self->len);
|
|
}
|
|
break;
|
|
|
|
case MP_UNARY_OP_INVERT:
|
|
if(self->dtype == NDARRAY_FLOAT) {
|
|
mp_raise_ValueError(translate("operation is not supported for given type"));
|
|
}
|
|
// we can invert the content byte by byte, no need to distinguish between different dtypes
|
|
ndarray = ndarray_copy_view(self); // from this point, this is a dense copy
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
if(ndarray->boolean) {
|
|
for(size_t i=0; i < ndarray->len; i++, array++) *array = *array ^ 0x01;
|
|
} else {
|
|
for(size_t i=0; i < ndarray->len*itemsize; i++, array++) *array ^= 0xFF;
|
|
}
|
|
return MP_OBJ_FROM_PTR(ndarray);
|
|
break;
|
|
|
|
case MP_UNARY_OP_NEGATIVE:
|
|
ndarray = ndarray_copy_view(self); // from this point, this is a dense copy
|
|
if(self->dtype == NDARRAY_UINT8) {
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
|
|
} else if(self->dtype == NDARRAY_INT8) {
|
|
int8_t *array = (int8_t *)ndarray->array;
|
|
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
|
|
} else if(self->dtype == NDARRAY_UINT16) {
|
|
uint16_t *array = (uint16_t *)ndarray->array;
|
|
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
|
|
} else if(self->dtype == NDARRAY_INT16) {
|
|
int16_t *array = (int16_t *)ndarray->array;
|
|
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
|
|
} else {
|
|
mp_float_t *array = (mp_float_t *)ndarray->array;
|
|
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
|
|
}
|
|
return MP_OBJ_FROM_PTR(ndarray);
|
|
break;
|
|
|
|
case MP_UNARY_OP_POSITIVE:
|
|
return MP_OBJ_FROM_PTR(ndarray_copy_view(self));
|
|
|
|
case MP_UNARY_OP_ABS:
|
|
ndarray = ndarray_copy_view(self);
|
|
// if Booleam, NDARRAY_UINT8, or NDARRAY_UINT16, there is nothing to do
|
|
if(self->dtype == NDARRAY_INT8) {
|
|
int8_t *array = (int8_t *)ndarray->array;
|
|
for(size_t i=0; i < self->len; i++, array++) {
|
|
if(*array < 0) *array = -(*array);
|
|
}
|
|
} else if(self->dtype == NDARRAY_INT16) {
|
|
int16_t *array = (int16_t *)ndarray->array;
|
|
for(size_t i=0; i < self->len; i++, array++) {
|
|
if(*array < 0) *array = -(*array);
|
|
}
|
|
} else {
|
|
mp_float_t *array = (mp_float_t *)ndarray->array;
|
|
for(size_t i=0; i < self->len; i++, array++) {
|
|
if(*array < 0) *array = -(*array);
|
|
}
|
|
}
|
|
return MP_OBJ_FROM_PTR(ndarray);
|
|
break;
|
|
default: return MP_OBJ_NULL; // operator not supported
|
|
}
|
|
}
|
|
|
|
mp_obj_t ndarray_transpose(mp_obj_t self_in) {
|
|
// TODO: check, what happens to the offset here, if we have a view
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
size_t *shape = m_new(size_t, self->ndim);
|
|
int32_t *strides = m_new(int32_t, self->ndim);
|
|
for(uint8_t i=0; i < self->ndim; i++) {
|
|
shape[i] = self->shape[self->ndim-1-i];
|
|
strides[i] = self->strides[self->ndim-1-i];
|
|
}
|
|
// TODO: I am not sure ndarray_new_view is OK here...
|
|
// should be deep copy...
|
|
ndarray_obj_t *ndarray = ndarray_new_view(self, self->ndim, shape, strides, 0);
|
|
return MP_OBJ_FROM_PTR(ndarray);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_transpose_obj, ndarray_transpose);
|
|
|
|
mp_obj_t ndarray_reshape(mp_obj_t oin, mp_obj_t _shape) {
|
|
ndarray_obj_t *source = MP_OBJ_TO_PTR(oin);
|
|
if(!MP_OBJ_IS_TYPE(_shape, &mp_type_tuple)) {
|
|
mp_raise_TypeError(translate("shape must be a tuple"));
|
|
}
|
|
|
|
mp_obj_tuple_t *shape = MP_OBJ_TO_PTR(_shape);
|
|
if(shape->len > ULAB_MAX_DIMS) {
|
|
mp_raise_ValueError(translate("maximum number of dimensions is 4"));
|
|
}
|
|
size_t *new_shape = m_new(size_t, ULAB_MAX_DIMS);
|
|
memset(new_shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
|
|
size_t new_length = 1;
|
|
for(uint8_t i=0; i < shape->len; i++) {
|
|
new_shape[ULAB_MAX_DIMS - i - 1] = mp_obj_get_int(shape->items[shape->len - i - 1]);
|
|
new_length *= new_shape[ULAB_MAX_DIMS - i - 1];
|
|
}
|
|
if(source->len != new_length) {
|
|
mp_raise_ValueError(translate("input and output shapes are not compatible"));
|
|
}
|
|
ndarray_obj_t *ndarray;
|
|
if(ndarray_is_dense(source)) {
|
|
// TODO: check if this is what numpy does
|
|
int32_t *new_strides = strides_from_shape(new_shape, source->dtype);
|
|
ndarray = ndarray_new_view(source, shape->len, new_shape, new_strides, 0);
|
|
} else {
|
|
ndarray = ndarray_new_ndarray_from_tuple(shape, source->dtype);
|
|
ndarray_copy_array(source, ndarray);
|
|
}
|
|
return MP_OBJ_FROM_PTR(ndarray);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_2(ndarray_reshape_obj, ndarray_reshape);
|
|
|
|
/*
|
|
mp_obj_t info(ndarray_obj_t *) {
|
|
mp_print_str(MP_PYTHON_PRINTER, " ");
|
|
}
|
|
*/
|
|
|
|
mp_int_t ndarray_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) {
|
|
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
// buffer_p.get_buffer() returns zero for success, while mp_get_buffer returns true for success
|
|
return !mp_get_buffer(self->array, bufinfo, flags);
|
|
}
|