micropython-ulab/code/ndarray.c
2021-05-13 21:54:50 +02:00

2107 lines
84 KiB
C

/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
* 2020 Jeff Epler for Adafruit Industries
* 2020 Taku Fukada
*/
#include <unistd.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/runtime.h"
#include "py/binary.h"
#include "py/obj.h"
#include "py/objtuple.h"
#include "ulab_tools.h"
#include "ndarray.h"
#include "ndarray_operators.h"
mp_uint_t ndarray_print_threshold = NDARRAY_PRINT_THRESHOLD;
mp_uint_t ndarray_print_edgeitems = NDARRAY_PRINT_EDGEITEMS;
//| """Manipulate numeric data similar to numpy
//|
//| `ulab` is a numpy-like module for micropython, meant to simplify and
//| speed up common mathematical operations on arrays. The primary goal was to
//| implement a small subset of numpy that might be useful in the context of a
//| microcontroller. This means low-level data processing of linear (array) and
//| two-dimensional (matrix) data.
//|
//| `ulab` is adapted from micropython-ulab, and the original project's
//| documentation can be found at
//| https://micropython-ulab.readthedocs.io/en/latest/
//|
//| `ulab` is modeled after numpy, and aims to be a compatible subset where
//| possible. Numpy's documentation can be found at
//| https://docs.scipy.org/doc/numpy/index.html"""
//|
//| from typing import Dict
//|
//| _DType = int
//| """`ulab.int8`, `ulab.uint8`, `ulab.int16`, `ulab.uint16`, `ulab.float` or `ulab.bool`"""
//|
//| _float = float
//| """Type alias of the bulitin float"""
//|
//| _bool = bool
//| """Type alias of the bulitin bool"""
//|
//| _Index = Union[int, slice, ulab.ndarray, Tuple[Union[int, slice], ...]]
//|
//| class ndarray:
//| """1- and 2- dimensional ndarray"""
//|
//| def __init__(
//| self,
//| values: Union[ndarray, Iterable[Union[_float, _bool, Iterable[Any]]]],
//| *,
//| dtype: _DType = ulab.float
//| ) -> None:
//| """:param sequence values: Sequence giving the initial content of the ndarray.
//| :param ~ulab._DType dtype: The type of ndarray values, `ulab.int8`, `ulab.uint8`, `ulab.int16`, `ulab.uint16`, `ulab.float` or `ulab.bool`
//|
//| The ``values`` sequence can either be another ~ulab.ndarray, sequence of numbers
//| (in which case a 1-dimensional ndarray is created), or a sequence where each
//| subsequence has the same length (in which case a 2-dimensional ndarray is
//| created).
//|
//| Passing a `ulab.ndarray` and a different dtype can be used to convert an ndarray
//| from one dtype to another.
//|
//| In many cases, it is more convenient to create an ndarray from a function
//| like `zeros` or `linspace`.
//|
//| `ulab.ndarray` implements the buffer protocol, so it can be used in many
//| places an `array.array` can be used."""
//| ...
//|
//| shape: Tuple[int, ...]
//| """The size of the array, a tuple of length 1 or 2"""
//|
//| size: int
//| """The number of elements in the array"""
//|
//| itemsize: int
//| """The size of a single item in the array"""
//|
//| strides: Tuple[int, ...]
//| """Tuple of bytes to step in each dimension, a tuple of length 1 or 2"""
//|
//| def copy(self) -> ulab.ndarray:
//| """Return a copy of the array"""
//| ...
//|
//| def dtype(self) -> _DType:
//| """Returns the dtype of the array"""
//| ...
//|
//| def flatten(self, *, order: str = "C") -> ulab.ndarray:
//| """:param order: Whether to flatten by rows ('C') or columns ('F')
//|
//| Returns a new `ulab.ndarray` object which is always 1 dimensional.
//| If order is 'C' (the default", then the data is ordered in rows;
//| If it is 'F', then the data is ordered in columns. "C" and "F" refer
//| to the typical storage organization of the C and Fortran languages."""
//| ...
//|
//| def reshape(self, shape: Tuple[int, ...]) -> ulab.ndarray:
//| """Returns an ndarray containing the same data with a new shape."""
//| ...
//|
//| def sort(self, *, axis: Optional[int] = 1) -> None:
//| """:param axis: Whether to sort elements within rows (0), columns (1), or elements (None)"""
//| ...
//|
//| def tobytes(self) -> bytearray:
//| """Return the raw data bytes in the ndarray"""
//| ...
//|
//| def transpose(self) -> ulab.ndarray:
//| """Swap the rows and columns of a 2-dimensional ndarray"""
//| ...
//|
//| def __add__(self, other: Union[ndarray, _float]) -> ulab.ndarray:
//| """Adds corresponding elements of the two ndarrays, or adds a number to all
//| elements of the ndarray. If both arguments are ndarrays, their sizes must match."""
//| ...
//| def __radd__(self, other: _float) -> ulab.ndarray: ...
//|
//| def __sub__(self, other: Union[ndarray, _float]) -> ulab.ndarray:
//| """Subtracts corresponding elements of the two ndarrays, or subtracts a number from all
//| elements of the ndarray. If both arguments are ndarrays, their sizes must match."""
//| ...
//| def __rsub__(self, other: _float) -> ulab.ndarray: ...
//|
//| def __mul__(self, other: Union[ndarray, _float]) -> ulab.ndarray:
//| """Multiplies corresponding elements of the two ndarrays, or multiplies
//| all elements of the ndarray by a number. If both arguments are ndarrays,
//| their sizes must match."""
//| ...
//| def __rmul__(self, other: _float) -> ulab.ndarray: ...
//|
//| def __div__(self, other: Union[ndarray, _float]) -> ulab.ndarray:
//| """Multiplies corresponding elements of the two ndarrays, or divides
//| all elements of the ndarray by a number. If both arguments are ndarrays,
//| their sizes must match."""
//| ...
//| def __rdiv__(self, other: _float) -> ulab.ndarray: ...
//|
//| def __pow__(self, other: Union[ndarray, _float]) -> ulab.ndarray:
//| """Computes the power (x**y) of corresponding elements of the the two ndarrays,
//| or one number and one ndarray. If both arguments are ndarrays, their sizes
//| must match."""
//| ...
//| def __rpow__(self, other: _float) -> ulab.ndarray: ...
//|
//| def __inv__(self) -> ulab.ndarray:
//| ...
//| def __neg__(self) -> ulab.ndarray:
//| ...
//| def __pos__(self) -> ulab.ndarray:
//| ...
//| def __abs__(self) -> ulab.ndarray:
//| ...
//| def __len__(self) -> int:
//| ...
//| def __lt__(self, other: Union[ndarray, _float]) -> ulab.ndarray:
//| ...
//| def __le__(self, other: Union[ndarray, _float]) -> ulab.ndarray:
//| ...
//| def __gt__(self, other: Union[ndarray, _float]) -> ulab.ndarray:
//| ...
//| def __ge__(self, other: Union[ndarray, _float]) -> ulab.ndarray:
//| ...
//|
//| def __iter__(self) -> Union[Iterator[ndarray], Iterator[_float]]:
//| ...
//|
//| def __getitem__(self, index: _Index) -> Union[ndarray, _float]:
//| """Retrieve an element of the ndarray."""
//| ...
//|
//| def __setitem__(self, index: _Index, value: Union[ndarray, _float]) -> None:
//| """Set an element of the ndarray."""
//| ...
//|
//| _ArrayLike = Union[ndarray, List[_float], Tuple[_float], range]
//| """`ulab.ndarray`, ``List[float]``, ``Tuple[float]`` or `range`"""
//|
//| int8: _DType
//| """Type code for signed integers in the range -128 .. 127 inclusive, like the 'b' typecode of `array.array`"""
//|
//| int16: _DType
//| """Type code for signed integers in the range -32768 .. 32767 inclusive, like the 'h' typecode of `array.array`"""
//|
//| float: _DType
//| """Type code for floating point values, like the 'f' typecode of `array.array`"""
//|
//| uint8: _DType
//| """Type code for unsigned integers in the range 0 .. 255 inclusive, like the 'H' typecode of `array.array`"""
//|
//| uint16: _DType
//| """Type code for unsigned integers in the range 0 .. 65535 inclusive, like the 'h' typecode of `array.array`"""
//|
//| bool: _DType
//| """Type code for boolean values"""
//|
//| def get_printoptions() -> Dict[str, int]:
//| """Get printing options"""
//| ...
