* Move most documentation out of the ulab base module. * float -> _float * ulab.ndarray -> ulab.numpy.ndarray This still does not build unless it is taken together with a modification to CircuitPython that _also_ moves references to ulab.numpy. Because of this, this PR will continue to show red. The suitability of the changes can be gaged by looking at the related CircuitPython PR build or by running locally the build-cp.sh script with the right ref checked out in circuitpython/
1367 lines
55 KiB
C
1367 lines
55 KiB
C
|
|
/*
|
|
* This file is part of the micropython-ulab project,
|
|
*
|
|
* https://github.com/v923z/micropython-ulab
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2019-2021 Zoltán Vörös
|
|
* 2020 Scott Shawcroft for Adafruit Industries
|
|
* 2020 Taku Fukada
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "py/obj.h"
|
|
#include "py/objint.h"
|
|
#include "py/runtime.h"
|
|
#include "py/builtin.h"
|
|
#include "py/misc.h"
|
|
|
|
#include "../ulab.h"
|
|
#include "../ulab_tools.h"
|
|
#include "numerical.h"
|
|
|
|
enum NUMERICAL_FUNCTION_TYPE {
|
|
NUMERICAL_ALL,
|
|
NUMERICAL_ANY,
|
|
NUMERICAL_ARGMAX,
|
|
NUMERICAL_ARGMIN,
|
|
NUMERICAL_MAX,
|
|
NUMERICAL_MEAN,
|
|
NUMERICAL_MIN,
|
|
NUMERICAL_STD,
|
|
NUMERICAL_SUM,
|
|
};
|
|
|
|
//| """Numerical and Statistical functions
|
|
//|
|
|
//| Most of these functions take an "axis" argument, which indicates whether to
|
|
//| operate over the flattened array (None), or a particular axis (integer)."""
|
|
//|
|
|
//| from typing import Dict
|
|
//|
|
|
//| _ArrayLike = Union[ndarray, List[_float], Tuple[_float], range]
|
|
//|
|
|
//| _DType = int
|
|
//| """`ulab.numpy.int8`, `ulab.numpy.uint8`, `ulab.numpy.int16`, `ulab.numpy.uint16`, `ulab.numpy.float` or `ulab.numpy.bool`"""
|
|
//|
|
|
//| _float = float
|
|
//| """Type alias of the bulitin float"""
|
|
//|
|
|
//| _bool = bool
|
|
//| """Type alias of the bulitin bool"""
|
|
//|
|
|
//| int8: _DType
|
|
//| """Type code for signed integers in the range -128 .. 127 inclusive, like the 'b' typecode of `array.array`"""
|
|
//|
|
|
//| int16: _DType
|
|
//| """Type code for signed integers in the range -32768 .. 32767 inclusive, like the 'h' typecode of `array.array`"""
|
|
//|
|
|
//| float: _DType
|
|
//| """Type code for floating point values, like the 'f' typecode of `array.array`"""
|
|
//|
|
|
//| uint8: _DType
|
|
//| """Type code for unsigned integers in the range 0 .. 255 inclusive, like the 'H' typecode of `array.array`"""
|
|
//|
|
|
//| uint16: _DType
|
|
//| """Type code for unsigned integers in the range 0 .. 65535 inclusive, like the 'h' typecode of `array.array`"""
|
|
//|
|
|
//| bool: _DType
|
|
//| """Type code for boolean values"""
|
|
//|
|
|
|
|
static void numerical_reduce_axes(ndarray_obj_t *ndarray, int8_t axis, size_t *shape, int32_t *strides) {
|
|
// removes the values corresponding to a single axis from the shape and strides array
|
|
uint8_t index = ULAB_MAX_DIMS - ndarray->ndim + axis;
|
|
if((ndarray->ndim == 1) && (axis == 0)) {
|
|
index = 0;
|
|
shape[ULAB_MAX_DIMS - 1] = 1;
|
|
return;
|
|
}
|
|
for(uint8_t i = ULAB_MAX_DIMS - 1; i > 0; i--) {
|
|
if(i > index) {
|
|
shape[i] = ndarray->shape[i];
|
|
strides[i] = ndarray->strides[i];
|
|
} else {
|
|
shape[i] = ndarray->shape[i-1];
|
|
strides[i] = ndarray->strides[i-1];
|
|
}
|
|
}
|
|
}
|
|
|
|
#if ULAB_NUMPY_HAS_ALL | ULAB_NUMPY_HAS_ANY
|
|
static mp_obj_t numerical_all_any(mp_obj_t oin, mp_obj_t axis, uint8_t optype) {
|
|
bool anytype = optype == NUMERICAL_ALL ? 1 : 0;
|
|
if(mp_obj_is_type(oin, &ulab_ndarray_type)) {
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
if(ndarray->len == 0) { // return immediately with empty arrays
|
|
if(optype == NUMERICAL_ALL) {
|
|
return mp_const_true;
|
|
} else {
|
|
return mp_const_false;
|
|
}
|
|
}
|
|
// always get a float, so that we don't have to resolve the dtype later
|
|
mp_float_t (*func)(void *) = ndarray_get_float_function(ndarray->dtype);
|
|
ndarray_obj_t *results = NULL;
|
|
uint8_t *rarray = NULL;
|
|
shape_strides _shape_strides = tools_reduce_axes(ndarray, axis);
|
|
if(axis != mp_const_none) {
|
|
results = ndarray_new_dense_ndarray(_shape_strides.ndim, _shape_strides.shape, NDARRAY_BOOL);
|
|
rarray = results->array;
|
|
if(optype == NUMERICAL_ALL) {
|
|
memset(rarray, 1, results->len);
|
|
}
|
|
}
|
|
|
|
#if ULAB_MAX_DIMS > 3
|
|
size_t i = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
size_t j = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 1
|
|
size_t k = 0;
|
|
do {
|
|
#endif
|
|
size_t l = 0;
|
|
if(axis == mp_const_none) {
|
|
do {
|
|
mp_float_t value = func(array);
|
|
if((value != MICROPY_FLOAT_CONST(0.0)) & !anytype) {
|
|
// optype = NUMERICAL_ANY
|
|
return mp_const_true;
|
|
} else if((value == MICROPY_FLOAT_CONST(0.0)) & anytype) {
|
|
// optype == NUMERICAL_ALL
|
|
return mp_const_false;
|
|
}
|
|
array += _shape_strides.strides[0];
|
|
l++;
|
|
} while(l < _shape_strides.shape[0]);
|
|
} else { // a scalar axis keyword was supplied
|
|
do {
|
|
mp_float_t value = func(array);
|
|
if((value != MICROPY_FLOAT_CONST(0.0)) & !anytype) {
|
|
// optype == NUMERICAL_ANY
|
|
*rarray = 1;
|
|
// since we are breaking out of the loop, move the pointer forward
|
|
array += _shape_strides.strides[0] * (_shape_strides.shape[0] - l);
|
|
break;
|
|
} else if((value == MICROPY_FLOAT_CONST(0.0)) & anytype) {
|
|
// optype == NUMERICAL_ALL
|
|
*rarray = 0;
|
|
// since we are breaking out of the loop, move the pointer forward
|
|
array += _shape_strides.strides[0] * (_shape_strides.shape[0] - l);
|
|
break;
|
|
}
|
|
array += _shape_strides.strides[0];
|
|
l++;
|
|
} while(l < _shape_strides.shape[0]);
|
|
}
|
|
#if ULAB_MAX_DIMS > 1
|
|
rarray += _shape_strides.increment;
|
|
array -= _shape_strides.strides[0] * _shape_strides.shape[0];
