micropython-ulab/code/ndarray.c
2020-09-25 21:12:01 +02:00

1581 lines
66 KiB
C

/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Zoltán Vörös
*/
#include <unistd.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/runtime.h"
#include "py/binary.h"
#include "py/obj.h"
#include "py/objtuple.h"
#include "ndarray.h"
mp_uint_t ndarray_print_threshold = NDARRAY_PRINT_THRESHOLD;
mp_uint_t ndarray_print_edgeitems = NDARRAY_PRINT_EDGEITEMS;
//| """Manipulate numeric data similar to numpy
//| `ulab` is a numpy-like module for micropython, meant to simplify and
//| speed up common mathematical operations on arrays. The primary goal was to
//| implement a small subset of numpy that might be useful in the context of a
//| microcontroller. This means low-level data processing of linear (array) and
//| two-dimensional (matrix) data.
//| `ulab` is adapted from micropython-ulab, and the original project's
//| documentation can be found at
//| https://micropython-ulab.readthedocs.io/en/latest/
//| `ulab` is modeled after numpy, and aims to be a compatible subset where
//| possible. Numpy's documentation can be found at
//| https://docs.scipy.org/doc/numpy/index.html"""
//|
//| from typing import List
//|
//| _DType = int
//| """`ulab.int8`, `ulab.uint8`, `ulab.int16`, `ulab.uint16`, or `ulab.float`"""
//|
//| _Index = Union[int, slice, List[bool], Tuple[Union[int, slice, List[bool]], Union[int, slice, List[bool]]]]
//| _float = float
//|
//| class array:
//| """1- and 2- dimensional array"""
//|
//| def __init__(
//| self,
//| values: Union[array, Iterable[_float], Iterable[Iterable[_float]]],
//| *,
//| dtype: _DType = float
//| ) -> None:
//| """:param sequence values: Sequence giving the initial content of the array.
//| :param dtype: The type of array values, ``int8``, ``uint8``, ``int16``, ``uint16``, or ``float``
//|
//| The `values` sequence can either be another ~ulab.array, sequence of numbers
//| (in which case a 1-dimensional array is created), or a sequence where each
//| subsequence has the same length (in which case a 2-dimensional array is
//| created).
//| Passing a ~ulab.array and a different dtype can be used to convert an array
//| from one dtype to another.
//| In many cases, it is more convenient to create an array from a function
//| like `zeros` or `linspace`.
//| `ulab.array` implements the buffer protocol, so it can be used in many
//| places an `array.array` can be used."""
//| ...
//|
//| shape: Union[Tuple[int], Tuple[int, int]]
//| """The size of the array, a tuple of length 1 or 2"""
//|
//| size: int
//| """The number of elements in the array"""
//|
//| itemsize: int
//| """The size of a single item in the array"""
//|
//| def flatten(self, *, order: str = "C") -> array:
//| """:param order: Whether to flatten by rows ('C') or columns ('F')
//|
//| Returns a new `ulab.array` object which is always 1 dimensional.
//| If order is 'C' (the default", then the data is ordered in rows;
//| If it is 'F', then the data is ordered in columns. "C" and "F" refer
//| to the typical storage organization of the C and Fortran languages."""
//| ...
//|
//| def reshape(self, shape: Tuple[int, int]) -> array:
//| """Returns an array containing the same data with a new shape."""
//| ...
//|
//| def sort(self, *, axis: Optional[int] = 1) -> None:
//| """:param axis: Whether to sort elements within rows (0), columns (1), or elements (None)"""
//| ...
//|
//| def transpose(self) -> array:
//| """Swap the rows and columns of a 2-dimensional array"""
//| ...
//|
//| def __add__(self, other: Union[array, _float]) -> array:
//| """Adds corresponding elements of the two arrays, or adds a number to all
//| elements of the array. If both arguments are arrays, their sizes must match."""
//| ...
//| def __radd__(self, other: _float) -> array: ...
//|
//| def __sub__(self, other: Union[array, _float]) -> array:
//| """Subtracts corresponding elements of the two arrays, or subtracts a number from all
//| elements of the array. If both arguments are arrays, their sizes must match."""
//| ...
//| def __rsub__(self, other: _float) -> array: ...
//|
//| def __mul__(self, other: Union[array, _float]) -> array:
//| """Multiplies corresponding elements of the two arrays, or multiplies
//| all elements of the array by a number. If both arguments are arrays,
//| their sizes must match."""
//| ...
//| def __rmul__(self, other: _float) -> array: ...
//|
//| def __div__(self, other: Union[array, _float]) -> array:
//| """Multiplies corresponding elements of the two arrays, or divides
//| all elements of the array by a number. If both arguments are arrays,
//| their sizes must match."""
//| ...
//| def __rdiv__(self, other: _float) -> array: ...
//|
//| def __pow__(self, other: Union[array, _float]) -> array:
//| """Computes the power (x**y) of corresponding elements of the the two arrays,
//| or one number and one array. If both arguments are arrays, their sizes
//| must match."""
//| ...
//| def __rpow__(self, other: _float) -> array: ...
//|
//| def __inv__(self) -> array:
//| ...
//| def __neg__(self) -> array:
//| ...
//| def __pos__(self) -> array:
//| ...
//| def __abs__(self) -> array:
//| ...
//| def __len__(self) -> array:
//| ...
//| def __lt__(self, other: Union[array, _float]) -> List[bool]:
//| ...
//| def __le__(self, other: Union[array, _float]) -> List[bool]:
//| ...
//| def __gt__(self, other: Union[array, _float]) -> List[bool]:
//| ...
//| def __ge__(self, other: Union[array, _float]) -> List[bool]:
//| ...
//|
//| def __iter__(self) -> Union[Iterator[array], Iterator[_float]]:
//| ...
//|
//| def __getitem__(self, index: _Index) -> Union[array, _float]:
//| """Retrieve an element of the array."""
//| ...
//|
//| def __setitem__(self, index: _Index, value: Union[array, _float]) -> None:
//| """Set an element of the array."""
//| ...