//|
//| def set_printoptions(threshold: Optional[int] = None, edgeitems: Optional[int] = None) -> None:
//| """Set printing options"""
//| ...
//|
//| def ndinfo(array: ulab.ndarray) -> None:
//| ...
//|
//| def array(
//| values: Union[ndarray, Iterable[Union[_float, _bool, Iterable[Any]]]],
//| *,
//| dtype: _DType = ulab.float
//| ) -> ulab.ndarray:
//| """alternate constructor function for `ulab.ndarray`. Mirrors numpy.array"""
//| ...
#if defined(MICROPY_VERSION_MAJOR) && MICROPY_VERSION_MAJOR == 1 && MICROPY_VERSION_MINOR == 11
void mp_obj_slice_indices(mp_obj_t self_in, mp_int_t length, mp_bound_slice_t *result) {
mp_obj_slice_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t start, stop, step;
if (self->step == mp_const_none) {
step = 1;
} else {
step = mp_obj_get_int(self->step);
if (step == 0) {
mp_raise_ValueError(translate("slice step can't be zero"));
}
}
if (step > 0) {
// Positive step
if (self->start == mp_const_none) {
start = 0;
} else {
start = mp_obj_get_int(self->start);
if (start < 0) {
start += length;
}
start = MIN(length, MAX(start, 0));
}
if (self->stop == mp_const_none) {
stop = length;
} else {
stop = mp_obj_get_int(self->stop);
if (stop < 0) {
stop += length;
}
stop = MIN(length, MAX(stop, 0));
}
} else {
// Negative step
if (self->start == mp_const_none) {
start = length - 1;
} else {
start = mp_obj_get_int(self->start);
if (start < 0) {
start += length;
}
start = MIN(length - 1, MAX(start, -1));
}
if (self->stop == mp_const_none) {
stop = -1;
} else {
stop = mp_obj_get_int(self->stop);
if (stop < 0) {
stop += length;
}
stop = MIN(length - 1, MAX(stop, -1));
}
}
result->start = start;
result->stop = stop;
result->step = step;
}
#endif /* MICROPY_VERSION v1.11 */
void ndarray_fill_array_iterable(mp_float_t *array, mp_obj_t iterable) {
mp_obj_iter_buf_t x_buf;
mp_obj_t x_item, x_iterable = mp_getiter(iterable, &x_buf);
while ((x_item = mp_iternext(x_iterable)) != MP_OBJ_STOP_ITERATION) {
*array++ = (mp_float_t)mp_obj_get_float(x_item);
}
}
#if ULAB_HAS_FUNCTION_ITERATOR
size_t *ndarray_new_coords(uint8_t ndim) {
size_t *coords = m_new(size_t, ndim);
memset(coords, 0, ndim*sizeof(size_t));
return coords;
}
void ndarray_rewind_array(uint8_t ndim, uint8_t *array, size_t *shape, int32_t *strides, size_t *coords) {
// resets the data pointer of a single array, whenever an axis is full
// since we always iterate over the very last axis, we have to keep track of
// the last ndim-2 axes only
array -= shape[ULAB_MAX_DIMS - 1] * strides[ULAB_MAX_DIMS - 1];
array += strides[ULAB_MAX_DIMS - 2];
for(uint8_t i=1; i < ndim-1; i++) {
coords[ULAB_MAX_DIMS - 1 - i] += 1;
if(coords[ULAB_MAX_DIMS - 1 - i] == shape[ULAB_MAX_DIMS - 1 - i]) { // we are at a dimension boundary
array -= shape[ULAB_MAX_DIMS - 1 - i] * strides[ULAB_MAX_DIMS - 1 - i];
array += strides[ULAB_MAX_DIMS - 2 - i];
coords[ULAB_MAX_DIMS - 1 - i] = 0;
coords[ULAB_MAX_DIMS - 2 - i] += 1;
} else { // coordinates can change only, if the last coordinate changes
return;
}
}
}
#endif
static int32_t *strides_from_shape(size_t *shape, uint8_t dtype) {
// returns a strides array that corresponds to a dense array with the prescribed shape
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
strides[ULAB_MAX_DIMS-1] = (int32_t)mp_binary_get_size('@', dtype, NULL);
for(uint8_t i=ULAB_MAX_DIMS; i > 1; i--) {
strides[i-2] = strides[i-1] * shape[i-1];
}
return strides;
}
size_t *ndarray_shape_vector(size_t a, size_t b, size_t c, size_t d) {
// returns a ULAB_MAX_DIMS-aware array of shapes
// WARNING: this assumes that the maximum possible dimension is 4!
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
shape[ULAB_MAX_DIMS - 1] = d;
#if ULAB_MAX_DIMS > 1
shape[ULAB_MAX_DIMS - 2] = c;
#endif
#if ULAB_MAX_DIMS > 2
shape[ULAB_MAX_DIMS - 3] = b;
#endif
#if ULAB_MAX_DIMS > 3
shape[ULAB_MAX_DIMS - 4] = a;
#endif
return shape;
}
bool ndarray_object_is_array_like(mp_obj_t o_in) {
if(mp_obj_is_type(o_in, &ulab_ndarray_type) ||
mp_obj_is_type(o_in, &mp_type_tuple) ||
mp_obj_is_type(o_in, &mp_type_list) ||
mp_obj_is_type(o_in, &mp_type_range)) {
return true;
}
return false;
}
void fill_array_iterable(mp_float_t *array, mp_obj_t iterable) {
mp_obj_iter_buf_t x_buf;
mp_obj_t x_item, x_iterable = mp_getiter(iterable, &x_buf);
size_t i=0;
while ((x_item = mp_iternext(x_iterable)) != MP_OBJ_STOP_ITERATION) {
array[i] = (mp_float_t)mp_obj_get_float(x_item);
i++;
}
}
#if NDARRAY_HAS_DTYPE
#if ULAB_HAS_DTYPE_OBJECT
void ndarray_dtype_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
(void)kind;
dtype_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_print_str(print, "dtype('");
if(self->dtype == NDARRAY_BOOLEAN) {
mp_print_str(print, "bool')");
} else if(self->dtype == NDARRAY_UINT8) {
mp_print_str(print, "uint8')");
} else if(self->dtype == NDARRAY_INT8) {
mp_print_str(print, "int8')");
} else if(self->dtype == NDARRAY_UINT16) {
mp_print_str(print, "uint16')");
} else if(self->dtype == NDARRAY_INT16) {
mp_print_str(print, "int16')");
} else {
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
mp_print_str(print, "float32')");
#else
mp_print_str(print, "float64')");
#endif
}
}
mp_obj_t ndarray_dtype_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
(void) type;
mp_arg_check_num(n_args, n_kw, 0, 1, true);
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_OBJ, { .u_obj = mp_const_none } },
};
mp_arg_val_t _args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, args, &kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, _args);
dtype_obj_t *dtype = m_new_obj(dtype_obj_t);
dtype->base.type = &ulab_dtype_type;
if(mp_obj_is_type(args[0], &ulab_ndarray_type)) {
// return the dtype of the array
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0]);
dtype->dtype = ndarray->dtype;
} else {
uint8_t _dtype;
if(mp_obj_is_int(_args[0].u_obj)) {
_dtype = mp_obj_get_int(_args[0].u_obj);
if((_dtype != NDARRAY_BOOL) && (_dtype != NDARRAY_UINT8)
&& (_dtype != NDARRAY_INT8) && (_dtype != NDARRAY_UINT16)
&& (_dtype != NDARRAY_INT16) && (_dtype != NDARRAY_FLOAT)) {
mp_raise_TypeError(translate("data type not understood"));
}
} else {
GET_STR_DATA_LEN(_args[0].u_obj, _dtype_, len);
if(memcmp(_dtype_, "uint8", 5) == 0) {
_dtype = NDARRAY_UINT8;
} else if(memcmp(_dtype_, "int8", 4) == 0) {
_dtype = NDARRAY_INT8;
} else if(memcmp(_dtype_, "uint16", 6) == 0) {
_dtype = NDARRAY_UINT16;
} else if(memcmp(_dtype_, "int16", 5) == 0) {
_dtype = NDARRAY_INT16;
} else if(memcmp(_dtype_, "float", 5) == 0) {
_dtype = NDARRAY_FLOAT;
} else {
mp_raise_TypeError(translate("data type not understood"));
}
}
dtype->dtype = _dtype;
}
return dtype;
}
mp_obj_t ndarray_dtype(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
dtype_obj_t *dtype = m_new_obj(dtype_obj_t);
dtype->base.type = &ulab_dtype_type;
dtype->dtype = self->dtype;