|
|
array += _shape_strides.strides[ULAB_MAX_DIMS - 1];
|
|
k++;
|
|
} while(k < _shape_strides.shape[ULAB_MAX_DIMS - 1]);
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
array -= _shape_strides.strides[ULAB_MAX_DIMS - 1] * _shape_strides.shape[ULAB_MAX_DIMS - 1];
|
|
array += _shape_strides.strides[ULAB_MAX_DIMS - 2];
|
|
j++;
|
|
} while(j < _shape_strides.shape[ULAB_MAX_DIMS - 2]);
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 3
|
|
array -= _shape_strides.strides[ULAB_MAX_DIMS - 2] * _shape_strides.shape[ULAB_MAX_DIMS - 2];
|
|
array += _shape_strides.strides[ULAB_MAX_DIMS - 3];
|
|
i++;
|
|
} while(i < _shape_strides.shape[ULAB_MAX_DIMS - 3])
|
|
#endif
|
|
return results;
|
|
} else if(mp_obj_is_int(oin) || mp_obj_is_float(oin)) {
|
|
return mp_obj_is_true(oin) ? mp_const_true : mp_const_false;
|
|
} else {
|
|
mp_obj_iter_buf_t iter_buf;
|
|
mp_obj_t item, iterable = mp_getiter(oin, &iter_buf);
|
|
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if(!mp_obj_is_true(item) & !anytype) {
|
|
return mp_const_false;
|
|
} else if(mp_obj_is_true(item) & anytype) {
|
|
return mp_const_true;
|
|
}
|
|
}
|
|
}
|
|
return anytype ? mp_const_true : mp_const_false;
|
|
}
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_SUM | ULAB_NUMPY_HAS_MEAN | ULAB_NUMPY_HAS_STD
|
|
static mp_obj_t numerical_sum_mean_std_iterable(mp_obj_t oin, uint8_t optype, size_t ddof) {
|
|
mp_float_t value = MICROPY_FLOAT_CONST(0.0);
|
|
mp_float_t M = MICROPY_FLOAT_CONST(0.0);
|
|
mp_float_t m = MICROPY_FLOAT_CONST(0.0);
|
|
mp_float_t S = MICROPY_FLOAT_CONST(0.0);
|
|
mp_float_t s = MICROPY_FLOAT_CONST(0.0);
|
|
size_t count = 0;
|
|
mp_obj_iter_buf_t iter_buf;
|
|
mp_obj_t item, iterable = mp_getiter(oin, &iter_buf);
|
|
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
value = mp_obj_get_float(item);
|
|
m = M + (value - M) / (count + 1);
|
|
s = S + (value - M) * (value - m);
|
|
M = m;
|
|
S = s;
|
|
count++;
|
|
}
|
|
if(optype == NUMERICAL_SUM) {
|
|
return mp_obj_new_float(m * count);
|
|
} else if(optype == NUMERICAL_MEAN) {
|
|
return count > 0 ? mp_obj_new_float(m) : mp_obj_new_float(MICROPY_FLOAT_CONST(0.0));
|
|
} else { // this should be the case of the standard deviation
|
|
return count > ddof ? mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(s / (count - ddof))) : mp_obj_new_float(MICROPY_FLOAT_CONST(0.0));
|
|
}
|
|
}
|
|
|
|
static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype, size_t ddof) {
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
shape_strides _shape_strides = tools_reduce_axes(ndarray, axis);
|
|
|
|
if(axis == mp_const_none) {
|
|
// work with the flattened array
|
|
if((optype == NUMERICAL_STD) && (ddof > ndarray->len)) {
|
|
// if there are too many degrees of freedom, there is no point in calculating anything
|
|
return mp_obj_new_float(MICROPY_FLOAT_CONST(0.0));
|
|
}
|
|
mp_float_t (*func)(void *) = ndarray_get_float_function(ndarray->dtype);
|
|
mp_float_t M =MICROPY_FLOAT_CONST(0.0);
|
|
mp_float_t m = MICROPY_FLOAT_CONST(0.0);
|
|
mp_float_t S = MICROPY_FLOAT_CONST(0.0);
|
|
mp_float_t s = MICROPY_FLOAT_CONST(0.0);
|
|
size_t count = 0;
|
|
|
|
#if ULAB_MAX_DIMS > 3
|
|
size_t i = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
size_t j = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 1
|
|
size_t k = 0;
|
|
do {
|
|
#endif
|
|
size_t l = 0;
|
|
do {
|
|
count++;
|
|
mp_float_t value = func(array);
|
|
m = M + (value - M) / (mp_float_t)count;
|
|
if(optype == NUMERICAL_STD) {
|
|
s = S + (value - M) * (value - m);
|
|
S = s;
|
|
}
|
|
M = m;
|
|
array += _shape_strides.strides[ULAB_MAX_DIMS - 1];
|
|
l++;
|
|
} while(l < _shape_strides.shape[ULAB_MAX_DIMS - 1]);
|
|
#if ULAB_MAX_DIMS > 1
|
|
array -= _shape_strides.strides[ULAB_MAX_DIMS - 1] * _shape_strides.shape[ULAB_MAX_DIMS - 1];
|
|
array += _shape_strides.strides[ULAB_MAX_DIMS - 2];
|
|
k++;
|
|
} while(k < _shape_strides.shape[ULAB_MAX_DIMS - 2]);
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
array -= _shape_strides.strides[ULAB_MAX_DIMS - 2] * _shape_strides.shape[ULAB_MAX_DIMS - 2];
|
|
array += _shape_strides.strides[ULAB_MAX_DIMS - 3];
|
|
j++;
|
|
} while(j < _shape_strides.shape[ULAB_MAX_DIMS - 3]);
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 3
|
|
array -= _shape_strides.strides[ULAB_MAX_DIMS - 3] * _shape_strides.shape[ULAB_MAX_DIMS - 3];
|
|
array += _shape_strides.strides[ULAB_MAX_DIMS - 4];
|
|
i++;
|
|
} while(i < _shape_strides.shape[ULAB_MAX_DIMS - 4]);
|
|
#endif
|
|
if(optype == NUMERICAL_SUM) {
|
|
// numpy returns an integer for integer input types
|
|
if(ndarray->dtype == NDARRAY_FLOAT) {
|
|
return mp_obj_new_float(M * ndarray->len);
|
|
} else {
|
|
return mp_obj_new_int((int32_t)(M * ndarray->len));
|
|
}
|
|
} else if(optype == NUMERICAL_MEAN) {
|
|
return mp_obj_new_float(M);
|
|
} else { // this must be the case of the standard deviation
|
|
// we have already made certain that ddof < ndarray->len holds
|
|
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(S / (ndarray->len - ddof)));
|
|
}
|
|
} else {
|
|
ndarray_obj_t *results = NULL;
|
|
uint8_t *rarray = NULL;
|
|
mp_float_t *farray = NULL;
|
|
if(optype == NUMERICAL_SUM) {
|
|
results = ndarray_new_dense_ndarray(_shape_strides.ndim, _shape_strides.shape, ndarray->dtype);
|
|
rarray = (uint8_t *)results->array;
|
|
// TODO: numpy promotes the output to the highest integer type
|
|
if(ndarray->dtype == NDARRAY_UINT8) {
|
|
RUN_SUM(uint8_t, array, results, rarray, _shape_strides);
|
|
} else if(ndarray->dtype == NDARRAY_INT8) {
|
|
RUN_SUM(int8_t, array, results, rarray, _shape_strides);
|
|
} else if(ndarray->dtype == NDARRAY_UINT16) {
|
|
RUN_SUM(uint16_t, array, results, rarray, _shape_strides);
|
|
} else if(ndarray->dtype == NDARRAY_INT16) {
|
|
RUN_SUM(int16_t, array, results, rarray, _shape_strides);
