* implement nonzero for Boolean arrays * remove axtls from build script * extend nonzero to ndarrays of arbitrary dtype, and iterable, fix float tests * temporarily disable circuitpython tests * add nonzero documentation * Added test script for np.nonzero() Co-authored-by: Tejal Ashwini Barnwal <64950661+tejalbarnwal@users.noreply.github.com>
158 lines
3.9 KiB
Text
158 lines
3.9 KiB
Text
Testing np.min:
|
|
1
|
|
1.0
|
|
1
|
|
array([1, 2, 3], dtype=uint8)
|
|
array([1, 4, 7], dtype=uint8)
|
|
235
|
|
array([235, 236, 237, 238, 239], dtype=uint8)
|
|
array([250, 235, 245], dtype=uint8)
|
|
-21
|
|
array([-21, -20, -19, -18, -17], dtype=int8)
|
|
array([-6, -21, -11], dtype=int8)
|
|
235
|
|
array([235, 236, 237, 238, 239], dtype=uint16)
|
|
array([250, 235, 245], dtype=uint16)
|
|
235
|
|
array([235, 236, 237, 238, 239], dtype=int16)
|
|
array([250, 235, 245], dtype=int16)
|
|
253.0
|
|
array([253.0, 254.0, 255.0], dtype=float64)
|
|
array([7.205759403792794e+16, 65533.0, 253.0], dtype=float64)
|
|
Testing np.max:
|
|
1
|
|
1.0
|
|
9
|
|
array([7, 8, 9], dtype=uint8)
|
|
array([3, 6, 9], dtype=uint8)
|
|
254
|
|
array([250, 251, 252, 253, 254], dtype=uint8)
|
|
array([254, 239, 249], dtype=uint8)
|
|
-2
|
|
array([-6, -5, -4, -3, -2], dtype=int8)
|
|
array([-2, -17, -7], dtype=int8)
|
|
254
|
|
array([250, 251, 252, 253, 254], dtype=uint16)
|
|
array([254, 239, 249], dtype=uint16)
|
|
254
|
|
array([250, 251, 252, 253, 254], dtype=int16)
|
|
array([254, 239, 249], dtype=int16)
|
|
7.205759403792794e+16
|
|
array([7.205759403792794e+16, 7.205759403792794e+16, 7.205759403792794e+16], dtype=float64)
|
|
array([7.205759403792794e+16, 65535.0, 255.0], dtype=float64)
|
|
Testing np.argmin:
|
|
0
|
|
0
|
|
0
|
|
array([0, 0, 0], dtype=int16)
|
|
array([0, 0, 0], dtype=int16)
|
|
5
|
|
array([1, 1, 1, 1, 1], dtype=int16)
|
|
array([0, 0, 0], dtype=int16)
|
|
5
|
|
array([1, 1, 1, 1, 1], dtype=int16)
|
|
array([0, 0, 0], dtype=int16)
|
|
5
|
|
array([1, 1, 1, 1, 1], dtype=int16)
|
|
array([0, 0, 0], dtype=int16)
|
|
5
|
|
array([1, 1, 1, 1, 1], dtype=int16)
|
|
array([0, 0, 0], dtype=int16)
|
|
6
|
|
array([2, 2, 2], dtype=int16)
|
|
array([0, 0, 0], dtype=int16)
|
|
Testing np.argmax:
|
|
0
|
|
0
|
|
8
|
|
array([2, 2, 2], dtype=int16)
|
|
array([2, 2, 2], dtype=int16)
|
|
4
|
|
array([0, 0, 0, 0, 0], dtype=int16)
|
|
array([4, 4, 4], dtype=int16)
|
|
4
|
|
array([0, 0, 0, 0, 0], dtype=int16)
|
|
array([4, 4, 4], dtype=int16)
|
|
4
|
|
array([0, 0, 0, 0, 0], dtype=int16)
|
|
array([4, 4, 4], dtype=int16)
|
|
4
|
|
array([0, 0, 0, 0, 0], dtype=int16)
|
|
array([4, 4, 4], dtype=int16)
|
|
0
|
|
array([0, 0, 0], dtype=int16)
|
|
array([0, 2, 2], dtype=int16)
|
|
Testing np.minimum:
|
|
9
|
|
9.0
|
|
array([[252.0, 253.0, 254.0],
|
|
[237.0, 238.0, 239.0],
|
|
[247.0, 248.0, 249.0]], dtype=float64)
|
|
Testing np.maximum:
|
|
array([[7.205759403792794e+16, 7.205759403792794e+16, 7.205759403792794e+16],
|
|
[65533.0, 65534.0, 65535.0],
|
|
[253.0, 254.0, 255.0]], dtype=float64)
|
|
10
|
|
10.0
|
|
array([[7.205759403792794e+16, 7.205759403792794e+16, 7.205759403792794e+16],
|
|
[65533.0, 65534.0, 65535.0],
|
|
[253.0, 254.0, 255.0]], dtype=float64)
|
|
Testing np.sort:
|
|
array([237, 238, 239, 247, 248, 249, 252, 253, 254], dtype=uint8)
|
|
array([253.0, 254.0, 255.0, 65533.0, 65534.0, 65535.0, 7.205759403792794e+16, 7.205759403792794e+16, 7.205759403792794e+16], dtype=float64)
|
|
array([[237, 238, 239],
|
|
[247, 248, 249],
|
|
[252, 253, 254]], dtype=uint8)
|
|
array([[253.0, 254.0, 255.0],
|
|
[65533.0, 65534.0, 65535.0],
|
|
[7.205759403792794e+16, 7.205759403792794e+16, 7.205759403792794e+16]], dtype=float64)
|
|
array([[252, 253, 254],
|
|
[237, 238, 239],
|
|
[247, 248, 249]], dtype=uint8)
|
|
array([[7.205759403792794e+16, 7.205759403792794e+16, 7.205759403792794e+16],
|
|
[65533.0, 65534.0, 65535.0],
|
|
[253.0, 254.0, 255.0]], dtype=float64)
|
|
Testing np.sum:
|
|
762
|
|
250
|
|
2217.0
|
|
array([736.0, 739.0, 742.0], dtype=float64)
|
|
array([759.0, 714.0, 744.0], dtype=float64)
|
|
Testing np.mean:
|
|
254.0
|
|
254.0
|
|
True
|
|
True
|
|
True
|
|
True
|
|
True
|
|
True
|
|
True
|
|
Testing np.std:
|
|
True
|
|
True
|
|
True
|
|
True
|
|
True
|
|
True
|
|
True
|
|
True
|
|
True
|
|
Testing np.median:
|
|
254.0
|
|
254.0
|
|
248.0
|
|
array([247.0, 248.0, 249.0], dtype=float64)
|
|
array([253.0, 238.0, 248.0], dtype=float64)
|
|
Testing np.roll:
|
|
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int16)
|
|
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7], dtype=int16)
|
|
array([2, 3, 4, 5, 6, 7, 8, 9, 0, 1], dtype=int16)
|
|
array([7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], dtype=float64)
|
|
array([3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 1.0, 2.0], dtype=float64)
|
|
Testing np.clip:
|
|
5
|
|
6
|
|
3
|
|
array([3, 3, 3, 4, 5, 5, 5], dtype=int16)
|
|
array([3.0, 3.0, 3.0, 4.0, 5.0, 5.0, 5.0], dtype=float64)
|