return dtype;
}
#else
// this is the cheap implementation of tbe dtype
mp_obj_t ndarray_dtype(mp_obj_t self_in) {
uint8_t dtype;
if(mp_obj_is_type(self_in, &ulab_ndarray_type)) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
dtype = self->dtype;
} else { // we assume here that the input is a single character
GET_STR_DATA_LEN(self_in, _dtype, len);
if((len != 1) || ((*_dtype != NDARRAY_BOOL) && (*_dtype != NDARRAY_UINT8)
&& (*_dtype != NDARRAY_INT8) && (*_dtype != NDARRAY_UINT16)
&& (*_dtype != NDARRAY_INT16) && (*_dtype != NDARRAY_FLOAT))) {
mp_raise_TypeError(translate("data type not understood"));
}
dtype = *_dtype;
}
return mp_obj_new_int(dtype);
}
#endif /* ULAB_HAS_DTYPE_OBJECT */
#endif /* NDARRAY_HAS_DTYPE */
#if ULAB_HAS_PRINTOPTIONS
mp_obj_t ndarray_set_printoptions(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_threshold, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} },
{ MP_QSTR_edgeitems, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(args[0].u_rom_obj != mp_const_none) {
ndarray_print_threshold = mp_obj_get_int(args[0].u_rom_obj);
}
if(args[1].u_rom_obj != mp_const_none) {
ndarray_print_edgeitems = mp_obj_get_int(args[1].u_rom_obj);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(ndarray_set_printoptions_obj, 0, ndarray_set_printoptions);
mp_obj_t ndarray_get_printoptions(void) {
mp_obj_t dict = mp_obj_new_dict(2);
mp_obj_dict_store(MP_OBJ_FROM_PTR(dict), MP_OBJ_NEW_QSTR(MP_QSTR_threshold), mp_obj_new_int(ndarray_print_threshold));
mp_obj_dict_store(MP_OBJ_FROM_PTR(dict), MP_OBJ_NEW_QSTR(MP_QSTR_edgeitems), mp_obj_new_int(ndarray_print_edgeitems));
return dict;
}
MP_DEFINE_CONST_FUN_OBJ_0(ndarray_get_printoptions_obj, ndarray_get_printoptions);
#endif
mp_obj_t ndarray_get_item(ndarray_obj_t *ndarray, void *array) {
// returns a proper micropython object from an array
if(!ndarray->boolean) {
return mp_binary_get_val_array(ndarray->dtype, array, 0);
} else {
if(*(uint8_t *)array) {
return mp_const_true;
} else {
return mp_const_false;
}
}
}
static void ndarray_print_row(const mp_print_t *print, ndarray_obj_t * ndarray, uint8_t *array, size_t stride, size_t n) {
if(n == 0) {
return;
}
mp_print_str(print, "[");
if((n <= ndarray_print_threshold) || (n <= 2*ndarray_print_edgeitems)) { // if the array is short, print everything
mp_obj_print_helper(print, ndarray_get_item(ndarray, array), PRINT_REPR);
array += stride;
for(size_t i=1; i < n; i++, array += stride) {
mp_print_str(print, ", ");
mp_obj_print_helper(print, ndarray_get_item(ndarray, array), PRINT_REPR);
}
} else {
mp_obj_print_helper(print, ndarray_get_item(ndarray, array), PRINT_REPR);
array += stride;
for(size_t i=1; i < ndarray_print_edgeitems; i++, array += stride) {
mp_print_str(print, ", ");
mp_obj_print_helper(print, ndarray_get_item(ndarray, array), PRINT_REPR);
}
mp_printf(print, ", ..., ");
array += stride * (n - 2 * ndarray_print_edgeitems);
mp_obj_print_helper(print, ndarray_get_item(ndarray, array), PRINT_REPR);
array += stride;
for(size_t i=1; i < ndarray_print_edgeitems; i++, array += stride) {
mp_print_str(print, ", ");
mp_obj_print_helper(print, ndarray_get_item(ndarray, array), PRINT_REPR);
}
}
mp_print_str(print, "]");
}
static void ndarray_print_bracket(const mp_print_t *print, const size_t condition, const size_t shape, const char *string) {
if(condition < shape) {
mp_print_str(print, string);
}
}
void ndarray_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
(void)kind;
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint8_t *array = (uint8_t *)self->array;
mp_print_str(print, "array(");
if(self->len == 0) {
mp_print_str(print, "[]");
}
#if ULAB_MAX_DIMS > 3
size_t i=0;
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-4], "[");
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-3], "[");
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-2], "[");
do {
#endif
ndarray_print_row(print, self, array, self->strides[ULAB_MAX_DIMS-1], self->shape[ULAB_MAX_DIMS-1]);
#if ULAB_MAX_DIMS > 1
array += self->strides[ULAB_MAX_DIMS-2];
k++;
ndarray_print_bracket(print, k, self->shape[ULAB_MAX_DIMS-2], ",\n ");
} while(k < self->shape[ULAB_MAX_DIMS-2]);
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-2], "]");
#endif
#if ULAB_MAX_DIMS > 2
j++;
ndarray_print_bracket(print, j, self->shape[ULAB_MAX_DIMS-3], ",\n\n ");
array -= self->strides[ULAB_MAX_DIMS-2] * self->shape[ULAB_MAX_DIMS-2];
array += self->strides[ULAB_MAX_DIMS-3];
} while(j < self->shape[ULAB_MAX_DIMS-3]);
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-3], "]");
#endif
#if ULAB_MAX_DIMS > 3
array -= self->strides[ULAB_MAX_DIMS-3] * self->shape[ULAB_MAX_DIMS-3];
array += self->strides[ULAB_MAX_DIMS-4];
i++;
ndarray_print_bracket(print, i, self->shape[ULAB_MAX_DIMS-4], ",\n\n ");
} while(i < self->shape[ULAB_MAX_DIMS-4]);
ndarray_print_bracket(print, 0, self->shape[ULAB_MAX_DIMS-4], "]");
#endif
if(self->boolean) {
mp_print_str(print, ", dtype=bool)");
} else if(self->dtype == NDARRAY_UINT8) {
mp_print_str(print, ", dtype=uint8)");
} else if(self->dtype == NDARRAY_INT8) {
mp_print_str(print, ", dtype=int8)");
} else if(self->dtype == NDARRAY_UINT16) {
mp_print_str(print, ", dtype=uint16)");
} else if(self->dtype == NDARRAY_INT16) {
mp_print_str(print, ", dtype=int16)");
} else {
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
mp_print_str(print, ", dtype=float32)");
#else
mp_print_str(print, ", dtype=float64)");
#endif
}
}
void ndarray_assign_elements(ndarray_obj_t *ndarray, mp_obj_t iterable, uint8_t dtype, size_t *idx) {
// assigns a single row in the tensor
mp_obj_t item;
if(ndarray->boolean) {
uint8_t *array = (uint8_t *)ndarray->array;
array += *idx;
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
// TODO: this might be wrong here: we have to check for the trueness of item
if(mp_obj_is_true(item)) {
*array = 1;
}
array++;
(*idx)++;
}
} else {
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
mp_binary_set_val_array(dtype, ndarray->array, (*idx)++, item);
}
}
}
bool ndarray_is_dense(ndarray_obj_t *ndarray) {
// returns true, if the array is dense, false otherwise
// the array should be dense, if the very first stride can be calculated from shape
int32_t stride = ndarray->itemsize;
for(uint8_t i = ULAB_MAX_DIMS - 1; i > ULAB_MAX_DIMS-ndarray->ndim; i--) {
stride *= ndarray->shape[i];
}
return stride == ndarray->strides[ULAB_MAX_DIMS-ndarray->ndim] ? true : false;
}
ndarray_obj_t *ndarray_new_ndarray(uint8_t ndim, size_t *shape, int32_t *strides, uint8_t dtype) {
// Creates the base ndarray with shape, and initialises the values to straight 0s
ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
ndarray->base.type = &ulab_ndarray_type;
ndarray->dtype = dtype == NDARRAY_BOOL ? NDARRAY_UINT8 : dtype;
ndarray->boolean = dtype == NDARRAY_BOOL ? NDARRAY_BOOLEAN : NDARRAY_NUMERIC;