|
|
} else {
|
|
// for floats, the sum might be inaccurate with the naive summation
|
|
// call mean, and multiply with the number of samples
|
|
farray = (mp_float_t *)results->array;
|
|
RUN_MEAN_STD(mp_float_t, array, farray, _shape_strides, MICROPY_FLOAT_CONST(0.0), 0);
|
|
mp_float_t norm = (mp_float_t)_shape_strides.shape[0];
|
|
// re-wind the array here
|
|
farray = (mp_float_t *)results->array;
|
|
for(size_t i=0; i < results->len; i++) {
|
|
*farray++ *= norm;
|
|
}
|
|
}
|
|
} else {
|
|
bool isStd = optype == NUMERICAL_STD ? 1 : 0;
|
|
results = ndarray_new_dense_ndarray(_shape_strides.ndim, _shape_strides.shape, NDARRAY_FLOAT);
|
|
farray = (mp_float_t *)results->array;
|
|
// we can return the 0 array here, if the degrees of freedom is larger than the length of the axis
|
|
if((optype == NUMERICAL_STD) && (_shape_strides.shape[0] <= ddof)) {
|
|
return MP_OBJ_FROM_PTR(results);
|
|
}
|
|
mp_float_t div = optype == NUMERICAL_STD ? (mp_float_t)(_shape_strides.shape[0] - ddof) : MICROPY_FLOAT_CONST(0.0);
|
|
if(ndarray->dtype == NDARRAY_UINT8) {
|
|
RUN_MEAN_STD(uint8_t, array, farray, _shape_strides, div, isStd);
|
|
} else if(ndarray->dtype == NDARRAY_INT8) {
|
|
RUN_MEAN_STD(int8_t, array, farray, _shape_strides, div, isStd);
|
|
} else if(ndarray->dtype == NDARRAY_UINT16) {
|
|
RUN_MEAN_STD(uint16_t, array, farray, _shape_strides, div, isStd);
|
|
} else if(ndarray->dtype == NDARRAY_INT16) {
|
|
RUN_MEAN_STD(int16_t, array, farray, _shape_strides, div, isStd);
|
|
} else {
|
|
RUN_MEAN_STD(mp_float_t, array, farray, _shape_strides, div, isStd);
|
|
}
|
|
}
|
|
if(results->ndim == 0) { // return a scalar here
|
|
return mp_binary_get_val_array(results->dtype, results->array, 0);
|
|
}
|
|
return MP_OBJ_FROM_PTR(results);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_ARGMINMAX
|
|
static mp_obj_t numerical_argmin_argmax_iterable(mp_obj_t oin, uint8_t optype) {
|
|
if(MP_OBJ_SMALL_INT_VALUE(mp_obj_len_maybe(oin)) == 0) {
|
|
mp_raise_ValueError(translate("attempt to get argmin/argmax of an empty sequence"));
|
|
}
|
|
size_t idx = 0, best_idx = 0;
|
|
mp_obj_iter_buf_t iter_buf;
|
|
mp_obj_t iterable = mp_getiter(oin, &iter_buf);
|
|
mp_obj_t item;
|
|
uint8_t op = 0; // argmin, min
|
|
if((optype == NUMERICAL_ARGMAX) || (optype == NUMERICAL_MAX)) op = 1;
|
|
item = mp_iternext(iterable);
|
|
mp_obj_t best_obj = item;
|
|
mp_float_t value, best_value = mp_obj_get_float(item);
|
|
value = best_value;
|
|
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
idx++;
|
|
value = mp_obj_get_float(item);
|
|
if((op == 0) && (value < best_value)) {
|
|
best_obj = item;
|
|
best_idx = idx;
|
|
best_value = value;
|
|
} else if((op == 1) && (value > best_value)) {
|
|
best_obj = item;
|
|
best_idx = idx;
|
|
best_value = value;
|
|
}
|
|
}
|
|
if((optype == NUMERICAL_ARGMIN) || (optype == NUMERICAL_ARGMAX)) {
|
|
return MP_OBJ_NEW_SMALL_INT(best_idx);
|
|
} else {
|
|
return best_obj;
|
|
}
|
|
}
|
|
|
|
static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype) {
|
|
// TODO: treat the flattened array
|
|
if(ndarray->len == 0) {
|
|
mp_raise_ValueError(translate("attempt to get (arg)min/(arg)max of empty sequence"));
|
|
}
|
|
|
|
if(axis == mp_const_none) {
|
|
// work with the flattened array
|
|
mp_float_t (*func)(void *) = ndarray_get_float_function(ndarray->dtype);
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
mp_float_t best_value = func(array);
|
|
mp_float_t value;
|
|
size_t index = 0, best_index = 0;
|
|
|
|
#if ULAB_MAX_DIMS > 3
|
|
size_t i = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
size_t j = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 1
|
|
size_t k = 0;
|
|
do {
|
|
#endif
|
|
size_t l = 0;
|
|
do {
|
|
value = func(array);
|
|
if((optype == NUMERICAL_ARGMAX) || (optype == NUMERICAL_MAX)) {
|
|
if(best_value < value) {
|
|
best_value = value;
|
|
best_index = index;
|
|
}
|
|
} else {
|
|
if(best_value > value) {
|
|
best_value = value;
|
|
best_index = index;
|
|
}
|
|
}
|
|
array += ndarray->strides[ULAB_MAX_DIMS - 1];
|
|
l++;
|
|
index++;
|
|
} while(l < ndarray->shape[ULAB_MAX_DIMS - 1]);
|
|
#if ULAB_MAX_DIMS > 1
|
|
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1];
|
|
array += ndarray->strides[ULAB_MAX_DIMS - 2];
|
|
k++;
|
|
} while(k < ndarray->shape[ULAB_MAX_DIMS - 2]);
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2];
|
|
array += ndarray->strides[ULAB_MAX_DIMS - 3];
|
|
j++;
|
|
} while(j < ndarray->shape[ULAB_MAX_DIMS - 3]);
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 3
|
|
array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3];
|
|
array += ndarray->strides[ULAB_MAX_DIMS - 4];
|
|
i++;
|
|
} while(i < ndarray->shape[ULAB_MAX_DIMS - 4]);
|
|
#endif
|
|
|
|
if((optype == NUMERICAL_ARGMIN) || (optype == NUMERICAL_ARGMAX)) {
|
|
return mp_obj_new_int(best_index);
|
|
} else {
|
|
if(ndarray->dtype == NDARRAY_FLOAT) {
|
|
return mp_obj_new_float(best_value);
|
|
} else {
|
|
return MP_OBJ_NEW_SMALL_INT((int32_t)best_value);
|
|
}
|
|
}
|
|
} else {
|
|
int8_t ax = mp_obj_get_int(axis);
|
|
if(ax < 0) ax += ndarray->ndim;
|
|
if((ax < 0) || (ax > ndarray->ndim - 1)) {
|
|
mp_raise_ValueError(translate("axis is out of bounds"));
|
|
}
|
|
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
|
|
memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
|
|
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
|
|
memset(strides, 0, sizeof(uint32_t)*ULAB_MAX_DIMS);
|
|
numerical_reduce_axes(ndarray, ax, shape, strides);
|
|
uint8_t index = ULAB_MAX_DIMS - ndarray->ndim + ax;
|
|
|
|
ndarray_obj_t *results = NULL;
|
|
|
|
if((optype == NUMERICAL_ARGMIN) || (optype == NUMERICAL_ARGMAX)) {
|
|
results = ndarray_new_dense_ndarray(MAX(1, ndarray->ndim-1), shape, NDARRAY_INT16);
|
|
} else {
|
|