//|
//| _ArrayLike = Union[array, List[_float], Tuple[_float], range]
//|
//| int8: _DType
//| """Type code for signed integers in the range -128 .. 127 inclusive, like the 'b' typecode of `array.array`"""
//|
//| int16: _DType
//| """Type code for signed integers in the range -32768 .. 32767 inclusive, like the 'h' typecode of `array.array`"""
//|
//| float: _DType
//| """Type code for floating point values, like the 'f' typecode of `array.array`"""
//|
//| uint8: _DType
//| """Type code for unsigned integers in the range 0 .. 255 inclusive, like the 'H' typecode of `array.array`"""
//|
//| uint16: _DType
//| """Type code for unsigned integers in the range 0 .. 65535 inclusive, like the 'h' typecode of `array.array`"""
//|
#ifdef OPENMV
void mp_obj_slice_indices(mp_obj_t self_in, mp_int_t length, mp_bound_slice_t *result) {
mp_obj_slice_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t start, stop, step;
if (self->step == mp_const_none) {
step = 1;
} else {
step = mp_obj_get_int(self->step);
if (step == 0) {
mp_raise_ValueError(translate("slice step can't be zero"));
}
}
if (step > 0) {
// Positive step
if (self->start == mp_const_none) {
start = 0;
} else {
start = mp_obj_get_int(self->start);
if (start < 0) {
start += length;
}
start = MIN(length, MAX(start, 0));
}
if (self->stop == mp_const_none) {
stop = length;
} else {
stop = mp_obj_get_int(self->stop);
if (stop < 0) {
stop += length;
}
stop = MIN(length, MAX(stop, 0));
}
} else {
// Negative step
if (self->start == mp_const_none) {
start = length - 1;
} else {
start = mp_obj_get_int(self->start);
if (start < 0) {
start += length;
}
start = MIN(length - 1, MAX(start, -1));
}
if (self->stop == mp_const_none) {
stop = -1;
} else {
stop = mp_obj_get_int(self->stop);
if (stop < 0) {
stop += length;
}
stop = MIN(length - 1, MAX(stop, -1));
}
}
result->start = start;
result->stop = stop;
result->step = step;
}
#endif
mp_float_t ndarray_get_float_index(void *data, uint8_t typecode, size_t index) {
// Returns a float value from an arbitrary data type
// The value in question is supposed to be located at the head of the pointer
if(typecode == NDARRAY_UINT8) {
return (mp_float_t)((uint8_t *)data)[index];
} else if(typecode == NDARRAY_INT8) {
return (mp_float_t)((int8_t *)data)[index];
} else if(typecode == NDARRAY_UINT16) {
return (mp_float_t)((uint16_t *)data)[index];
} else if(typecode == NDARRAY_INT16) {
return (mp_float_t)((int16_t *)data)[index];
} else {
return (mp_float_t)((mp_float_t *)data)[index];
}
}
mp_float_t ndarray_get_float_value(void *data, uint8_t typecode) {
// Returns a float value from an arbitrary data type
// The value in question is supposed to be located at the head of the pointer
if(typecode == NDARRAY_UINT8) {
return *(mp_float_t *)((uint8_t *)data);
} else if(typecode == NDARRAY_INT8) {
return *(mp_float_t *)((int8_t *)data);
} else if(typecode == NDARRAY_UINT16) {
return *(mp_float_t *)((uint16_t *)data);
} else if(typecode == NDARRAY_INT16) {
return *(mp_float_t *)((int16_t *)data);
} else {
return *(mp_float_t *)((mp_float_t *)data);
}
}
void ndarray_fill_array_iterable(mp_float_t *array, mp_obj_t iterable) {
mp_obj_iter_buf_t x_buf;
mp_obj_t x_item, x_iterable = mp_getiter(iterable, &x_buf);
while ((x_item = mp_iternext(x_iterable)) != MP_OBJ_STOP_ITERATION) {
*array++ = (mp_float_t)mp_obj_get_float(x_item);
}
}
static int32_t *strides_from_shape(size_t *shape, uint8_t dtype) {
// returns a strides array that corresponds to a dense array with the prescribed shape
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
strides[ULAB_MAX_DIMS-1] = (int32_t)mp_binary_get_size('@', dtype, NULL);
for(uint8_t i=ULAB_MAX_DIMS; i > 1; i--) {
strides[i-2] = strides[i-1] * shape[i-1];
}
return strides;
}
size_t *ndarray_shape_vector(size_t a, size_t b, size_t c, size_t d) {
// returns a ULAB_MAX_DIMS-aware array of shapes
// WARNING: this assumes that the maximum possible dimension is 4!
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
shape[ULAB_MAX_DIMS - 1] = d;
#if ULAB_MAX_DIMS > 1
shape[ULAB_MAX_DIMS - 2] = c;
#endif
#if ULAB_MAX_DIMS > 2
shape[ULAB_MAX_DIMS - 3] = b;
#endif
#if ULAB_MAX_DIMS > 3
shape[ULAB_MAX_DIMS - 4] = a;
#endif
return shape;
}
bool ndarray_object_is_array_like(mp_obj_t o_in) {
if(MP_OBJ_IS_TYPE(o_in, &ulab_ndarray_type) ||
MP_OBJ_IS_TYPE(o_in, &mp_type_tuple) ||
MP_OBJ_IS_TYPE(o_in, &mp_type_list) ||
MP_OBJ_IS_TYPE(o_in, &mp_type_range)) {
return true;
}
return false;
}
void fill_array_iterable(mp_float_t *array, mp_obj_t iterable) {
mp_obj_iter_buf_t x_buf;
mp_obj_t x_item, x_iterable = mp_getiter(iterable, &x_buf);
size_t i=0;
while ((x_item = mp_iternext(x_iterable)) != MP_OBJ_STOP_ITERATION) {
array[i] = (mp_float_t)mp_obj_get_float(x_item);
i++;
}
}
#if ULAB_HAS_PRINTOPTIONS
mp_obj_t ndarray_set_printoptions(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_threshold, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} },
{ MP_QSTR_edgeitems, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(args[0].u_rom_obj != mp_const_none) {
ndarray_print_threshold = mp_obj_get_int(args[0].u_rom_obj);
}
if(args[1].u_rom_obj != mp_const_none) {
ndarray_print_edgeitems = mp_obj_get_int(args[1].u_rom_obj);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(ndarray_set_printoptions_obj, 0, ndarray_set_printoptions);
mp_obj_t ndarray_get_printoptions(void) {
mp_obj_t dict = mp_obj_new_dict(2);
mp_obj_dict_store(MP_OBJ_FROM_PTR(dict), MP_OBJ_NEW_QSTR(MP_QSTR_threshold), mp_obj_new_int(ndarray_print_threshold));
mp_obj_dict_store(MP_OBJ_FROM_PTR(dict), MP_OBJ_NEW_QSTR(MP_QSTR_edgeitems), mp_obj_new_int(ndarray_print_edgeitems));
return dict;
}
MP_DEFINE_CONST_FUN_OBJ_0(ndarray_get_printoptions_obj, ndarray_get_printoptions);
#endif
void ndarray_print_row(const mp_print_t *print, uint8_t dtype, uint8_t *array, size_t stride, size_t n) {
mp_print_str(print, "[");
if((n <= ndarray_print_threshold) || (n <= 2*ndarray_print_edgeitems)) { // if the array is short, print everything
mp_obj_print_helper(print, mp_binary_get_val_array(dtype, array, 0), PRINT_REPR);
array += stride;
for(size_t i=1; i < n; i++, array += stride) {
mp_print_str(print, ", ");
mp_obj_print_helper(print, mp_binary_get_val_array(dtype, array, 0), PRINT_REPR);
}
} else {
mp_obj_print_helper(print, mp_binary_get_val_array(dtype, array, 0), PRINT_REPR);
array += stride;
for(size_t i=1; i < ndarray_print_edgeitems; i++, array += stride) {
mp_print_str(print, ", ");
mp_obj_print_helper(print, mp_binary_get_val_array(dtype, array, 0), PRINT_REPR);
}
mp_printf(print, ", ..., ");
array += stride * (n - 2 * ndarray_print_edgeitems);
mp_obj_print_helper(print, mp_binary_get_val_array(dtype, array, 0), PRINT_REPR);
array += stride;
for(size_t i=1; i < ndarray_print_edgeitems; i++, array += stride) {
mp_print_str(print, ", ");
mp_obj_print_helper(print, mp_binary_get_val_array(dtype, array, 0), PRINT_REPR);
}
}
mp_print_str(print, "]");
}
void ndarray_print_bracket(const mp_print_t *print, const size_t condition, const size_t shape, const char *string) {
if(condition < shape) {
mp_print_str(print, string);
}
}
void ndarray_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
(void)kind;
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint8_t *array = (uint8_t *)self->array;
mp_print_str(print, "array(");
#if ULAB_MAX_DIMS > 3
size_t i=0;
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-4], "[");
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-3], "[");
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-2], "[");