ndarray->ndim = ndim;
ndarray->len = ndim == 0 ? 0 : 1;
ndarray->itemsize = mp_binary_get_size('@', ndarray->dtype, NULL);
int32_t *_strides;
if(strides == NULL) {
_strides = strides_from_shape(shape, ndarray->dtype);
} else {
_strides = strides;
}
for(uint8_t i=ULAB_MAX_DIMS; i > ULAB_MAX_DIMS-ndim; i--) {
ndarray->shape[i-1] = shape[i-1];
ndarray->strides[i-1] = _strides[i-1];
ndarray->len *= shape[i-1];
}
// if the length is 0, still allocate a single item, so that contractions can be handled
size_t len = ndarray->itemsize * MAX(1, ndarray->len);
uint8_t *array = m_new(byte, len);
// this should set all elements to 0, irrespective of the of the dtype (all bits are zero)
// we could, perhaps, leave this step out, and initialise the array only, when needed
memset(array, 0, len);
ndarray->array = array;
ndarray->origin = array;
return ndarray;
}
ndarray_obj_t *ndarray_new_dense_ndarray(uint8_t ndim, size_t *shape, uint8_t dtype) {
// creates a dense array, i.e., one, where the strides are derived directly from the shapes
// the function should work in the general n-dimensional case
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
strides[ULAB_MAX_DIMS-1] = dtype == NDARRAY_BOOL ? 1 : mp_binary_get_size('@', dtype, NULL);
for(size_t i=ULAB_MAX_DIMS; i > 1; i--) {
strides[i-2] = strides[i-1] * MAX(1, shape[i-1]);
}
return ndarray_new_ndarray(ndim, shape, strides, dtype);
}
ndarray_obj_t *ndarray_new_ndarray_from_tuple(mp_obj_tuple_t *_shape, uint8_t dtype) {
// creates a dense array from a tuple
// the function should work in the general n-dimensional case
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
for(size_t i=0; i < ULAB_MAX_DIMS; i++) {
if(i < ULAB_MAX_DIMS - _shape->len) {
shape[i] = 0;
} else {
shape[i] = mp_obj_get_int(_shape->items[i]);
}
}
return ndarray_new_dense_ndarray(_shape->len, shape, dtype);
}
void ndarray_copy_array(ndarray_obj_t *source, ndarray_obj_t *target) {
// TODO: if the array is dense, the content could be copied in a single pass
// copies the content of source->array into a new dense void pointer
// it is assumed that the dtypes in source and target are the same
// Since the target is a new array, it is supposed to be dense
uint8_t *sarray = (uint8_t *)source->array;
uint8_t *tarray = (uint8_t *)target->array;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(tarray, sarray, source->itemsize);
tarray += target->itemsize;
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
}
ndarray_obj_t *ndarray_new_view(ndarray_obj_t *source, uint8_t ndim, size_t *shape, int32_t *strides, int32_t offset) {
// creates a new view from the input arguments
ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
ndarray->base.type = &ulab_ndarray_type;
ndarray->boolean = source->boolean;
ndarray->dtype = source->dtype;
ndarray->ndim = ndim;
ndarray->itemsize = source->itemsize;
ndarray->len = ndim == 0 ? 0 : 1;
for(uint8_t i=ULAB_MAX_DIMS; i > ULAB_MAX_DIMS-ndim; i--) {
ndarray->shape[i-1] = shape[i-1];
ndarray->strides[i-1] = strides[i-1];
ndarray->len *= shape[i-1];
}
uint8_t *pointer = (uint8_t *)source->array;
pointer += offset;
ndarray->array = pointer;
ndarray->origin = source->origin;
return ndarray;
}
ndarray_obj_t *ndarray_copy_view(ndarray_obj_t *source) {
// creates a one-to-one deep copy of the input ndarray or its view
// the function should work in the general n-dimensional case
// In order to make it dtype-agnostic, we copy the memory content
// instead of reading out the values
int32_t *strides = strides_from_shape(source->shape, source->dtype);
uint8_t dtype = source->dtype;
if(source->boolean) {
dtype = NDARRAY_BOOLEAN;
}
ndarray_obj_t *ndarray = ndarray_new_ndarray(source->ndim, source->shape, strides, dtype);
ndarray_copy_array(source, ndarray);
return ndarray;
}
#if NDARRAY_HAS_BYTESWAP
mp_obj_t ndarray_byteswap(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// changes the endiannes of an array
// if the dtype of the input uint8/int8/bool, simply return a copy or view
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
{ MP_QSTR_inplace, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_false } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
ndarray_obj_t *self = MP_OBJ_TO_PTR(args[0].u_obj);
ndarray_obj_t *ndarray = NULL;
if(args[1].u_obj == mp_const_false) {
ndarray = ndarray_copy_view(self);
} else {
ndarray = ndarray_new_view(self, self->ndim, self->shape, self->strides, 0);
}
if((self->dtype == NDARRAY_BOOL) || (self->dtype == NDARRAY_UINT8) || (self->dtype == NDARRAY_INT8)) {
return MP_OBJ_FROM_PTR(ndarray);
} else {
uint8_t *array = (uint8_t *)ndarray->array;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
if(self->dtype == NDARRAY_FLOAT) {
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
SWAP(uint8_t, array[0], array[3]);
SWAP(uint8_t, array[1], array[2]);
#else
SWAP(uint8_t, array[0], array[7]);
SWAP(uint8_t, array[1], array[6]);
SWAP(uint8_t, array[2], array[5]);
SWAP(uint8_t, array[3], array[4]);
#endif
} else {
SWAP(uint8_t, array[0], array[1]);
}
array += ndarray->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < ndarray->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
array -= ndarray->strides[ULAB_MAX_DIMS - 1] * ndarray->shape[ULAB_MAX_DIMS-1];
array += ndarray->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < ndarray->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
array -= ndarray->strides[ULAB_MAX_DIMS - 2] * ndarray->shape[ULAB_MAX_DIMS-2];
array += ndarray->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < ndarray->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
array -= ndarray->strides[ULAB_MAX_DIMS - 3] * ndarray->shape[ULAB_MAX_DIMS-3];
array += ndarray->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < ndarray->shape[ULAB_MAX_DIMS - 4]);
#endif
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(ndarray_byteswap_obj, 1, ndarray_byteswap);
#endif
#if NDARRAY_HAS_COPY
mp_obj_t ndarray_copy(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_FROM_PTR(ndarray_copy_view(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_copy_obj, ndarray_copy);
#endif
ndarray_obj_t *ndarray_new_linear_array(size_t len, uint8_t dtype) {
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
if(len == 0) {
return ndarray_new_dense_ndarray(0, shape, dtype);
}
shape[ULAB_MAX_DIMS-1] = len;
return ndarray_new_dense_ndarray(1, shape, dtype);
}
STATIC uint8_t ndarray_init_helper(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_ROM_INT(NDARRAY_FLOAT) } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t _dtype;
#if ULAB_HAS_DTYPE_OBJECT
if(mp_obj_is_type(args[1].u_obj, &ulab_dtype_type)) {
dtype_obj_t *dtype = MP_OBJ_TO_PTR(args[1].u_obj);
_dtype = dtype->dtype;
} else { // this must be an integer defined as a class constant (ulba.uint8 etc.)