results = ndarray_new_dense_ndarray(MAX(1, ndarray->ndim-1), shape, ndarray->dtype);
|
|
}
|
|
|
|
uint8_t *rarray = (uint8_t *)results->array;
|
|
|
|
if(ndarray->dtype == NDARRAY_UINT8) {
|
|
RUN_ARGMIN(ndarray, uint8_t, array, results, rarray, shape, strides, index, optype);
|
|
} else if(ndarray->dtype == NDARRAY_INT8) {
|
|
RUN_ARGMIN(ndarray, int8_t, array, results, rarray, shape, strides, index, optype);
|
|
} else if(ndarray->dtype == NDARRAY_UINT16) {
|
|
RUN_ARGMIN(ndarray, uint16_t, array, results, rarray, shape, strides, index, optype);
|
|
} else if(ndarray->dtype == NDARRAY_INT16) {
|
|
RUN_ARGMIN(ndarray, int16_t, array, results, rarray, shape, strides, index, optype);
|
|
} else {
|
|
RUN_ARGMIN(ndarray, mp_float_t, array, results, rarray, shape, strides, index, optype);
|
|
}
|
|
if(results->len == 1) {
|
|
return mp_binary_get_val_array(results->dtype, results->array, 0);
|
|
}
|
|
return MP_OBJ_FROM_PTR(results);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
#endif
|
|
|
|
static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, uint8_t optype) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none} } ,
|
|
{ MP_QSTR_axis, MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
mp_obj_t oin = args[0].u_obj;
|
|
mp_obj_t axis = args[1].u_obj;
|
|
if((axis != mp_const_none) && (!mp_obj_is_int(axis))) {
|
|
mp_raise_TypeError(translate("axis must be None, or an integer"));
|
|
}
|
|
|
|
if((optype == NUMERICAL_ALL) || (optype == NUMERICAL_ANY)) {
|
|
return numerical_all_any(oin, axis, optype);
|
|
}
|
|
if(mp_obj_is_type(oin, &mp_type_tuple) || mp_obj_is_type(oin, &mp_type_list) ||
|
|
mp_obj_is_type(oin, &mp_type_range)) {
|
|
switch(optype) {
|
|
case NUMERICAL_MIN:
|
|
case NUMERICAL_ARGMIN:
|
|
case NUMERICAL_MAX:
|
|
case NUMERICAL_ARGMAX:
|
|
return numerical_argmin_argmax_iterable(oin, optype);
|
|
case NUMERICAL_SUM:
|
|
case NUMERICAL_MEAN:
|
|
return numerical_sum_mean_std_iterable(oin, optype, 0);
|
|
default: // we should never reach this point, but whatever
|
|
return mp_const_none;
|
|
}
|
|
} else if(mp_obj_is_type(oin, &ulab_ndarray_type)) {
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
|
|
switch(optype) {
|
|
case NUMERICAL_MIN:
|
|
case NUMERICAL_MAX:
|
|
case NUMERICAL_ARGMIN:
|
|
case NUMERICAL_ARGMAX:
|
|
return numerical_argmin_argmax_ndarray(ndarray, axis, optype);
|
|
case NUMERICAL_SUM:
|
|
case NUMERICAL_MEAN:
|
|
return numerical_sum_mean_std_ndarray(ndarray, axis, optype, 0);
|
|
default:
|
|
mp_raise_NotImplementedError(translate("operation is not implemented on ndarrays"));
|
|
}
|
|
} else {
|
|
mp_raise_TypeError(translate("input must be tuple, list, range, or ndarray"));
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
|
|
#if ULAB_NUMPY_HAS_SORT | NDARRAY_HAS_SORT
|
|
static mp_obj_t numerical_sort_helper(mp_obj_t oin, mp_obj_t axis, uint8_t inplace) {
|
|
if(!mp_obj_is_type(oin, &ulab_ndarray_type)) {
|
|
mp_raise_TypeError(translate("sort argument must be an ndarray"));
|
|
}
|
|
|
|
ndarray_obj_t *ndarray;
|
|
if(inplace == 1) {
|
|
ndarray = MP_OBJ_TO_PTR(oin);
|
|
} else {
|
|
ndarray = ndarray_copy_view(MP_OBJ_TO_PTR(oin));
|
|
}
|
|
|
|
int8_t ax = 0;
|
|
if(axis == mp_const_none) {
|
|
// flatten the array
|
|
for(uint8_t i=0; i < ULAB_MAX_DIMS - 1; i++) {
|
|
ndarray->shape[i] = 0;
|
|
ndarray->strides[i] = 0;
|
|
}
|
|
ndarray->shape[ULAB_MAX_DIMS - 1] = ndarray->len;
|
|
ndarray->strides[ULAB_MAX_DIMS - 1] = ndarray->itemsize;
|
|
ndarray->ndim = 1;
|
|
} else {
|
|
ax = mp_obj_get_int(axis);
|
|
if(ax < 0) ax += ndarray->ndim;
|
|
if((ax < 0) || (ax > ndarray->ndim - 1)) {
|
|
mp_raise_ValueError(translate("index out of range"));
|
|
}
|
|
}
|
|
|
|
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
|
|
memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
|
|
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
|
|
memset(strides, 0, sizeof(uint32_t)*ULAB_MAX_DIMS);
|
|
numerical_reduce_axes(ndarray, ax, shape, strides);
|
|
ax = ULAB_MAX_DIMS - ndarray->ndim + ax;
|
|
// we work with the typed array, so re-scale the stride
|
|
int32_t increment = ndarray->strides[ax] / ndarray->itemsize;
|
|
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
if((ndarray->dtype == NDARRAY_UINT8) || (ndarray->dtype == NDARRAY_INT8)) {
|
|
HEAPSORT(ndarray, uint8_t, array, shape, strides, ax, increment, ndarray->shape[ax]);
|
|
} else if((ndarray->dtype == NDARRAY_INT16) || (ndarray->dtype == NDARRAY_INT16)) {
|
|
HEAPSORT(ndarray, uint16_t, array, shape, strides, ax, increment, ndarray->shape[ax]);
|
|
} else {
|
|
HEAPSORT(ndarray, mp_float_t, array, shape, strides, ax, increment, ndarray->shape[ax]);
|
|
}
|
|
if(inplace == 1) {
|
|
return mp_const_none;
|
|
} else {
|
|
return MP_OBJ_FROM_PTR(ndarray);
|
|
}
|
|
}
|
|
#endif /* ULAB_NUMERICAL_HAS_SORT | NDARRAY_HAS_SORT */
|
|
|
|
#if ULAB_NUMPY_HAS_ALL
|
|
mp_obj_t numerical_all(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_ALL);
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_all_obj, 1, numerical_all);
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_ANY
|
|
mp_obj_t numerical_any(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_ANY);
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_any_obj, 1, numerical_any);
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_ARGMINMAX
|
|
//| def argmax(array: _ArrayLike, *, axis: Optional[int] = None) -> int:
|
|
//| """Return the index of the maximum element of the 1D array"""
|
|
//| ...
|
|
//|
|
|
|
|
mp_obj_t numerical_argmax(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_ARGMAX);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argmax_obj, 1, numerical_argmax);
|
|
|
|
//| def argmin(array: _ArrayLike, *, axis: Optional[int] = None) -> int:
|
|
//| """Return the index of the minimum element of the 1D array"""
|
|
//| ...