do {
#endif
ndarray_print_row(print, self->dtype, array, self->strides[ULAB_MAX_DIMS-1], self->shape[ULAB_MAX_DIMS-1]);
#if ULAB_MAX_DIMS > 1
array += self->strides[ULAB_MAX_DIMS-2];
k++;
ndarray_print_bracket(print, k, self->shape[ULAB_MAX_DIMS-2], ",\n\t");
} while(k < self->shape[ULAB_MAX_DIMS-2]);
#endif
#if ULAB_MAX_DIMS > 2
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-2], "]");
j++;
ndarray_print_bracket(print, j, self->shape[ULAB_MAX_DIMS-3], ",\n\n\t");
array -= self->strides[ULAB_MAX_DIMS-2] * self->shape[ULAB_MAX_DIMS-2];
array += self->strides[ULAB_MAX_DIMS-3];
} while(j < self->shape[ULAB_MAX_DIMS-3]);
#endif
#if ULAB_MAX_DIMS > 3
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-3], "]");
array -= self->strides[ULAB_MAX_DIMS-3] * self->shape[ULAB_MAX_DIMS-3];
array += self->strides[ULAB_MAX_DIMS-4];
i++;
ndarray_print_bracket(print, i, self->shape[ULAB_MAX_DIMS-4], ",\n\n\t");
} while(i < self->shape[ULAB_MAX_DIMS-4]);
#endif
if(self->ndim > 1) mp_print_str(print, "]");
if(self->boolean) {
mp_print_str(print, ", dtype=bool)");
} else if(self->dtype == NDARRAY_UINT8) {
mp_print_str(print, ", dtype=uint8)");
} else if(self->dtype == NDARRAY_INT8) {
mp_print_str(print, ", dtype=int8)");
} else if(self->dtype == NDARRAY_UINT16) {
mp_print_str(print, ", dtype=uint16)");
} else if(self->dtype == NDARRAY_INT16) {
mp_print_str(print, ", dtype=int16)");
} else if(self->dtype == NDARRAY_FLOAT) {
mp_print_str(print, ", dtype=float)");
}
}
void ndarray_assign_elements(ndarray_obj_t *ndarray, mp_obj_t iterable, uint8_t dtype, size_t *idx) {
// assigns a single row in the matrix
mp_obj_t item;
if(ndarray->boolean) {
uint8_t *array = (uint8_t *)ndarray->array;
array += *idx;
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
// TODO: this might be wrong here: we have to check for the trueness of item
if(mp_obj_is_true(item)) {
*array = 1;
}
array++;
(*idx)++;
}
} else {
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
mp_binary_set_val_array(dtype, ndarray->array, (*idx)++, item);
}
}
}
bool ndarray_is_dense(ndarray_obj_t *ndarray) {
// returns true, if the array is dense, false otherwise
// the array should be dense, if the very first stride can be calculated from shape
int32_t stride = ndarray->itemsize;
for(uint8_t i=ULAB_MAX_DIMS; i > ULAB_MAX_DIMS-ndarray->ndim; i--) {
stride *= ndarray->shape[i];
}
return stride == ndarray->strides[ULAB_MAX_DIMS-ndarray->ndim-1] ? true : false;
}
ndarray_obj_t *ndarray_new_ndarray(uint8_t ndim, size_t *shape, int32_t *strides, uint8_t dtype) {
// Creates the base ndarray with shape, and initialises the values to straight 0s
// the function should work in the general n-dimensional case
ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
ndarray->base.type = &ulab_ndarray_type;
ndarray->dense = 1;
ndarray->dtype = dtype;
ndarray->ndim = ndim;
ndarray->len = 1;
ndarray->itemsize = mp_binary_get_size('@', dtype, NULL);
int32_t *_strides;
if(strides == NULL) {
_strides = strides_from_shape(shape, dtype);
} else {
_strides = strides;
}
for(uint8_t i=ULAB_MAX_DIMS; i > ULAB_MAX_DIMS-ndim; i--) {
ndarray->shape[i-1] = shape[i-1];
ndarray->strides[i-1] = _strides[i-1];
ndarray->len *= shape[i-1];
}
if(dtype == NDARRAY_BOOL) {
dtype = NDARRAY_UINT8;
ndarray->boolean = NDARRAY_BOOLEAN;
} else {
ndarray->boolean = NDARRAY_NUMERIC;
}
uint8_t *array = m_new(byte, ndarray->itemsize * ndarray->len);
// this should set all elements to 0, irrespective of the of the dtype (all bits are zero)
// we could, perhaps, leave this step out, and initialise the array only, when needed
memset(array, 0, ndarray->len * ndarray->itemsize);
ndarray->array = array;
return ndarray;
}
ndarray_obj_t *ndarray_new_dense_ndarray(uint8_t ndim, size_t *shape, uint8_t dtype) {
// creates a dense array, i.e., one, where the strides are derived directly from the shapes
// the function should work in the general n-dimensional case
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
strides[ULAB_MAX_DIMS-1] = mp_binary_get_size('@', dtype, NULL);
for(size_t i=ULAB_MAX_DIMS; i > 1; i--) {
strides[i-2] = strides[i-1] * shape[i-1];
}
return ndarray_new_ndarray(ndim, shape, strides, dtype);
}
ndarray_obj_t *ndarray_new_ndarray_from_tuple(mp_obj_tuple_t *_shape, uint8_t dtype) {
// creates a dense array from a tuple
// the function should work in the general n-dimensional case
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
for(size_t i=0; i < ULAB_MAX_DIMS; i++) {
if(i < ULAB_MAX_DIMS - _shape->len) {
shape[i] = 0;
} else {
shape[i] = mp_obj_get_int(_shape->items[i]);
}
}
return ndarray_new_dense_ndarray(_shape->len, shape, dtype);
}
void ndarray_copy_array(ndarray_obj_t *source, ndarray_obj_t *target) {
// TODO: if the array is dense, the content could be copied in a single pass
// copies the content of source->array into a new dense void pointer
// it is assumed that the dtypes in source and target are the same
// Since the target is a new array, it is supposed to be dense
uint8_t *sarray = (uint8_t *)source->array;
uint8_t *tarray = (uint8_t *)target->array;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(tarray, sarray, source->itemsize);
tarray += target->itemsize;
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
}
ndarray_obj_t *ndarray_new_view(ndarray_obj_t *source, uint8_t ndim, size_t *shape, int32_t *strides, int32_t offset) {
// creates a new view from the input arguments
// the function should work in the n-dimensional case
ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
ndarray->base.type = &ulab_ndarray_type;
ndarray->boolean = source->boolean;
ndarray->dtype = source->dtype;
ndarray->ndim = ndim;
ndarray->itemsize = source->itemsize;
ndarray->len = 1;
for(uint8_t i=ULAB_MAX_DIMS; i > ULAB_MAX_DIMS-ndim; i--) {
ndarray->shape[i-1] = shape[i-1];
ndarray->strides[i-1] = strides[i-1];
ndarray->len *= shape[i-1];
}
uint8_t *pointer = (uint8_t *)source->array;
pointer += offset;
ndarray->array = pointer;
return ndarray;
}
ndarray_obj_t *ndarray_copy_view(ndarray_obj_t *source) {
// creates a one-to-one deep copy of the input ndarray or its view
// the function should work in the general n-dimensional case
// In order to make it dtype-agnostic, we copy the memory content
// instead of reading out the values
int32_t *strides = strides_from_shape(source->shape, source->dtype);
uint8_t dtype = source->dtype;
if(source->boolean) {
dtype = NDARRAY_BOOLEAN;
}
ndarray_obj_t *ndarray = ndarray_new_ndarray(source->ndim, source->shape, strides, dtype);
ndarray_copy_array(source, ndarray);
return ndarray;
}
ndarray_obj_t *ndarray_new_linear_array(size_t len, uint8_t dtype) {
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
shape[ULAB_MAX_DIMS-1] = len;
return ndarray_new_dense_ndarray(1, shape, dtype);
}
STATIC uint8_t ndarray_init_helper(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = NDARRAY_FLOAT } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t dtype = args[1].u_int;
return dtype;
}
STATIC mp_obj_t ndarray_make_new_core(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args, mp_map_t *kw_args) {
uint8_t dtype = ndarray_init_helper(n_args, args, kw_args);
mp_obj_t len_in = mp_obj_len_maybe(args[0]);
size_t len1 = 0, len2 = 0;
if (len_in == MP_OBJ_NULL) {
mp_raise_ValueError(translate("first argument must be an iterable"));
} else {
// len1 is either the number of rows (for matrices), or the number of elements (row vectors)
len1 = MP_OBJ_SMALL_INT_VALUE(len_in);
}
ndarray_obj_t *self;
// TODO: this doesn't allow dtype conversion.