_dtype = mp_obj_get_int(args[1].u_obj);
}
#else
_dtype = mp_obj_get_int(args[1].u_obj);
#endif
return _dtype;
}
STATIC mp_obj_t ndarray_make_new_core(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args, mp_map_t *kw_args) {
uint8_t dtype = ndarray_init_helper(n_args, args, kw_args);
if(mp_obj_is_type(args[0], &ulab_ndarray_type)) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(args[0]);
if(dtype == source->dtype) {
return ndarray_copy_view(source);
}
ndarray_obj_t *target = ndarray_new_dense_ndarray(source->ndim, source->shape, dtype);
uint8_t *sarray = (uint8_t *)source->array;
uint8_t *tarray = (uint8_t *)target->array;
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
mp_obj_t item;
// floats must be treated separately, because they can't directly be converted to integer types
if((source->dtype == NDARRAY_FLOAT) && (dtype != NDARRAY_FLOAT)) {
// floats must be treated separately, because they can't directly be converted to integer types
mp_float_t f = ndarray_get_float_value(sarray, source->dtype);
item = mp_obj_new_int((int32_t)MICROPY_FLOAT_C_FUN(floor)(f));
} else {
item = mp_binary_get_val_array(source->dtype, sarray, 0);
}
mp_binary_set_val_array(dtype, tarray, 0, item);
tarray += target->itemsize;
sarray += source->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < source->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
sarray += source->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < source->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
sarray += source->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < source->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
sarray += source->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < source->shape[ULAB_MAX_DIMS - 4]);
#endif
return MP_OBJ_FROM_PTR(target);
}
// We have to figure out, whether the elements of the iterable are iterables themself
uint8_t ndim = 0;
size_t shape[ULAB_MAX_DIMS];
mp_obj_iter_buf_t iter_buf[ULAB_MAX_DIMS];
mp_obj_t iterable[ULAB_MAX_DIMS];
// inspect only the very first element in each dimension; this is fast,
// but not completely safe, e.g., length compatibility is not checked
mp_obj_t item = args[0];
while(1) {
if(mp_obj_len_maybe(item) == MP_OBJ_NULL) {
break;
}
if(ndim == ULAB_MAX_DIMS) {
mp_raise_ValueError(translate("too many dimensions"));
}
shape[ndim] = MP_OBJ_SMALL_INT_VALUE(mp_obj_len_maybe(item));
iterable[ndim] = mp_getiter(item, &iter_buf[ndim]);
item = mp_iternext(iterable[ndim]);
ndim++;
}
for(uint8_t i=0; i < ndim; i++) {
// align all values to the right
shape[ULAB_MAX_DIMS - i - 1] = shape[ndim - 1 - i];
}
ndarray_obj_t *self = ndarray_new_dense_ndarray(ndim, shape, dtype);
item = args[0];
for(uint8_t i=0; i < ndim - 1; i++) {
// if ndim > 1, descend into the hierarchy
iterable[ULAB_MAX_DIMS - ndim + i] = mp_getiter(item, &iter_buf[ULAB_MAX_DIMS - ndim + i]);
item = mp_iternext(iterable[ULAB_MAX_DIMS - ndim + i]);
}
size_t idx = 0;
// TODO: this could surely be done in a more elegant way...
#if ULAB_MAX_DIMS > 3
do {
#endif
#if ULAB_MAX_DIMS > 2
do {
#endif
#if ULAB_MAX_DIMS > 1
do {
#endif
iterable[ULAB_MAX_DIMS - 1] = mp_getiter(item, &iter_buf[ULAB_MAX_DIMS - 1]);
ndarray_assign_elements(self, iterable[ULAB_MAX_DIMS - 1], self->dtype, &idx);
#if ULAB_MAX_DIMS > 1
item = ndim > 1 ? mp_iternext(iterable[ULAB_MAX_DIMS - 2]) : MP_OBJ_STOP_ITERATION;
} while(item != MP_OBJ_STOP_ITERATION);
#endif
#if ULAB_MAX_DIMS > 2
item = ndim > 2 ? mp_iternext(iterable[ULAB_MAX_DIMS - 3]) : MP_OBJ_STOP_ITERATION;
if(item != MP_OBJ_STOP_ITERATION) {
iterable[ULAB_MAX_DIMS - 2] = mp_getiter(item, &iter_buf[ULAB_MAX_DIMS - 2]);
item = mp_iternext(iterable[ULAB_MAX_DIMS - 2]);
} else {
iterable[ULAB_MAX_DIMS - 2] = MP_OBJ_STOP_ITERATION;
}
} while(iterable[ULAB_MAX_DIMS - 2] != MP_OBJ_STOP_ITERATION);
#endif
#if ULAB_MAX_DIMS > 3
item = ndim > 3 ? mp_iternext(iterable[ULAB_MAX_DIMS - 4]) : MP_OBJ_STOP_ITERATION;
if(item != MP_OBJ_STOP_ITERATION) {
iterable[ULAB_MAX_DIMS - 3] = mp_getiter(item, &iter_buf[ULAB_MAX_DIMS - 3]);
item = mp_iternext(iterable[ULAB_MAX_DIMS - 3]);
} else {
iterable[ULAB_MAX_DIMS - 3] = MP_OBJ_STOP_ITERATION;
}
} while(iterable[ULAB_MAX_DIMS - 3] != MP_OBJ_STOP_ITERATION);
#endif
return MP_OBJ_FROM_PTR(self);
}
mp_obj_t ndarray_array_constructor(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// array constructor for ndarray, equivalent to numpy.array(...)
return ndarray_make_new_core(&ulab_ndarray_type, n_args, kw_args->used, pos_args, kw_args);
}
MP_DEFINE_CONST_FUN_OBJ_KW(ndarray_array_constructor_obj, 1, ndarray_array_constructor);
#ifdef CIRCUITPY
mp_obj_t ndarray_make_new(const mp_obj_type_t *type, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
(void) type;
mp_arg_check_num(n_args, kw_args, 1, 2, true);
size_t n_kw = 0;
if (kw_args != 0) {
n_kw = kw_args->used;
}
mp_map_init_fixed_table(kw_args, n_kw, args + n_args);
return ndarray_make_new_core(type, n_args, n_kw, args, kw_args);
}
#else
mp_obj_t ndarray_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
(void) type;
mp_arg_check_num(n_args, n_kw, 1, 2, true);
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
return ndarray_make_new_core(type, n_args, n_kw, args, &kw_args);
}
#endif
// broadcasting is used at a number of places, always include
bool ndarray_can_broadcast(ndarray_obj_t *lhs, ndarray_obj_t *rhs, uint8_t *ndim, size_t *shape, int32_t *lstrides, int32_t *rstrides) {
// Returns true or false, depending on, whether the two arrays can be broadcast together
// with numpy's broadcasting rules. These are as follows:
//
// 1. the two shapes are either equal
// 2. one of the shapes is 1
memset(lstrides, 0, sizeof(size_t)*ULAB_MAX_DIMS);
memset(rstrides, 0, sizeof(size_t)*ULAB_MAX_DIMS);
lstrides[ULAB_MAX_DIMS - 1] = lhs->strides[ULAB_MAX_DIMS - 1];
rstrides[ULAB_MAX_DIMS - 1] = rhs->strides[ULAB_MAX_DIMS - 1];
for(uint8_t i=ULAB_MAX_DIMS; i > 0; i--) {
if((lhs->shape[i-1] == rhs->shape[i-1]) || (lhs->shape[i-1] == 0) || (lhs->shape[i-1] == 1) ||
(rhs->shape[i-1] == 0) || (rhs->shape[i-1] == 1)) {
shape[i-1] = MAX(lhs->shape[i-1], rhs->shape[i-1]);
if(shape[i-1] > 0) (*ndim)++;
if(lhs->shape[i-1] < 2) {
lstrides[i-1] = 0;
} else {
lstrides[i-1] = lhs->strides[i-1];
}
if(rhs->shape[i-1] < 2) {
rstrides[i-1] = 0;
} else {
rstrides[i-1] = rhs->strides[i-1];
}
} else {
return false;
}
}
return true;
}
#if NDARRAY_HAS_INPLACE_OPS
bool ndarray_can_broadcast_inplace(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rstrides) {
// returns true or false, depending on, whether the two arrays can be broadcast together inplace
// this means that the right hand side always must be "smaller" than the left hand side, i.e.