|
|
//|
|
|
|
|
static mp_obj_t numerical_argmin(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_ARGMIN);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argmin_obj, 1, numerical_argmin);
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_ARGSORT
|
|
//| def argsort(array: ulab.numpy.ndarray, *, axis: int = -1) -> ulab.numpy.ndarray:
|
|
//| """Returns an array which gives indices into the input array from least to greatest."""
|
|
//| ...
|
|
//|
|
|
|
|
mp_obj_t numerical_argsort(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
|
|
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
|
|
};
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
|
|
mp_raise_TypeError(translate("argsort argument must be an ndarray"));
|
|
}
|
|
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
|
|
if(args[1].u_obj == mp_const_none) {
|
|
// bail out, though dense arrays could still be sorted
|
|
mp_raise_NotImplementedError(translate("argsort is not implemented for flattened arrays"));
|
|
}
|
|
// Since we are returning an NDARRAY_UINT16 array, bail out,
|
|
// if the axis is longer than what we can hold
|
|
for(uint8_t i=0; i < ULAB_MAX_DIMS; i++) {
|
|
if(ndarray->shape[i] > 65535) {
|
|
mp_raise_ValueError(translate("axis too long"));
|
|
}
|
|
}
|
|
int8_t ax = mp_obj_get_int(args[1].u_obj);
|
|
if(ax < 0) ax += ndarray->ndim;
|
|
if((ax < 0) || (ax > ndarray->ndim - 1)) {
|
|
mp_raise_ValueError(translate("index out of range"));
|
|
}
|
|
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
|
|
memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
|
|
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
|
|
memset(strides, 0, sizeof(uint32_t)*ULAB_MAX_DIMS);
|
|
numerical_reduce_axes(ndarray, ax, shape, strides);
|
|
|
|
// We could return an NDARRAY_UINT8 array, if all lengths are shorter than 256
|
|
ndarray_obj_t *indices = ndarray_new_ndarray(ndarray->ndim, ndarray->shape, NULL, NDARRAY_UINT16);
|
|
int32_t *istrides = m_new(int32_t, ULAB_MAX_DIMS);
|
|
memset(istrides, 0, sizeof(uint32_t)*ULAB_MAX_DIMS);
|
|
numerical_reduce_axes(indices, ax, shape, istrides);
|
|
for(uint8_t i=0; i < ULAB_MAX_DIMS; i++) {
|
|
istrides[i] /= sizeof(uint16_t);
|
|
}
|
|
|
|
ax = ULAB_MAX_DIMS - ndarray->ndim + ax;
|
|
// we work with the typed array, so re-scale the stride
|
|
int32_t increment = ndarray->strides[ax] / ndarray->itemsize;
|
|
uint16_t iincrement = indices->strides[ax] / sizeof(uint16_t);
|
|
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
uint16_t *iarray = (uint16_t *)indices->array;
|
|
|
|
// fill in the index values
|
|
#if ULAB_MAX_DIMS > 3
|
|
size_t j = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
size_t k = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 1
|
|
size_t l = 0;
|
|
do {
|
|
#endif
|
|
uint16_t m = 0;
|
|
do {
|
|
*iarray = m++;
|
|
iarray += iincrement;
|
|
} while(m < indices->shape[ax]);
|
|
#if ULAB_MAX_DIMS > 1
|
|
iarray -= iincrement * indices->shape[ax];
|
|
iarray += istrides[ULAB_MAX_DIMS - 1];
|
|
l++;
|
|
} while(l < shape[ULAB_MAX_DIMS - 1]);
|
|
iarray -= istrides[ULAB_MAX_DIMS - 1] * shape[ULAB_MAX_DIMS - 1];
|
|
iarray += istrides[ULAB_MAX_DIMS - 2];
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
k++;
|
|
} while(k < shape[ULAB_MAX_DIMS - 2]);
|
|
iarray -= istrides[ULAB_MAX_DIMS - 2] * shape[ULAB_MAX_DIMS - 2];
|
|
iarray += istrides[ULAB_MAX_DIMS - 3];
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 3
|
|
j++;
|
|
} while(j < shape[ULAB_MAX_DIMS - 3]);
|
|
#endif
|
|
// reset the array
|
|
iarray = indices->array;
|
|
|
|
if((ndarray->dtype == NDARRAY_UINT8) || (ndarray->dtype == NDARRAY_INT8)) {
|
|
HEAP_ARGSORT(ndarray, uint8_t, array, shape, strides, ax, increment, ndarray->shape[ax], iarray, istrides, iincrement);
|
|
} else if((ndarray->dtype == NDARRAY_UINT16) || (ndarray->dtype == NDARRAY_INT16)) {
|
|
HEAP_ARGSORT(ndarray, uint16_t, array, shape, strides, ax, increment, ndarray->shape[ax], iarray, istrides, iincrement);
|
|
} else {
|
|
HEAP_ARGSORT(ndarray, mp_float_t, array, shape, strides, ax, increment, ndarray->shape[ax], iarray, istrides, iincrement);
|
|
}
|
|
return MP_OBJ_FROM_PTR(indices);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argsort_obj, 1, numerical_argsort);
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_CROSS
|
|
//| def cross(a: ulab.numpy.ndarray, b: ulab.numpy.ndarray) -> ulab.numpy.ndarray:
|
|
//| """Return the cross product of two vectors of length 3"""
|
|
//| ...