if(MP_OBJ_IS_TYPE(args[0], &ulab_ndarray_type)) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0]);
self = ndarray_copy_view(ndarray);
return MP_OBJ_FROM_PTR(self);
}
// We have to figure out, whether the first element of the iterable is an iterable itself
// Perhaps, there is a more elegant way of handling this
mp_obj_iter_buf_t iter_buf1;
mp_obj_t iterable1 = mp_getiter(args[0], &iter_buf1);
#if ULAB_MAX_DIMS > 1
mp_obj_t item1;
size_t i = 0;
while ((item1 = mp_iternext(iterable1)) != MP_OBJ_STOP_ITERATION) {
len_in = mp_obj_len_maybe(item1);
if(len_in != MP_OBJ_NULL) { // indeed, this seems to be an iterable
// Next, we have to check, whether all elements in the outer loop have the same length
if(i > 0) {
if(len2 != (size_t)MP_OBJ_SMALL_INT_VALUE(len_in)) {
mp_raise_ValueError(translate("iterables are not of the same length"));
}
}
len2 = MP_OBJ_SMALL_INT_VALUE(len_in);
i++;
}
}
#endif
// By this time, it should be established, what the shape is, so we can now create the array
if(len2 == 0) {
self = ndarray_new_linear_array(len1, dtype);
}
#if ULAB_MAX_DIMS > 1
else {
size_t shape[2] = {len1, len2};
self = ndarray_new_dense_ndarray(2, shape, dtype);
}
#endif
size_t idx = 0;
iterable1 = mp_getiter(args[0], &iter_buf1);
if(len2 == 0) { // the first argument is a single iterable
ndarray_assign_elements(self, iterable1, dtype, &idx);
}
#if ULAB_MAX_DIMS > 1
else {
mp_obj_iter_buf_t iter_buf2;
mp_obj_t iterable2;
while ((item1 = mp_iternext(iterable1)) != MP_OBJ_STOP_ITERATION) {
iterable2 = mp_getiter(item1, &iter_buf2);
ndarray_assign_elements(self, iterable2, dtype, &idx);
}
}
#endif
return MP_OBJ_FROM_PTR(self);
}
#ifdef CIRCUITPY
mp_obj_t ndarray_make_new(const mp_obj_type_t *type, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
(void) type;
mp_arg_check_num(n_args, kw_args, 1, 2, true);
size_t n_kw = 0;
if (kw_args != 0) {
n_kw = kw_args->used;
}
mp_map_init_fixed_table(kw_args, n_kw, args + n_args);
return ndarray_make_new_core(type, n_args, n_kw, args, kw_args);
}
#else
mp_obj_t ndarray_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
(void) type;
mp_arg_check_num(n_args, n_kw, 1, 2, true);
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
return ndarray_make_new_core(type, n_args, n_kw, args, &kw_args);
}
#endif
static size_t slice_length(mp_bound_slice_t slice) {
ssize_t len, correction = 1;
if(slice.step > 0) correction = -1;
len = (ssize_t)(slice.stop - slice.start + (slice.step + correction)) / slice.step;
if(len < 0) return 0;
return (size_t)len;
}
static mp_bound_slice_t generate_slice(mp_int_t n, mp_obj_t index) {
// micropython seems to have difficulties with negative steps
mp_bound_slice_t slice;
if(MP_OBJ_IS_TYPE(index, &mp_type_slice)) {
mp_obj_slice_indices(index, n, &slice);
} else if(MP_OBJ_IS_INT(index)) {
mp_int_t _index = mp_obj_get_int(index);
if(_index < 0) {
_index += n;
}
if((_index >= n) || (_index < 0)) {
mp_raise_msg(&mp_type_IndexError, translate("index is out of bounds"));
}
slice.start = _index;
slice.stop = _index + 1;
slice.step = 1;
} else {
mp_raise_msg(&mp_type_IndexError, translate("indices must be integers, slices, or Boolean lists"));
}
return slice;
}
ndarray_obj_t *ndarray_view_from_slices(ndarray_obj_t *ndarray, mp_obj_tuple_t *tuple) {
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
memset(strides, 0, sizeof(size_t)*ULAB_MAX_DIMS);
uint8_t ndim = ndarray->ndim;
for(uint8_t i=0; i < ndim; i++) {
// copy from the end
shape[ULAB_MAX_DIMS - 1 - i] = ndarray->shape[ULAB_MAX_DIMS - 1 - i];
strides[ULAB_MAX_DIMS - 1 - i] = ndarray->strides[ULAB_MAX_DIMS - 1 - i];
}
int32_t offset = 0;
for(uint8_t i=0; i < tuple->len; i++) {
mp_bound_slice_t slice = generate_slice(shape[ULAB_MAX_DIMS - ndim + i], tuple->items[i]);
shape[ULAB_MAX_DIMS - ndim + i] = slice_length(slice);
offset += ndarray->strides[ULAB_MAX_DIMS - ndim + i] * (int32_t)slice.start;
strides[ULAB_MAX_DIMS - ndim + i] = (int32_t)slice.step * ndarray->strides[ULAB_MAX_DIMS - ndim + i];
}
return ndarray_new_view(ndarray, ndim, shape, strides, offset);
}
bool ndarray_view_broadcast(ndarray_obj_t *view, ndarray_obj_t *values, int32_t *strides) {
// returns True or False, depending on, whether the `values` array
// can be broadcast to the shape of the `view` array
memset(strides, 0, sizeof(size_t)*ULAB_MAX_DIMS);
for(uint8_t i=ULAB_MAX_DIMS; i > 0; i--) {
if((values->shape[i-1] == view->shape[i-1])) {
strides[i-1] = values->strides[i-1];
} else if(values->shape[i-1] == 1) {
strides[i-1] = 0;
} else {
return false;
}
}
return true;
}
void ndarray_assign_view(ndarray_obj_t *view, ndarray_obj_t *values) {
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
if(!ndarray_view_broadcast(view, values, strides)) {
mp_raise_ValueError(translate("operands could not be broadcast together"));
m_del(int32_t, strides, ULAB_MAX_DIMS);
}
uint8_t *viarray = (uint8_t *)view->array;
uint8_t *vaarray = (uint8_t *)values->array;
if(view->dtype == NDARRAY_UINT8) {
if(values->dtype == NDARRAY_UINT8) {
ASSIGNMENT_LOOP(uint8_t, uint8_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_INT8) {
ASSIGNMENT_LOOP(uint8_t, int8_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_UINT16) {
ASSIGNMENT_LOOP(uint8_t, uint16_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_INT16) {
ASSIGNMENT_LOOP(uint8_t, int16_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_FLOAT) {
ASSIGNMENT_LOOP(uint8_t, mp_float_t, view, viarray, values, vaarray, strides);
}
} else if(view->dtype == NDARRAY_INT8) {
if(values->dtype == NDARRAY_UINT8) {
ASSIGNMENT_LOOP(int8_t, uint8_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_INT8) {
ASSIGNMENT_LOOP(int8_t, int8_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_UINT16) {
ASSIGNMENT_LOOP(int8_t, uint16_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_INT16) {
ASSIGNMENT_LOOP(int8_t, int16_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_FLOAT) {
ASSIGNMENT_LOOP(int8_t, mp_float_t, view, viarray, values, vaarray, strides);
}
} else if(view->dtype == NDARRAY_UINT16) {
if(values->dtype == NDARRAY_UINT8) {