// the broadcasting rules are as follows:
//
// 1. the two shapes are either equal
// 2. the shapes on the right hand side is 1
memset(rstrides, 0, sizeof(size_t)*ULAB_MAX_DIMS);
rstrides[ULAB_MAX_DIMS - 1] = rhs->strides[ULAB_MAX_DIMS - 1];
for(uint8_t i=ULAB_MAX_DIMS; i > 0; i--) {
if((lhs->shape[i-1] == rhs->shape[i-1]) || (rhs->shape[i-1] == 0) || (rhs->shape[i-1] == 1)) {
if(rhs->shape[i-1] < 2) {
rstrides[i-1] = 0;
} else {
rstrides[i-1] = rhs->strides[i-1];
}
} else {
return false;
}
}
return true;
}
#endif
#if NDARRAY_IS_SLICEABLE
static size_t slice_length(mp_bound_slice_t slice) {
ssize_t len, correction = 1;
if(slice.step > 0) correction = -1;
len = (ssize_t)(slice.stop - slice.start + (slice.step + correction)) / slice.step;
if(len < 0) return 0;
return (size_t)len;
}
static mp_bound_slice_t generate_slice(mp_int_t n, mp_obj_t index) {
mp_bound_slice_t slice;
if(mp_obj_is_type(index, &mp_type_slice)) {
mp_obj_slice_indices(index, n, &slice);
} else if(mp_obj_is_int(index)) {
mp_int_t _index = mp_obj_get_int(index);
if(_index < 0) {
_index += n;
}
if((_index >= n) || (_index < 0)) {
mp_raise_msg(&mp_type_IndexError, translate("index is out of bounds"));
}
slice.start = _index;
slice.stop = _index + 1;
slice.step = 1;
} else {
mp_raise_msg(&mp_type_IndexError, translate("indices must be integers, slices, or Boolean lists"));
}
return slice;
}
static ndarray_obj_t *ndarray_view_from_slices(ndarray_obj_t *ndarray, mp_obj_tuple_t *tuple) {
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
int32_t *strides = m_new(int32_t, ULAB_MAX_DIMS);
memset(strides, 0, sizeof(size_t)*ULAB_MAX_DIMS);
uint8_t ndim = ndarray->ndim;
for(uint8_t i=0; i < ndim; i++) {
// copy from the end
shape[ULAB_MAX_DIMS - 1 - i] = ndarray->shape[ULAB_MAX_DIMS - 1 - i];
strides[ULAB_MAX_DIMS - 1 - i] = ndarray->strides[ULAB_MAX_DIMS - 1 - i];
}
int32_t offset = 0;
for(uint8_t i=0; i < tuple->len; i++) {
if(mp_obj_is_int(tuple->items[i])) {
// if item is an int, the dimension will first be reduced ...
ndim--;
int32_t k = mp_obj_get_int(tuple->items[i]);
if(k < 0) {
k += ndarray->shape[ULAB_MAX_DIMS - ndarray->ndim + i];
}
if((k >= (int32_t)ndarray->shape[ULAB_MAX_DIMS - ndarray->ndim + i]) || (k < 0)) {
mp_raise_msg(&mp_type_IndexError, translate("index is out of bounds"));
}
offset += ndarray->strides[ULAB_MAX_DIMS - ndarray->ndim + i] * k;
// ... and then we have to shift the shapes to the right
for(uint8_t j=0; j < i; j++) {
shape[ULAB_MAX_DIMS - ndarray->ndim + i - j] = shape[ULAB_MAX_DIMS - ndarray->ndim + i - j - 1];
strides[ULAB_MAX_DIMS - ndarray->ndim + i - j] = strides[ULAB_MAX_DIMS - ndarray->ndim + i - j - 1];
}
} else {
mp_bound_slice_t slice = generate_slice(shape[ULAB_MAX_DIMS - ndarray->ndim + i], tuple->items[i]);
shape[ULAB_MAX_DIMS - ndarray->ndim + i] = slice_length(slice);
offset += ndarray->strides[ULAB_MAX_DIMS - ndarray->ndim + i] * (int32_t)slice.start;
strides[ULAB_MAX_DIMS - ndarray->ndim + i] = (int32_t)slice.step * ndarray->strides[ULAB_MAX_DIMS - ndarray->ndim + i];
}
}
return ndarray_new_view(ndarray, ndim, shape, strides, offset);
}
void ndarray_assign_view(ndarray_obj_t *view, ndarray_obj_t *values) {
if(values->len == 0) {
return;
}
uint8_t ndim = 0;
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
int32_t *lstrides = m_new(int32_t, ULAB_MAX_DIMS);
int32_t *rstrides = m_new(int32_t, ULAB_MAX_DIMS);
if(!ndarray_can_broadcast(view, values, &ndim, shape, lstrides, rstrides)) {
mp_raise_ValueError(translate("operands could not be broadcast together"));
m_del(size_t, shape, ULAB_MAX_DIMS);
m_del(int32_t, lstrides, ULAB_MAX_DIMS);
m_del(int32_t, rstrides, ULAB_MAX_DIMS);
}
uint8_t *rarray = (uint8_t *)values->array;
// since in ASSIGNMENT_LOOP the array has a type, we have to divide the strides by the itemsize
for(uint8_t i=0; i < ULAB_MAX_DIMS; i++) {
lstrides[i] /= view->itemsize;
}
if(view->dtype == NDARRAY_UINT8) {
if(values->dtype == NDARRAY_UINT8) {
ASSIGNMENT_LOOP(view, uint8_t, uint8_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_INT8) {
ASSIGNMENT_LOOP(view, uint8_t, int8_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_UINT16) {
ASSIGNMENT_LOOP(view, uint8_t, uint16_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_INT16) {
ASSIGNMENT_LOOP(view, uint8_t, int16_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_FLOAT) {
ASSIGNMENT_LOOP(view, uint8_t, mp_float_t, lstrides, rarray, rstrides);
}
} else if(view->dtype == NDARRAY_INT8) {
if(values->dtype == NDARRAY_UINT8) {
ASSIGNMENT_LOOP(view, int8_t, uint8_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_INT8) {
ASSIGNMENT_LOOP(view, int8_t, int8_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_UINT16) {
ASSIGNMENT_LOOP(view, int8_t, uint16_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_INT16) {
ASSIGNMENT_LOOP(view, int8_t, int16_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_FLOAT) {
ASSIGNMENT_LOOP(view, int8_t, mp_float_t, lstrides, rarray, rstrides);
}
} else if(view->dtype == NDARRAY_UINT16) {
if(values->dtype == NDARRAY_UINT8) {
ASSIGNMENT_LOOP(view, uint16_t, uint8_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_INT8) {
ASSIGNMENT_LOOP(view, uint16_t, int8_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_UINT16) {
ASSIGNMENT_LOOP(view, uint16_t, uint16_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_INT16) {
ASSIGNMENT_LOOP(view, uint16_t, int16_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_FLOAT) {
ASSIGNMENT_LOOP(view, uint16_t, mp_float_t, lstrides, rarray, rstrides);
}
} else if(view->dtype == NDARRAY_INT16) {
if(values->dtype == NDARRAY_UINT8) {
ASSIGNMENT_LOOP(view, int16_t, uint8_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_INT8) {
ASSIGNMENT_LOOP(view, int16_t, int8_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_UINT16) {
ASSIGNMENT_LOOP(view, int16_t, uint16_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_INT16) {
ASSIGNMENT_LOOP(view, int16_t, int16_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_FLOAT) {
ASSIGNMENT_LOOP(view, int16_t, mp_float_t, lstrides, rarray, rstrides);
}
} else { // the dtype must be an mp_float_t now
if(values->dtype == NDARRAY_UINT8) {
ASSIGNMENT_LOOP(view, mp_float_t, uint8_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_INT8) {
ASSIGNMENT_LOOP(view, mp_float_t, int8_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_UINT16) {
ASSIGNMENT_LOOP(view, mp_float_t, uint16_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_INT16) {
ASSIGNMENT_LOOP(view, mp_float_t, int16_t, lstrides, rarray, rstrides);
} else if(values->dtype == NDARRAY_FLOAT) {
ASSIGNMENT_LOOP(view, mp_float_t, mp_float_t, lstrides, rarray, rstrides);
}
}
}