|
|
//|
|
|
|
|
static mp_obj_t numerical_cross(mp_obj_t _a, mp_obj_t _b) {
|
|
if (!mp_obj_is_type(_a, &ulab_ndarray_type) || !mp_obj_is_type(_b, &ulab_ndarray_type)) {
|
|
mp_raise_TypeError(translate("arguments must be ndarrays"));
|
|
}
|
|
ndarray_obj_t *a = MP_OBJ_TO_PTR(_a);
|
|
ndarray_obj_t *b = MP_OBJ_TO_PTR(_b);
|
|
if((a->ndim != 1) || (b->ndim != 1) || (a->len != b->len) || (a->len != 3)) {
|
|
mp_raise_ValueError(translate("cross is defined for 1D arrays of length 3"));
|
|
}
|
|
|
|
mp_float_t *results = m_new(mp_float_t, 3);
|
|
results[0] = ndarray_get_float_index(a->array, a->dtype, 1) * ndarray_get_float_index(b->array, b->dtype, 2);
|
|
results[0] -= ndarray_get_float_index(a->array, a->dtype, 2) * ndarray_get_float_index(b->array, b->dtype, 1);
|
|
results[1] = -ndarray_get_float_index(a->array, a->dtype, 0) * ndarray_get_float_index(b->array, b->dtype, 2);
|
|
results[1] += ndarray_get_float_index(a->array, a->dtype, 2) * ndarray_get_float_index(b->array, b->dtype, 0);
|
|
results[2] = ndarray_get_float_index(a->array, a->dtype, 0) * ndarray_get_float_index(b->array, b->dtype, 1);
|
|
results[2] -= ndarray_get_float_index(a->array, a->dtype, 1) * ndarray_get_float_index(b->array, b->dtype, 0);
|
|
|
|
/* The upcasting happens here with the rules
|
|
|
|
- if one of the operarands is a float, the result is always float
|
|
- operation on identical types preserves type
|
|
|
|
uint8 + int8 => int16
|
|
uint8 + int16 => int16
|
|
uint8 + uint16 => uint16
|
|
int8 + int16 => int16
|
|
int8 + uint16 => uint16
|
|
uint16 + int16 => float
|
|
|
|
*/
|
|
|
|
uint8_t dtype = NDARRAY_FLOAT;
|
|
if(a->dtype == b->dtype) {
|
|
dtype = a->dtype;
|
|
} else if(((a->dtype == NDARRAY_UINT8) && (b->dtype == NDARRAY_INT8)) || ((a->dtype == NDARRAY_INT8) && (b->dtype == NDARRAY_UINT8))) {
|
|
dtype = NDARRAY_INT16;
|
|
} else if(((a->dtype == NDARRAY_UINT8) && (b->dtype == NDARRAY_INT16)) || ((a->dtype == NDARRAY_INT16) && (b->dtype == NDARRAY_UINT8))) {
|
|
dtype = NDARRAY_INT16;
|
|
} else if(((a->dtype == NDARRAY_UINT8) && (b->dtype == NDARRAY_UINT16)) || ((a->dtype == NDARRAY_UINT16) && (b->dtype == NDARRAY_UINT8))) {
|
|
dtype = NDARRAY_UINT16;
|
|
} else if(((a->dtype == NDARRAY_INT8) && (b->dtype == NDARRAY_INT16)) || ((a->dtype == NDARRAY_INT16) && (b->dtype == NDARRAY_INT8))) {
|
|
dtype = NDARRAY_INT16;
|
|
} else if(((a->dtype == NDARRAY_INT8) && (b->dtype == NDARRAY_UINT16)) || ((a->dtype == NDARRAY_UINT16) && (b->dtype == NDARRAY_INT8))) {
|
|
dtype = NDARRAY_UINT16;
|
|
}
|
|
|
|
ndarray_obj_t *ndarray = ndarray_new_linear_array(3, dtype);
|
|
if(dtype == NDARRAY_UINT8) {
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
for(uint8_t i=0; i < 3; i++) array[i] = (uint8_t)results[i];
|
|
} else if(dtype == NDARRAY_INT8) {
|
|
int8_t *array = (int8_t *)ndarray->array;
|
|
for(uint8_t i=0; i < 3; i++) array[i] = (int8_t)results[i];
|
|
} else if(dtype == NDARRAY_UINT16) {
|
|
uint16_t *array = (uint16_t *)ndarray->array;
|
|
for(uint8_t i=0; i < 3; i++) array[i] = (uint16_t)results[i];
|
|
} else if(dtype == NDARRAY_INT16) {
|
|
int16_t *array = (int16_t *)ndarray->array;
|
|
for(uint8_t i=0; i < 3; i++) array[i] = (int16_t)results[i];
|
|
} else {
|
|
mp_float_t *array = (mp_float_t *)ndarray->array;
|
|
for(uint8_t i=0; i < 3; i++) array[i] = results[i];
|
|
}
|
|
m_del(mp_float_t, results, 3);
|
|
return MP_OBJ_FROM_PTR(ndarray);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_2(numerical_cross_obj, numerical_cross);
|
|
|
|
#endif /* ULAB_NUMERICAL_HAS_CROSS */
|
|
|
|
#if ULAB_NUMPY_HAS_DIFF
|
|
//| def diff(array: ulab.numpy.ndarray, *, n: int = 1, axis: int = -1) -> ulab.numpy.ndarray:
|
|
//| """Return the numerical derivative of successive elements of the array, as
|
|
//| an array. axis=None is not supported."""
|
|
//| ...
|
|
//|
|
|
|
|
mp_obj_t numerical_diff(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
|
|
{ MP_QSTR_n, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1 } },
|
|
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1 } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
|
|
mp_raise_TypeError(translate("diff argument must be an ndarray"));
|
|
}
|
|
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
|
|
int8_t ax = args[2].u_int;
|
|
if(ax < 0) ax += ndarray->ndim;
|
|
|
|
if((ax < 0) || (ax > ndarray->ndim - 1)) {
|
|
mp_raise_ValueError(translate("index out of range"));
|
|
}
|
|
|
|
if((args[1].u_int < 0) || (args[1].u_int > 9)) {
|
|
mp_raise_ValueError(translate("differentiation order out of range"));
|
|
}
|
|
uint8_t N = (uint8_t)args[1].u_int;
|
|
uint8_t index = ULAB_MAX_DIMS - ndarray->ndim + ax;
|
|
if(N > ndarray->shape[index]) {
|
|
mp_raise_ValueError(translate("differentiation order out of range"));
|
|
}
|
|
|
|
int8_t *stencil = m_new(int8_t, N+1);
|
|
stencil[0] = 1;
|
|
for(uint8_t i=1; i < N+1; i++) {
|
|
stencil[i] = -stencil[i-1]*(N-i+1)/i;
|
|
}
|
|
|
|
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
|
|
memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
|
|
for(uint8_t i=0; i < ULAB_MAX_DIMS; i++) {
|
|
shape[i] = ndarray->shape[i];
|
|
if(i == index) {
|
|
shape[i] -= N;
|
|
}
|
|
}
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndarray->ndim, shape, ndarray->dtype);
|
|
uint8_t *rarray = (uint8_t *)results->array;
|
|
|
|
memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
|
|
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
|
|
memset(strides, 0, sizeof(int32_t)*ULAB_MAX_DIMS);
|
|
numerical_reduce_axes(ndarray, ax, shape, strides);
|
|
|
|
if(ndarray->dtype == NDARRAY_UINT8) {
|
|
RUN_DIFF(ndarray, uint8_t, array, results, rarray, shape, strides, index, stencil, N);
|
|
} else if(ndarray->dtype == NDARRAY_INT8) {
|
|
RUN_DIFF(ndarray, int8_t, array, results, rarray, shape, strides, index, stencil, N);
|
|
} else if(ndarray->dtype == NDARRAY_UINT16) {
|
|
RUN_DIFF(ndarray, uint16_t, array, results, rarray, shape, strides, index, stencil, N);
|
|
} else if(ndarray->dtype == NDARRAY_INT16) {
|
|
RUN_DIFF(ndarray, int16_t, array, results, rarray, shape, strides, index, stencil, N);
|
|
} else {
|
|
RUN_DIFF(ndarray, mp_float_t, array, results, rarray, shape, strides, index, stencil, N);
|
|
}
|
|
m_del(int8_t, stencil, N+1);
|
|
m_del(size_t, shape, ULAB_MAX_DIMS);
|
|
m_del(int32_t, strides, ULAB_MAX_DIMS);
|
|
return MP_OBJ_FROM_PTR(results);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_diff_obj, 1, numerical_diff);
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_FLIP
|
|
//| def flip(array: ulab.numpy.ndarray, *, axis: Optional[int] = None) -> ulab.numpy.ndarray:
|
|
//| """Returns a new array that reverses the order of the elements along the
|
|
//| given axis, or along all axes if axis is None."""
|
|
//| ...