ASSIGNMENT_LOOP(uint16_t, uint8_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_INT8) {
ASSIGNMENT_LOOP(uint16_t, int8_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_UINT16) {
ASSIGNMENT_LOOP(uint16_t, uint16_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_INT16) {
ASSIGNMENT_LOOP(uint16_t, int16_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_FLOAT) {
ASSIGNMENT_LOOP(uint16_t, mp_float_t, view, viarray, values, vaarray, strides);
}
} else if(view->dtype == NDARRAY_INT16) {
if(values->dtype == NDARRAY_UINT8) {
ASSIGNMENT_LOOP(int16_t, uint8_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_INT8) {
ASSIGNMENT_LOOP(int16_t, int8_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_UINT16) {
ASSIGNMENT_LOOP(int16_t, uint16_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_INT16) {
ASSIGNMENT_LOOP(int16_t, int16_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_FLOAT) {
ASSIGNMENT_LOOP(int16_t, mp_float_t, view, viarray, values, vaarray, strides);
}
} else {
if(values->dtype == NDARRAY_UINT8) {
ASSIGNMENT_LOOP(mp_float_t, uint8_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_INT8) {
ASSIGNMENT_LOOP(mp_float_t, int8_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_UINT16) {
ASSIGNMENT_LOOP(mp_float_t, uint16_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_INT16) {
ASSIGNMENT_LOOP(mp_float_t, int16_t, view, viarray, values, vaarray, strides);
} else if(values->dtype == NDARRAY_FLOAT) {
ASSIGNMENT_LOOP(mp_float_t, mp_float_t, view, viarray, values, vaarray, strides);
}
}
}
static mp_obj_t ndarray_get_slice(ndarray_obj_t *ndarray, mp_obj_t index, ndarray_obj_t *values) {
if(MP_OBJ_IS_TYPE(index, &mp_type_tuple) || MP_OBJ_IS_INT(index) || MP_OBJ_IS_TYPE(index, &mp_type_slice)) {
mp_obj_tuple_t *tuple;
if(MP_OBJ_IS_TYPE(index, &mp_type_tuple)) {
tuple = MP_OBJ_TO_PTR(index);
if(tuple->len > ndarray->ndim) {
mp_raise_msg(&mp_type_IndexError, translate("too many indices"));
}
} else {
mp_obj_t *items = m_new(mp_obj_t, 1);
items[0] = index;
tuple = mp_obj_new_tuple(1, items);
}
ndarray_obj_t *view = ndarray_view_from_slices(ndarray, tuple);
if(values == NULL) { // return value(s)
if(view->len == 1) {
return mp_binary_get_val_array(view->dtype, view->array, 0);
} else {
return MP_OBJ_FROM_PTR(view);
}
} else { // assign value(s)
ndarray_assign_view(view, values);
}
}
return mp_const_none;
}
mp_obj_t ndarray_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (value == MP_OBJ_SENTINEL) { // return value(s)
return ndarray_get_slice(self, index, NULL);
} else { // assignment to slices; the value must be an ndarray, or a scalar
ndarray_obj_t *values = ndarray_from_mp_obj(value);
return ndarray_get_slice(self, index, values);
}
return mp_const_none;
}
// itarray iterator
mp_obj_t ndarray_getiter(mp_obj_t o_in, mp_obj_iter_buf_t *iter_buf) {
return ndarray_new_ndarray_iterator(o_in, 0, iter_buf);
}
typedef struct _mp_obj_ndarray_it_t {
mp_obj_base_t base;
mp_fun_1_t iternext;
mp_obj_t ndarray;
size_t cur;
} mp_obj_ndarray_it_t;
mp_obj_t ndarray_iternext(mp_obj_t self_in) {
mp_obj_ndarray_it_t *self = MP_OBJ_TO_PTR(self_in);
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(self->ndarray);
size_t iter_end = ndarray->shape[ULAB_MAX_DIMS-ndarray->ndim];
if(self->cur < iter_end) {
// separating this case out saves 50 bytes for 1D arrays
#if ULAB_MAX_DIMS == 1
int32_t pos = self->cur * ndarray->strides[ULAB_MAX_DIMS - 1] / ndarray->itemsize;
return mp_binary_get_val_array(ndarray->dtype, ndarray->array, pos);
#else
if(ndarray->ndim == 1) { // we have a linear array
int32_t pos = self->cur * ndarray->strides[ULAB_MAX_DIMS - 1] / ndarray->itemsize;
self->cur++;
return mp_binary_get_val_array(ndarray->dtype, ndarray->array, pos);
} else { // we have a tensor, return the reduced view
size_t offset = self->cur * ndarray->strides[ULAB_MAX_DIMS - ndarray->ndim];
self->cur++;
return MP_OBJ_FROM_PTR(ndarray_new_view(ndarray, ndarray->ndim-1, ndarray->shape, ndarray->strides, offset));
}
#endif
} else {
return MP_OBJ_STOP_ITERATION;
}
}
mp_obj_t ndarray_new_ndarray_iterator(mp_obj_t ndarray, size_t cur, mp_obj_iter_buf_t *iter_buf) {
assert(sizeof(mp_obj_ndarray_it_t) <= sizeof(mp_obj_iter_buf_t));
mp_obj_ndarray_it_t *o = (mp_obj_ndarray_it_t*)iter_buf;
o->base.type = &mp_type_polymorph_iter;
o->iternext = ndarray_iternext;
o->ndarray = ndarray;
o->cur = cur;
return MP_OBJ_FROM_PTR(o);
}
#if NDARRAY_HAS_FLATTEN
mp_obj_t ndarray_flatten(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_order, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_QSTR(MP_QSTR_C)} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
ndarray_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
GET_STR_DATA_LEN(args[0].u_obj, order, len);
if((len != 1) || ((memcmp(order, "C", 1) != 0) && (memcmp(order, "F", 1) != 0))) {
mp_raise_ValueError(translate("flattening order must be either 'C', or 'F'"));
}
uint8_t *sarray = (uint8_t *)self->array;
ndarray_obj_t *ndarray = ndarray_new_linear_array(self->len, self->dtype);
uint8_t *array = (uint8_t *)ndarray->array;
if(memcmp(order, "C", 1) == 0) {
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(array, sarray, self->itemsize);
array += ndarray->strides[ULAB_MAX_DIMS - 1];
sarray += self->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < self->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= self->strides[ULAB_MAX_DIMS - 1] * self->shape[ULAB_MAX_DIMS-1];
sarray += self->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < self->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= self->strides[ULAB_MAX_DIMS - 2] * self->shape[ULAB_MAX_DIMS-2];
sarray += self->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < self->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= self->strides[ULAB_MAX_DIMS - 3] * self->shape[ULAB_MAX_DIMS-3];
sarray += self->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < self->shape[ULAB_MAX_DIMS - 4]);
#endif
} else {
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(array, sarray, self->itemsize);
array += ndarray->strides[0];
sarray += self->strides[0];