static mp_obj_t ndarray_from_boolean_index(ndarray_obj_t *ndarray, ndarray_obj_t *index) {
// returns a 1D array, indexed by a Boolean array
if(ndarray->len != index->len) {
mp_raise_ValueError(translate("array and index length must be equal"));
}
uint8_t *iarray = (uint8_t *)index->array;
// first we have to find out how many trues there are
size_t count = 0;
for(size_t i=0; i < index->len; i++) {
count += *iarray;
iarray += index->strides[ULAB_MAX_DIMS - 1];
}
ndarray_obj_t *results = ndarray_new_linear_array(count, ndarray->dtype);
uint8_t *rarray = (uint8_t *)results->array;
uint8_t *array = (uint8_t *)ndarray->array;
// re-wind the index array
iarray = index->array;
for(size_t i=0; i < index->len; i++) {
if(*iarray) {
memcpy(rarray, array, results->itemsize);
rarray += results->itemsize;
count++;
}
array += ndarray->strides[ULAB_MAX_DIMS - 1];
iarray += index->strides[ULAB_MAX_DIMS - 1];
}
return MP_OBJ_FROM_PTR(results);
}
static mp_obj_t ndarray_assign_from_boolean_index(ndarray_obj_t *ndarray, ndarray_obj_t *index, ndarray_obj_t *values) {
// assigns values to a Boolean-indexed array
// first we have to find out how many trues there are
uint8_t *iarray = (uint8_t *)index->array;
size_t count = 0;
for(size_t i=0; i < index->len; i++) {
count += *iarray;
iarray += index->strides[ULAB_MAX_DIMS - 1];
}
// re-wind the index array
iarray = index->array;
uint8_t *varray = (uint8_t *)values->array;
size_t vstride;
size_t istride = index->strides[ULAB_MAX_DIMS - 1];
if(count == values->len) {
// there are as many values as true indices
vstride = values->strides[ULAB_MAX_DIMS - 1];
} else {
// there is a single value
vstride = 0;
}
if(ndarray->dtype == NDARRAY_UINT8) {
if(values->dtype == NDARRAY_UINT8) {
BOOLEAN_ASSIGNMENT_LOOP(uint8_t, uint8_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_INT8) {
BOOLEAN_ASSIGNMENT_LOOP(uint8_t, int8_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_UINT16) {
BOOLEAN_ASSIGNMENT_LOOP(uint8_t, uint16_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_INT16) {
BOOLEAN_ASSIGNMENT_LOOP(uint8_t, int16_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_FLOAT) {
BOOLEAN_ASSIGNMENT_LOOP(uint8_t, mp_float_t, ndarray, iarray, istride, varray, vstride);
}
} else if(ndarray->dtype == NDARRAY_INT8) {
if(values->dtype == NDARRAY_UINT8) {
BOOLEAN_ASSIGNMENT_LOOP(int8_t, uint8_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_INT8) {
BOOLEAN_ASSIGNMENT_LOOP(int8_t, int8_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_UINT16) {
BOOLEAN_ASSIGNMENT_LOOP(int8_t, uint16_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_INT16) {
BOOLEAN_ASSIGNMENT_LOOP(int8_t, int16_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_FLOAT) {
BOOLEAN_ASSIGNMENT_LOOP(int8_t, mp_float_t, ndarray, iarray, istride, varray, vstride);
}
} else if(ndarray->dtype == NDARRAY_UINT16) {
if(values->dtype == NDARRAY_UINT8) {
BOOLEAN_ASSIGNMENT_LOOP(uint16_t, uint8_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_INT8) {
BOOLEAN_ASSIGNMENT_LOOP(uint16_t, int8_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_UINT16) {
BOOLEAN_ASSIGNMENT_LOOP(uint16_t, uint16_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_INT16) {
BOOLEAN_ASSIGNMENT_LOOP(uint16_t, int16_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_FLOAT) {
BOOLEAN_ASSIGNMENT_LOOP(uint16_t, mp_float_t, ndarray, iarray, istride, varray, vstride);
}
} else if(ndarray->dtype == NDARRAY_INT16) {
if(values->dtype == NDARRAY_UINT8) {
BOOLEAN_ASSIGNMENT_LOOP(int16_t, uint8_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_INT8) {
BOOLEAN_ASSIGNMENT_LOOP(int16_t, int8_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_UINT16) {
BOOLEAN_ASSIGNMENT_LOOP(int16_t, uint16_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_INT16) {
BOOLEAN_ASSIGNMENT_LOOP(int16_t, int16_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_FLOAT) {
BOOLEAN_ASSIGNMENT_LOOP(int16_t, mp_float_t, ndarray, iarray, istride, varray, vstride);
}
} else {
if(values->dtype == NDARRAY_UINT8) {
BOOLEAN_ASSIGNMENT_LOOP(mp_float_t, uint8_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_INT8) {
BOOLEAN_ASSIGNMENT_LOOP(mp_float_t, int8_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_UINT16) {
BOOLEAN_ASSIGNMENT_LOOP(mp_float_t, uint16_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_INT16) {
BOOLEAN_ASSIGNMENT_LOOP(mp_float_t, int16_t, ndarray, iarray, istride, varray, vstride);
} else if(values->dtype == NDARRAY_FLOAT) {
BOOLEAN_ASSIGNMENT_LOOP(mp_float_t, mp_float_t, ndarray, iarray, istride, varray, vstride);
}
}
return MP_OBJ_FROM_PTR(ndarray);
}
static mp_obj_t ndarray_get_slice(ndarray_obj_t *ndarray, mp_obj_t index, ndarray_obj_t *values) {
if(mp_obj_is_type(index, &ulab_ndarray_type)) {
ndarray_obj_t *nindex = MP_OBJ_TO_PTR(index);
if((nindex->ndim > 1) || (nindex->boolean == false)) {
mp_raise_NotImplementedError(translate("operation is implemented for 1D Boolean arrays only"));
}
if(values == NULL) { // return value(s)
return ndarray_from_boolean_index(ndarray, nindex);
} else { // assign value(s)
ndarray_assign_from_boolean_index(ndarray, index, values);
}
}
if(mp_obj_is_type(index, &mp_type_tuple) || mp_obj_is_int(index) || mp_obj_is_type(index, &mp_type_slice)) {
mp_obj_tuple_t *tuple;
if(mp_obj_is_type(index, &mp_type_tuple)) {
tuple = MP_OBJ_TO_PTR(index);
if(tuple->len > ndarray->ndim) {
mp_raise_msg(&mp_type_IndexError, translate("too many indices"));
}
} else {
mp_obj_t *items = m_new(mp_obj_t, 1);
items[0] = index;
tuple = mp_obj_new_tuple(1, items);
}
ndarray_obj_t *view = ndarray_view_from_slices(ndarray, tuple);
if(values == NULL) { // return value(s)
// if the view has been reduced to nothing, return a single value
if(view->ndim == 0) {
return mp_binary_get_val_array(view->dtype, view->array, 0);
} else {
return MP_OBJ_FROM_PTR(view);
}
} else { // assign value(s)
ndarray_assign_view(view, values);
}
}
return mp_const_none;
}
mp_obj_t ndarray_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (value == MP_OBJ_SENTINEL) { // return value(s)
return ndarray_get_slice(self, index, NULL);
} else { // assignment to slices; the value must be an ndarray, or a scalar
ndarray_obj_t *values = ndarray_from_mp_obj(value);
return ndarray_get_slice(self, index, values);
}
return mp_const_none;
}
#endif /* NDARRAY_IS_SLICEABLE */
#if NDARRAY_IS_ITERABLE
// itarray iterator
mp_obj_t ndarray_getiter(mp_obj_t o_in, mp_obj_iter_buf_t *iter_buf) {
return ndarray_new_ndarray_iterator(o_in, iter_buf);
}
typedef struct _mp_obj_ndarray_it_t {
mp_obj_base_t base;
mp_fun_1_t iternext;
mp_obj_t ndarray;
size_t cur;
} mp_obj_ndarray_it_t;
mp_obj_t ndarray_iternext(mp_obj_t self_in) {
mp_obj_ndarray_it_t *self = MP_OBJ_TO_PTR(self_in);