|
|
//|
|
|
|
|
mp_obj_t numerical_flip(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
|
|
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
|
|
mp_raise_TypeError(translate("flip argument must be an ndarray"));
|
|
}
|
|
|
|
ndarray_obj_t *results = NULL;
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
|
|
if(args[1].u_obj == mp_const_none) { // flip the flattened array
|
|
results = ndarray_new_linear_array(ndarray->len, ndarray->dtype);
|
|
ndarray_copy_array(ndarray, results);
|
|
uint8_t *rarray = (uint8_t *)results->array;
|
|
rarray += (results->len - 1) * results->itemsize;
|
|
results->array = rarray;
|
|
results->strides[ULAB_MAX_DIMS - 1] = -results->strides[ULAB_MAX_DIMS - 1];
|
|
} else if(mp_obj_is_int(args[1].u_obj)){
|
|
int8_t ax = mp_obj_get_int(args[1].u_obj);
|
|
if(ax < 0) ax += ndarray->ndim;
|
|
if((ax < 0) || (ax > ndarray->ndim - 1)) {
|
|
mp_raise_ValueError(translate("index out of range"));
|
|
}
|
|
ax = ULAB_MAX_DIMS - ndarray->ndim + ax;
|
|
int32_t offset = (ndarray->shape[ax] - 1) * ndarray->strides[ax];
|
|
results = ndarray_new_view(ndarray, ndarray->ndim, ndarray->shape, ndarray->strides, offset);
|
|
results->strides[ax] = -results->strides[ax];
|
|
} else {
|
|
mp_raise_TypeError(translate("wrong axis index"));
|
|
}
|
|
return results;
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_flip_obj, 1, numerical_flip);
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_MINMAX
|
|
//| def max(array: _ArrayLike, *, axis: Optional[int] = None) -> _float:
|
|
//| """Return the maximum element of the 1D array"""
|
|
//| ...
|
|
//|
|
|
|
|
mp_obj_t numerical_max(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_MAX);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_max_obj, 1, numerical_max);
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_MEAN
|
|
//| def mean(array: _ArrayLike, *, axis: Optional[int] = None) -> _float:
|
|
//| """Return the mean element of the 1D array, as a number if axis is None, otherwise as an array."""
|
|
//| ...
|
|
//|
|
|
|
|
mp_obj_t numerical_mean(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_MEAN);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_mean_obj, 1, numerical_mean);
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_MEDIAN
|
|
//| def median(array: ulab.numpy.ndarray, *, axis: int = -1) -> ulab.numpy.ndarray:
|
|
//| """Find the median value in an array along the given axis, or along all axes if axis is None."""
|
|
//| ...
|
|
//|
|
|
|
|
mp_obj_t numerical_median(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
|
|
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
|
|
mp_raise_TypeError(translate("median argument must be an ndarray"));
|
|
}
|
|
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
|
|
if(ndarray->len == 0) {
|
|
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(nan)(""));
|
|
}
|
|
|
|
ndarray = numerical_sort_helper(args[0].u_obj, args[1].u_obj, 0);
|
|
|
|
if((args[1].u_obj == mp_const_none) || (ndarray->ndim == 1)) {
|
|
// at this point, the array holding the sorted values should be flat
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
size_t len = ndarray->len;
|
|
array += (len >> 1) * ndarray->itemsize;
|
|
mp_float_t median = ndarray_get_float_value(array, ndarray->dtype);
|
|
if(!(len & 0x01)) { // len is an even number
|
|
array -= ndarray->itemsize;
|
|
median += ndarray_get_float_value(array, ndarray->dtype);
|
|
median *= MICROPY_FLOAT_CONST(0.5);
|
|
}
|
|
return mp_obj_new_float(median);
|
|
} else {
|
|
int8_t ax = mp_obj_get_int(args[1].u_obj);
|
|
if(ax < 0) ax += ndarray->ndim;
|
|
// here we can save the exception, because if the axis is out of range,
|
|
// then numerical_sort_helper has already taken care of the issue
|
|
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
|
|
memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
|
|
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
|
|
memset(strides, 0, sizeof(uint32_t)*ULAB_MAX_DIMS);
|
|
numerical_reduce_axes(ndarray, ax, shape, strides);
|
|
ax = ULAB_MAX_DIMS - ndarray->ndim + ax;
|
|
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndarray->ndim-1, shape, NDARRAY_FLOAT);
|
|
mp_float_t *rarray = (mp_float_t *)results->array;
|
|
|
|
uint8_t *array = (uint8_t *)ndarray->array;
|
|
|
|
size_t len = ndarray->shape[ax];
|
|
|
|
#if ULAB_MAX_DIMS > 3
|
|
size_t i = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
size_t j = 0;
|
|
do {
|
|
#endif
|
|
size_t k = 0;
|
|
do {
|
|
array += ndarray->strides[ax] * (len >> 1);
|
|
mp_float_t median = ndarray_get_float_value(array, ndarray->dtype);
|
|
if(!(len & 0x01)) { // len is an even number
|
|
array -= ndarray->strides[ax];
|
|
median += ndarray_get_float_value(array, ndarray->dtype);
|
|
median *= MICROPY_FLOAT_CONST(0.5);
|
|
array += ndarray->strides[ax];
|
|
}
|
|
array -= ndarray->strides[ax] * (len >> 1);
|
|
array += strides[ULAB_MAX_DIMS - 1];
|
|
*rarray = median;
|
|
rarray++;
|
|
k++;
|
|
} while(k < shape[ULAB_MAX_DIMS - 1]);
|
|
#if ULAB_MAX_DIMS > 2
|
|
array -= strides[ULAB_MAX_DIMS - 1] * shape[ULAB_MAX_DIMS - 1];
|
|
array += strides[ULAB_MAX_DIMS - 2];
|
|
j++;
|
|
} while(j < shape[ULAB_MAX_DIMS - 2]);
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 3
|
|
array -= strides[ULAB_MAX_DIMS - 2] * shape[ULAB_MAX_DIMS-2];
|
|
array += strides[ULAB_MAX_DIMS - 3];
|
|
i++;
|
|
} while(i < shape[ULAB_MAX_DIMS - 3]);
|
|
#endif
|
|
|
|
return MP_OBJ_FROM_PTR(results);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_median_obj, 1, numerical_median);
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_MINMAX
|
|
//| def min(array: _ArrayLike, *, axis: Optional[int] = None) -> _float:
|
|
//| """Return the minimum element of the 1D array"""
|
|
//| ...
|
|
//|
|
|
|
|
mp_obj_t numerical_min(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_MIN);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_min_obj, 1, numerical_min);
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_ROLL
|
|
//| def roll(array: ulab.numpy.ndarray, distance: int, *, axis: Optional[int] = None) -> None:
|
|
//| """Shift the content of a vector by the positions given as the second
|
|
//| argument. If the ``axis`` keyword is supplied, the shift is applied to
|
|
//| the given axis. The array is modified in place."""
|
|
//| ...