l++;
} while(l < self->shape[0]);
#if ULAB_MAX_DIMS > 1
sarray -= self->strides[0] * self->shape[0];
sarray += self->strides[1];
k++;
} while(k < self->shape[1]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= self->strides[1] * self->shape[1];
sarray += self->strides[2];
j++;
} while(j < self->shape[2]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= self->strides[2] * self->shape[2];
sarray += self->strides[3];
i++;
} while(i < self->shape[3]);
#endif
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(ndarray_flatten_obj, 1, ndarray_flatten);
#endif
#if NDARRAY_HAS_ITEMSIZE
mp_obj_t ndarray_itemsize(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(self->itemsize);
}
#endif
#if NDARRAY_HAS_SHAPE
mp_obj_t ndarray_shape(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_t *items = m_new(mp_obj_t, self->ndim);
for(uint8_t i=0; i < self->ndim; i++) {
items[i] = mp_obj_new_int(self->shape[i]);
}
mp_obj_t tuple = mp_obj_new_tuple(self->ndim, items);
m_del(mp_obj_t, items, self->ndim);
return tuple;
}
#endif
#if NDARRAY_HAS_SIZE
mp_obj_t ndarray_size(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_int(self->len);
}
#endif
#if NDARRAY_HAS_STRIDES
mp_obj_t ndarray_strides(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_t *items = m_new(mp_obj_t, self->ndim);
for(int8_t i=0; i < self->ndim; i++) {
items[i] = mp_obj_new_int(self->strides[ULAB_MAX_DIMS - self->ndim + i]);
}
mp_obj_t tuple = mp_obj_new_tuple(self->ndim, items);
m_del(mp_obj_t, items, self->ndim);
return tuple;
}
#endif
#if NDARRAY_HAS_TOBYTES
mp_obj_t ndarray_tobytes(mp_obj_t self_in) {
// As opposed to numpy, this function returns a bytearray object with the data pointer (i.e., not a copy)
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
// Piping into a bytearray makes sense for dense arrays only,
// so bail out, if that is not the case
if(!ndarray_is_dense(self)) {
mp_raise_ValueError(translate("tobytes can be invoked for dense arrays only"));
}
return mp_obj_new_bytearray_by_ref(self->len, self->array);
}
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_tobytes_obj, ndarray_tobytes);
#endif
// Binary operations
ndarray_obj_t *ndarray_from_mp_obj(mp_obj_t obj) {
// creates an ndarray from a micropython int or float
// if the input is an ndarray, it is returned
ndarray_obj_t *ndarray;
if(MP_OBJ_IS_INT(obj)) {
int32_t ivalue = mp_obj_get_int(obj);
if((ivalue > 0) && (ivalue < 256)) {
ndarray = ndarray_new_linear_array(1, NDARRAY_UINT8);
uint8_t *array = (uint8_t *)ndarray->array;
array[0] = (uint8_t)ivalue;
} else if((ivalue > 255) && (ivalue < 65535)) {
ndarray = ndarray_new_linear_array(1, NDARRAY_UINT16);
uint16_t *array = (uint16_t *)ndarray->array;
array[0] = (uint16_t)ivalue;
} else if((ivalue < 0) && (ivalue > -128)) {
ndarray = ndarray_new_linear_array(1, NDARRAY_INT8);
int8_t *array = (int8_t *)ndarray->array;
array[0] = (int8_t)ivalue;
} else if((ivalue < -127) && (ivalue > -32767)) {
ndarray = ndarray_new_linear_array(1, NDARRAY_INT16);
int16_t *array = (int16_t *)ndarray->array;
array[0] = (int16_t)ivalue;
} else { // the integer value clearly does not fit the ulab integer types, so move on to float
ndarray = ndarray_new_linear_array(1, NDARRAY_FLOAT);
mp_float_t *array = (mp_float_t *)ndarray->array;
array[0] = (mp_float_t)ivalue;
}
} else if(mp_obj_is_float(obj)) {
mp_float_t fvalue = mp_obj_get_float(obj);
ndarray = ndarray_new_linear_array(1, NDARRAY_FLOAT);
mp_float_t *array = (mp_float_t *)ndarray->array;
array[0] = (mp_float_t)fvalue;
} else if(MP_OBJ_IS_TYPE(obj, &ulab_ndarray_type)){
return obj;
} else {
mp_raise_TypeError(translate("wrong operand type"));
}
return ndarray;
}
bool ndarray_can_broadcast(ndarray_obj_t *lhs, ndarray_obj_t *rhs, uint8_t *ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
// returns True or False, depending on, whether the two arrays can be broadcast together
// numpy's broadcasting rules are as follows:
//
// 1. the two shapes are either equal
// 2. one of the shapes is 1
memset(lstrides, 0, sizeof(size_t)*ULAB_MAX_DIMS);
memset(rstrides, 0, sizeof(size_t)*ULAB_MAX_DIMS);
lstrides[ULAB_MAX_DIMS - 1] = lhs->strides[ULAB_MAX_DIMS - 1];
rstrides[ULAB_MAX_DIMS - 1] = rhs->strides[ULAB_MAX_DIMS - 1];
for(uint8_t i=ULAB_MAX_DIMS; i > 0; i--) {
if((lhs->shape[i-1] == rhs->shape[i-1]) || (lhs->shape[i-1] == 0) || (lhs->shape[i-1] == 1) ||
(rhs->shape[i-1] == 0) || (rhs->shape[i-1] == 1)) {
shape[i-1] = MAX(lhs->shape[i-1], rhs->shape[i-1]);
if(shape[i-1] > 0) (*ndim)++;
if(lhs->shape[i-1] < 2) {
lstrides[i-1] = 0;
} else {
lstrides[i-1] = lhs->strides[i-1];
}
if(rhs->shape[i-1] < 2) {
rstrides[i-1] = 0;
} else {
rstrides[i-1] = rhs->strides[i-1];
}
} else {
return false;
}
}
return true;
}
mp_obj_t ndarray_binary_op(mp_binary_op_t _op, mp_obj_t lobj, mp_obj_t robj) {
// if the ndarray stands on the right hand side of the expression, simply swap the operands
ndarray_obj_t *lhs, *rhs;
mp_binary_op_t op = _op;
if((op == MP_BINARY_OP_REVERSE_ADD) || (op == MP_BINARY_OP_REVERSE_MULTIPLY) ||
(op == MP_BINARY_OP_REVERSE_POWER) || (op == MP_BINARY_OP_REVERSE_SUBTRACT) ||
(op == MP_BINARY_OP_REVERSE_TRUE_DIVIDE)) {
lhs = ndarray_from_mp_obj(robj);
rhs = ndarray_from_mp_obj(lobj);
} else {
lhs = ndarray_from_mp_obj(lobj);
rhs = ndarray_from_mp_obj(robj);
}
if(op == MP_BINARY_OP_REVERSE_ADD) {
op = MP_BINARY_OP_ADD;
} else if(op == MP_BINARY_OP_REVERSE_MULTIPLY) {
op = MP_BINARY_OP_MULTIPLY;
} else if(op == MP_BINARY_OP_REVERSE_POWER) {
op = MP_BINARY_OP_POWER;
} else if(op == MP_BINARY_OP_REVERSE_SUBTRACT) {
op = MP_BINARY_OP_SUBTRACT;
} else if(op == MP_BINARY_OP_REVERSE_TRUE_DIVIDE) {
op = MP_BINARY_OP_TRUE_DIVIDE;
}
// One of the operands is a scalar
// TODO: conform to numpy with the upcasting
// TODO: implement in-place operators
uint8_t ndim = 0;
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
int32_t *lstrides = m_new(int32_t, ULAB_MAX_DIMS);
int32_t *rstrides = m_new(int32_t, ULAB_MAX_DIMS);
if(!ndarray_can_broadcast(lhs, rhs, &ndim, shape, lstrides, rstrides)) {
mp_raise_ValueError(translate("operands could not be broadcast together"));
m_del(size_t, shape, ULAB_MAX_DIMS);
m_del(int32_t, lstrides, ULAB_MAX_DIMS);
m_del(int32_t, rstrides, ULAB_MAX_DIMS);
}
uint8_t *larray = (uint8_t *)lhs->array;
uint8_t *rarray = (uint8_t *)rhs->array;
switch(op) {
case MP_BINARY_OP_LESS:
// here we simply swap the operands
return ndarray_binary_op(MP_BINARY_OP_MORE, rhs, lhs);
break;
case MP_BINARY_OP_LESS_EQUAL:
// here we simply swap the operands
return ndarray_binary_op(MP_BINARY_OP_MORE_EQUAL, rhs, lhs);
break;
// by separating the associative operators, we can save a lot of flash space,
// because the operands can simply be swapped for half of the cases
case MP_BINARY_OP_EQUAL:
case MP_BINARY_OP_NOT_EQUAL:
case MP_BINARY_OP_ADD:
case MP_BINARY_OP_MULTIPLY:
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_UINT8, uint8_t, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT8) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_INT16, int16_t, uint8_t, int8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_UINT16) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_INT16, int16_t, uint8_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_INT8) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_INT8, int8_t, int8_t, int8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_UINT16) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_INT16, int16_t, int8_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_INT16, int16_t, int8_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, int8_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else {
ndarray_binary_op(op, rhs, lhs);
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT16) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else {
ndarray_binary_op(op, rhs, lhs);
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_INT16) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_INT16, int16_t, int16_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else {
ndarray_binary_op(op, rhs, lhs);
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_FLOAT) {
RUN_ASSOC_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else {
ndarray_binary_op(op, rhs, lhs);
}
}
break;
case MP_BINARY_OP_MORE:
case MP_BINARY_OP_MORE_EQUAL:
case MP_BINARY_OP_SUBTRACT:
case MP_BINARY_OP_TRUE_DIVIDE:
// case MP_BINARY_OP_POWER:
// These are the upcasting rules
// float always becomes float
// operation on identical types preserves type
// uint8 + int8 => int16
// uint8 + int16 => int16
// uint8 + uint16 => uint16
// int8 + int16 => int16
// int8 + uint16 => uint16
// uint16 + int16 => float
// The parameters of RUN_BINARY_LOOP are
// typecode of result, type_out, type_left, type_right, lhs operand, rhs operand, operator
if(lhs->dtype == NDARRAY_UINT8) {
if(rhs->dtype == NDARRAY_UINT8) {
RUN_BINARY_LOOP(NDARRAY_UINT8, uint8_t, uint8_t, uint8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT8) {
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, uint8_t, int8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_UINT16) {
RUN_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint8_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, uint8_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint8_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
}
} else if(lhs->dtype == NDARRAY_INT8) {
if(rhs->dtype == NDARRAY_UINT8) {
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int8_t, uint8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT8) {
RUN_BINARY_LOOP(NDARRAY_INT8, int8_t, int8_t, int8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_UINT16) {
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int8_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int8_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, int8_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
}
} else if(lhs->dtype == NDARRAY_UINT16) {
if(rhs->dtype == NDARRAY_UINT8) {
RUN_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, uint8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT8) {
RUN_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, int8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_UINT16) {
RUN_BINARY_LOOP(NDARRAY_UINT16, uint16_t, uint16_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
}
} else if(lhs->dtype == NDARRAY_INT16) {
if(rhs->dtype == NDARRAY_UINT8) {
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int16_t, uint8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT8) {
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int16_t, int8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_UINT16) {
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, int16_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_BINARY_LOOP(NDARRAY_INT16, int16_t, int16_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, uint16_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
}
} else if(lhs->dtype == NDARRAY_FLOAT) {
if(rhs->dtype == NDARRAY_UINT8) {
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, uint8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT8) {
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, int8_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_UINT16) {
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, uint16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_INT16) {
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, int16_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
} else if(rhs->dtype == NDARRAY_FLOAT) {
RUN_BINARY_LOOP(NDARRAY_FLOAT, mp_float_t, mp_float_t, mp_float_t, larray, lstrides, rarray, rstrides, ndim, shape, op);
}
}
return MP_OBJ_NULL;
break;
default:
return MP_OBJ_NULL; // op not supported
break;
}
return MP_OBJ_NULL;
}
mp_obj_t ndarray_unary_op(mp_unary_op_t op, mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint8_t itemsize = mp_binary_get_size('@', self->dtype, NULL);
ndarray_obj_t *ndarray = NULL;
switch (op) {
case MP_UNARY_OP_LEN:
if(self->ndim > 1) {
return mp_obj_new_int(self->ndim);
} else {
return mp_obj_new_int(self->len);
}
break;
case MP_UNARY_OP_INVERT:
if(self->dtype == NDARRAY_FLOAT) {