|
|
//|
|
|
|
|
mp_obj_t numerical_roll(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
|
|
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
|
|
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
|
|
mp_raise_TypeError(translate("roll argument must be an ndarray"));
|
|
}
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj);
|
|
uint8_t *array = ndarray->array;
|
|
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndarray->ndim, ndarray->shape, ndarray->dtype);
|
|
|
|
int32_t shift = mp_obj_get_int(args[1].u_obj);
|
|
int32_t _shift = shift < 0 ? -shift : shift;
|
|
|
|
size_t counter;
|
|
uint8_t *rarray = (uint8_t *)results->array;
|
|
|
|
if(args[2].u_obj == mp_const_none) { // roll the flattened array
|
|
_shift = _shift % results->len;
|
|
if(shift > 0) { // shift to the right
|
|
rarray += _shift * results->itemsize;
|
|
counter = results->len - _shift;
|
|
} else { // shift to the left
|
|
rarray += (results->len - _shift) * results->itemsize;
|
|
counter = _shift;
|
|
}
|
|
#if ULAB_MAX_DIMS > 3
|
|
size_t i = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
size_t j = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 1
|
|
size_t k = 0;
|
|
do {
|
|
#endif
|
|
size_t l = 0;
|
|
do {
|
|
memcpy(rarray, array, ndarray->itemsize);
|
|
rarray += results->itemsize;
|
|
array += ndarray->strides[ULAB_MAX_DIMS - 1];
|
|
l++;
|
|
if(--counter == 0) {
|
|
rarray = results->array;
|
|
}
|
|
} while(l < ndarray->shape[ULAB_MAX_DIMS - 1]);
|
|
#if ULAB_MAX_DIMS > 1
|
|
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1];
|
|
array += ndarray->strides[ULAB_MAX_DIMS - 2];
|
|
k++;
|
|
} while(k < ndarray->shape[ULAB_MAX_DIMS - 2]);
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2];
|
|
array += ndarray->strides[ULAB_MAX_DIMS - 3];
|
|
j++;
|
|
} while(j < ndarray->shape[ULAB_MAX_DIMS - 3]);
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 3
|
|
array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3];
|
|
array += ndarray->strides[ULAB_MAX_DIMS - 4];
|
|
i++;
|
|
} while(i < ndarray->shape[ULAB_MAX_DIMS - 4]);
|
|
#endif
|
|
} else if(mp_obj_is_int(args[2].u_obj)){
|
|
int8_t ax = mp_obj_get_int(args[2].u_obj);
|
|
if(ax < 0) ax += ndarray->ndim;
|
|
if((ax < 0) || (ax > ndarray->ndim - 1)) {
|
|
mp_raise_ValueError(translate("index out of range"));
|
|
}
|
|
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
|
|
memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
|
|
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
|
|
memset(strides, 0, sizeof(int32_t)*ULAB_MAX_DIMS);
|
|
numerical_reduce_axes(ndarray, ax, shape, strides);
|
|
|
|
size_t *rshape = m_new(size_t, ULAB_MAX_DIMS);
|
|
memset(rshape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
|
|
int32_t *rstrides = m_new(int32_t, ULAB_MAX_DIMS);
|
|
memset(rstrides, 0, sizeof(int32_t)*ULAB_MAX_DIMS);
|
|
numerical_reduce_axes(results, ax, rshape, rstrides);
|
|
|
|
ax = ULAB_MAX_DIMS - ndarray->ndim + ax;
|
|
uint8_t *_rarray;
|
|
_shift = _shift % results->shape[ax];
|
|
|
|
#if ULAB_MAX_DIMS > 3
|
|
size_t i = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
size_t j = 0;
|
|
do {
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 1
|
|
size_t k = 0;
|
|
do {
|
|
#endif
|
|
size_t l = 0;
|
|
_rarray = rarray;
|
|
if(shift < 0) {
|
|
rarray += (results->shape[ax] - _shift) * results->strides[ax];
|
|
counter = _shift;
|
|
} else {
|
|
rarray += _shift * results->strides[ax];
|
|
counter = results->shape[ax] - _shift;
|
|
}
|
|
do {
|
|
memcpy(rarray, array, ndarray->itemsize);
|
|
array += ndarray->strides[ax];
|
|
rarray += results->strides[ax];
|
|
if(--counter == 0) {
|
|
rarray = _rarray;
|
|
}
|
|
l++;
|
|
} while(l < ndarray->shape[ax]);
|
|
#if ULAB_MAX_DIMS > 1
|
|
rarray = _rarray;
|
|
rarray += rstrides[ULAB_MAX_DIMS - 1];
|
|
array -= ndarray->strides[ax] * ndarray->shape[ax];
|
|
array += strides[ULAB_MAX_DIMS - 1];
|
|
k++;
|
|
} while(k < shape[ULAB_MAX_DIMS - 1]);
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 2
|
|
rarray -= rstrides[ULAB_MAX_DIMS - 1] * rshape[ULAB_MAX_DIMS-1];
|
|
rarray += rstrides[ULAB_MAX_DIMS - 2];
|
|
array -= strides[ULAB_MAX_DIMS - 1] * shape[ULAB_MAX_DIMS-1];
|
|
array += strides[ULAB_MAX_DIMS - 2];
|
|
j++;
|
|
} while(j < shape[ULAB_MAX_DIMS - 2]);
|
|
#endif
|
|
#if ULAB_MAX_DIMS > 3
|
|
rarray -= rstrides[ULAB_MAX_DIMS - 2] * rshape[ULAB_MAX_DIMS-2];
|
|
rarray += rstrides[ULAB_MAX_DIMS - 3];
|
|
array -= strides[ULAB_MAX_DIMS - 2] * shape[ULAB_MAX_DIMS-2];
|
|
array += strides[ULAB_MAX_DIMS - 3];
|
|
i++;
|
|
} while(i < shape[ULAB_MAX_DIMS - 3]);
|
|
#endif
|
|
} else {
|
|
mp_raise_TypeError(translate("wrong axis index"));
|
|
}
|
|
return results;
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_roll_obj, 2, numerical_roll);
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_SORT
|
|
//| def sort(array: ulab.numpy.ndarray, *, axis: int = -1) -> ulab.numpy.ndarray:
|
|
//| """Sort the array along the given axis, or along all axes if axis is None.
|
|
//| The array is modified in place."""
|
|
//| ...
|
|
//|
|
|
|
|
mp_obj_t numerical_sort(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
|
|
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
return numerical_sort_helper(args[0].u_obj, args[1].u_obj, 0);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sort_obj, 1, numerical_sort);
|
|
#endif
|
|
|
|
#if NDARRAY_HAS_SORT
|
|
// method of an ndarray
|
|
static mp_obj_t numerical_sort_inplace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
|
|
{ MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_int = -1 } },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
return numerical_sort_helper(args[0].u_obj, args[1].u_obj, 1);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sort_inplace_obj, 1, numerical_sort_inplace);
|
|
#endif /* NDARRAY_HAS_SORT */
|
|
|
|
#if ULAB_NUMPY_HAS_STD
|
|
//| def std(array: _ArrayLike, *, axis: Optional[int] = None, ddof: int = 0) -> _float:
|
|
//| """Return the standard deviation of the array, as a number if axis is None, otherwise as an array."""
|
|
//| ...
|
|
//|
|
|
|
|
mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } } ,
|
|
{ MP_QSTR_axis, MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
|
|
{ MP_QSTR_ddof, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
mp_obj_t oin = args[0].u_obj;
|
|
mp_obj_t axis = args[1].u_obj;
|
|
size_t ddof = args[2].u_int;
|
|
if((axis != mp_const_none) && (mp_obj_get_int(axis) != 0) && (mp_obj_get_int(axis) != 1)) {
|
|
// this seems to pass with False, and True...
|
|
mp_raise_ValueError(translate("axis must be None, or an integer"));
|
|
}
|
|
if(mp_obj_is_type(oin, &mp_type_tuple) || mp_obj_is_type(oin, &mp_type_list) || mp_obj_is_type(oin, &mp_type_range)) {
|
|
return numerical_sum_mean_std_iterable(oin, NUMERICAL_STD, ddof);
|
|
} else if(mp_obj_is_type(oin, &ulab_ndarray_type)) {
|
|
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
|
|
return numerical_sum_mean_std_ndarray(ndarray, axis, NUMERICAL_STD, ddof);
|
|
} else {
|
|
mp_raise_TypeError(translate("input must be tuple, list, range, or ndarray"));
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_std_obj, 1, numerical_std);
|
|
#endif
|
|
|
|
#if ULAB_NUMPY_HAS_SUM
|
|
//| def sum(array: _ArrayLike, *, axis: Optional[int] = None) -> Union[_float, int, ulab.numpy.ndarray]:
|
|
//| """Return the sum of the array, as a number if axis is None, otherwise as an array."""
|
|
//| ...
|
|
//|
|
|
|
|
mp_obj_t numerical_sum(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_SUM);
|
|
}
|
|
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(numerical_sum_obj, 1, numerical_sum);
|
|
#endif
|