mp_raise_ValueError(translate("operation is not supported for given type"));
}
// we can invert the content byte by byte, no need to distinguish between different dtypes
ndarray = ndarray_copy_view(self); // from this point, this is a dense copy
uint8_t *array = (uint8_t *)ndarray->array;
if(ndarray->boolean) {
for(size_t i=0; i < ndarray->len; i++, array++) *array = *array ^ 0x01;
} else {
for(size_t i=0; i < ndarray->len*itemsize; i++, array++) *array ^= 0xFF;
}
return MP_OBJ_FROM_PTR(ndarray);
break;
case MP_UNARY_OP_NEGATIVE:
ndarray = ndarray_copy_view(self); // from this point, this is a dense copy
if(self->dtype == NDARRAY_UINT8) {
uint8_t *array = (uint8_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
} else if(self->dtype == NDARRAY_INT8) {
int8_t *array = (int8_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
} else if(self->dtype == NDARRAY_UINT16) {
uint16_t *array = (uint16_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
} else if(self->dtype == NDARRAY_INT16) {
int16_t *array = (int16_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
} else {
mp_float_t *array = (mp_float_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
}
return MP_OBJ_FROM_PTR(ndarray);
break;
case MP_UNARY_OP_POSITIVE:
return MP_OBJ_FROM_PTR(ndarray_copy_view(self));
case MP_UNARY_OP_ABS:
ndarray = ndarray_copy_view(self);
// if Booleam, NDARRAY_UINT8, or NDARRAY_UINT16, there is nothing to do
if(self->dtype == NDARRAY_INT8) {
int8_t *array = (int8_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) {
if(*array < 0) *array = -(*array);
}
} else if(self->dtype == NDARRAY_INT16) {
int16_t *array = (int16_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) {
if(*array < 0) *array = -(*array);
}
} else {
mp_float_t *array = (mp_float_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) {
if(*array < 0) *array = -(*array);
}
}
return MP_OBJ_FROM_PTR(ndarray);
break;
default: return MP_OBJ_NULL; // operator not supported
}
}
#if ULAB_MAX_DIMS > 1
#if NDARRAY_HAS_TRANSPOSE
mp_obj_t ndarray_transpose(mp_obj_t self_in) {
// TODO: check, what happens to the offset here, if we have a view
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
size_t *shape = m_new(size_t, self->ndim);
int32_t *strides = m_new(int32_t, self->ndim);
for(uint8_t i=0; i < self->ndim; i++) {
shape[i] = self->shape[self->ndim-1-i];
strides[i] = self->strides[self->ndim-1-i];
}
// TODO: I am not sure ndarray_new_view is OK here...
// should be deep copy...
ndarray_obj_t *ndarray = ndarray_new_view(self, self->ndim, shape, strides, 0);
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_transpose_obj, ndarray_transpose);
#endif /* NDARRAY_HAS_TRANSPOSE */
#if NDARRAY_HAS_RESHAPE
mp_obj_t ndarray_reshape(mp_obj_t oin, mp_obj_t _shape) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(oin);
if(!MP_OBJ_IS_TYPE(_shape, &mp_type_tuple)) {
mp_raise_TypeError(translate("shape must be a tuple"));
}
mp_obj_tuple_t *shape = MP_OBJ_TO_PTR(_shape);
if(shape->len > ULAB_MAX_DIMS) {
mp_raise_ValueError(translate("maximum number of dimensions is 4"));
}
size_t *new_shape = m_new(size_t, ULAB_MAX_DIMS);
memset(new_shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
size_t new_length = 1;
for(uint8_t i=0; i < shape->len; i++) {
new_shape[ULAB_MAX_DIMS - i - 1] = mp_obj_get_int(shape->items[shape->len - i - 1]);
new_length *= new_shape[ULAB_MAX_DIMS - i - 1];
}
if(source->len != new_length) {
mp_raise_ValueError(translate("input and output shapes are not compatible"));
}
ndarray_obj_t *ndarray;
if(ndarray_is_dense(source)) {
// TODO: check if this is what numpy does
int32_t *new_strides = strides_from_shape(new_shape, source->dtype);
ndarray = ndarray_new_view(source, shape->len, new_shape, new_strides, 0);
} else {
ndarray = ndarray_new_ndarray_from_tuple(shape, source->dtype);
ndarray_copy_array(source, ndarray);
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_2(ndarray_reshape_obj, ndarray_reshape);
#endif /* NDARRAY_HAS_RESHAPE */
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_HAS_NDINFO
mp_obj_t ndarray_info(mp_obj_t obj_in) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(obj_in);
if(!MP_OBJ_IS_TYPE(ndarray, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("function is defined for ndarrays only"));
}
// uint8_t *array = (uint8_t *)ndarray->array;
mp_printf(MP_PYTHON_PRINTER, "class: ndarray\n");
mp_printf(MP_PYTHON_PRINTER, "shape: (");
if(ndarray->ndim == 1) {
mp_printf(MP_PYTHON_PRINTER, "%d,", ndarray->shape[ULAB_MAX_DIMS-1]);
} else {
for(uint8_t i=0; i < ndarray->ndim-1; i++) mp_printf(MP_PYTHON_PRINTER, "%d, ", ndarray->shape[i]);
mp_printf(MP_PYTHON_PRINTER, "%d", ndarray->shape[ULAB_MAX_DIMS-1]);
}
mp_printf(MP_PYTHON_PRINTER, ")\n");
mp_printf(MP_PYTHON_PRINTER, "strides: (");
if(ndarray->ndim == 1) {
mp_printf(MP_PYTHON_PRINTER, "%d,", ndarray->strides[ULAB_MAX_DIMS-1]);
} else {
for(uint8_t i=0; i < ndarray->ndim-1; i++) mp_printf(MP_PYTHON_PRINTER, "%d, ", ndarray->strides[i]);
mp_printf(MP_PYTHON_PRINTER, "%d", ndarray->strides[ULAB_MAX_DIMS-1]);
}
mp_printf(MP_PYTHON_PRINTER, ")\n");
mp_printf(MP_PYTHON_PRINTER, "itemsize: %d\n", ndarray->itemsize);
mp_printf(MP_PYTHON_PRINTER, "data pointer: 0x%p\n", ndarray->array);
mp_printf(MP_PYTHON_PRINTER, "type: ");
if(ndarray->boolean) {
mp_printf(MP_PYTHON_PRINTER, "bool\n");
} else if(ndarray->dtype == NDARRAY_UINT8) {
mp_printf(MP_PYTHON_PRINTER, "uint8\n");
} else if(ndarray->dtype == NDARRAY_INT8) {
mp_printf(MP_PYTHON_PRINTER, "int8\n");
} else if(ndarray->dtype == NDARRAY_UINT16) {
mp_printf(MP_PYTHON_PRINTER, "uint16\n");
} else if(ndarray->dtype == NDARRAY_INT16) {
mp_printf(MP_PYTHON_PRINTER, "int16\n");
} else if(ndarray->dtype == NDARRAY_FLOAT) {
mp_printf(MP_PYTHON_PRINTER, "float\n");
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_info_obj, ndarray_info);
#endif
mp_int_t ndarray_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
// buffer_p.get_buffer() returns zero for success, while mp_get_buffer returns true for success
return !mp_get_buffer(self->array, bufinfo, flags);
}