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(self->ndarray);
uint8_t *array = (uint8_t *)ndarray->array;
size_t iter_end = ndarray->shape[ULAB_MAX_DIMS-ndarray->ndim];
if(self->cur < iter_end) {
// separating this case out saves 50 bytes for 1D arrays
#if ULAB_MAX_DIMS == 1
array += self->cur * ndarray->strides[0];
self->cur++;
return ndarray_get_item(ndarray, array);
#else
if(ndarray->ndim == 1) { // we have a linear array
array += self->cur * ndarray->strides[ULAB_MAX_DIMS - 1];
self->cur++;
return ndarray_get_item(ndarray, array);
} else { // we have a tensor, return the reduced view
size_t offset = self->cur * ndarray->strides[ULAB_MAX_DIMS - ndarray->ndim];
self->cur++;
return MP_OBJ_FROM_PTR(ndarray_new_view(ndarray, ndarray->ndim-1, ndarray->shape, ndarray->strides, offset));
}
#endif
} else {
return MP_OBJ_STOP_ITERATION;
}
}
mp_obj_t ndarray_new_ndarray_iterator(mp_obj_t ndarray, mp_obj_iter_buf_t *iter_buf) {
assert(sizeof(mp_obj_ndarray_it_t) <= sizeof(mp_obj_iter_buf_t));
mp_obj_ndarray_it_t *o = (mp_obj_ndarray_it_t*)iter_buf;
o->base.type = &mp_type_polymorph_iter;
o->iternext = ndarray_iternext;
o->ndarray = ndarray;
o->cur = 0;
return MP_OBJ_FROM_PTR(o);
}
#endif /* NDARRAY_IS_ITERABLE */
#if NDARRAY_HAS_FLATTEN
mp_obj_t ndarray_flatten(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_order, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_QSTR(MP_QSTR_C)} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
ndarray_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
GET_STR_DATA_LEN(args[0].u_obj, order, len);
if((len != 1) || ((memcmp(order, "C", 1) != 0) && (memcmp(order, "F", 1) != 0))) {
mp_raise_ValueError(translate("flattening order must be either 'C', or 'F'"));
}
uint8_t *sarray = (uint8_t *)self->array;
ndarray_obj_t *ndarray = ndarray_new_linear_array(self->len, self->dtype);
uint8_t *array = (uint8_t *)ndarray->array;
if(memcmp(order, "C", 1) == 0) { // C-type ordering
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(array, sarray, self->itemsize);
array += ndarray->strides[ULAB_MAX_DIMS - 1];
sarray += self->strides[ULAB_MAX_DIMS - 1];
l++;
} while(l < self->shape[ULAB_MAX_DIMS - 1]);
#if ULAB_MAX_DIMS > 1
sarray -= self->strides[ULAB_MAX_DIMS - 1] * self->shape[ULAB_MAX_DIMS-1];
sarray += self->strides[ULAB_MAX_DIMS - 2];
k++;
} while(k < self->shape[ULAB_MAX_DIMS - 2]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= self->strides[ULAB_MAX_DIMS - 2] * self->shape[ULAB_MAX_DIMS-2];
sarray += self->strides[ULAB_MAX_DIMS - 3];
j++;
} while(j < self->shape[ULAB_MAX_DIMS - 3]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= self->strides[ULAB_MAX_DIMS - 3] * self->shape[ULAB_MAX_DIMS-3];
sarray += self->strides[ULAB_MAX_DIMS - 4];
i++;
} while(i < self->shape[ULAB_MAX_DIMS - 4]);
#endif
} else { // 'F', Fortran-type ordering
#if ULAB_MAX_DIMS > 3
size_t i = 0;
do {
#endif
#if ULAB_MAX_DIMS > 2
size_t j = 0;
do {
#endif
#if ULAB_MAX_DIMS > 1
size_t k = 0;
do {
#endif
size_t l = 0;
do {
memcpy(array, sarray, self->itemsize);
array += ndarray->strides[ULAB_MAX_DIMS - 1];
sarray += self->strides[0];
l++;
} while(l < self->shape[0]);
#if ULAB_MAX_DIMS > 1
sarray -= self->strides[0] * self->shape[0];
sarray += self->strides[1];
k++;
} while(k < self->shape[1]);
#endif
#if ULAB_MAX_DIMS > 2
sarray -= self->strides[1] * self->shape[1];
sarray += self->strides[2];
j++;
} while(j < self->shape[2]);
#endif
#if ULAB_MAX_DIMS > 3
sarray -= self->strides[2] * self->shape[2];
sarray += self->strides[3];
i++;
} while(i < self->shape[3]);
#endif
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_KW(ndarray_flatten_obj, 1, ndarray_flatten);
#endif
#if NDARRAY_HAS_ITEMSIZE
mp_obj_t ndarray_itemsize(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(self->itemsize);
}
#endif
#if NDARRAY_HAS_SHAPE
mp_obj_t ndarray_shape(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_t *items = m_new(mp_obj_t, self->ndim);
for(uint8_t i=0; i < self->ndim; i++) {
items[self->ndim - i - 1] = mp_obj_new_int(self->shape[ULAB_MAX_DIMS - i - 1]);
}
mp_obj_t tuple = mp_obj_new_tuple(self->ndim, items);
m_del(mp_obj_t, items, self->ndim);
return tuple;
}
#endif
#if NDARRAY_HAS_SIZE
mp_obj_t ndarray_size(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_int(self->len);
}
#endif
#if NDARRAY_HAS_STRIDES
mp_obj_t ndarray_strides(mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_t *items = m_new(mp_obj_t, self->ndim);
for(int8_t i=0; i < self->ndim; i++) {
items[i] = mp_obj_new_int(self->strides[ULAB_MAX_DIMS - self->ndim + i]);
}
mp_obj_t tuple = mp_obj_new_tuple(self->ndim, items);
m_del(mp_obj_t, items, self->ndim);
return tuple;
}
#endif
#if NDARRAY_HAS_TOBYTES
mp_obj_t ndarray_tobytes(mp_obj_t self_in) {
// As opposed to numpy, this function returns a bytearray object with the data pointer (i.e., not a copy)
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
// Piping into a bytearray makes sense for dense arrays only,
// so bail out, if that is not the case
if(!ndarray_is_dense(self)) {
mp_raise_ValueError(translate("tobytes can be invoked for dense arrays only"));
}
return mp_obj_new_bytearray_by_ref(self->itemsize * self->len, self->array);
}
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_tobytes_obj, ndarray_tobytes);
#endif
// Binary operations
ndarray_obj_t *ndarray_from_mp_obj(mp_obj_t obj) {
// creates an ndarray from a micropython int or float
// if the input is an ndarray, it is returned
ndarray_obj_t *ndarray;
if(mp_obj_is_int(obj)) {
int32_t ivalue = mp_obj_get_int(obj);
if((ivalue >= 0) && (ivalue < 256)) {
ndarray = ndarray_new_linear_array(1, NDARRAY_UINT8);
uint8_t *array = (uint8_t *)ndarray->array;
array[0] = (uint8_t)ivalue;
} else if((ivalue > 255) && (ivalue < 65535)) {
ndarray = ndarray_new_linear_array(1, NDARRAY_UINT16);
uint16_t *array = (uint16_t *)ndarray->array;
array[0] = (uint16_t)ivalue;
} else if((ivalue < 0) && (ivalue > -128)) {
ndarray = ndarray_new_linear_array(1, NDARRAY_INT8);
int8_t *array = (int8_t *)ndarray->array;
array[0] = (int8_t)ivalue;
} else if((ivalue < -127) && (ivalue > -32767)) {
ndarray = ndarray_new_linear_array(1, NDARRAY_INT16);
int16_t *array = (int16_t *)ndarray->array;
array[0] = (int16_t)ivalue;
} else { // the integer value clearly does not fit the ulab integer types, so move on to float
ndarray = ndarray_new_linear_array(1, NDARRAY_FLOAT);
mp_float_t *array = (mp_float_t *)ndarray->array;
array[0] = (mp_float_t)ivalue;
}
} else if(mp_obj_is_float(obj)) {
mp_float_t fvalue = mp_obj_get_float(obj);
ndarray = ndarray_new_linear_array(1, NDARRAY_FLOAT);
mp_float_t *array = (mp_float_t *)ndarray->array;
array[0] = (mp_float_t)fvalue;
} else if(mp_obj_is_type(obj, &ulab_ndarray_type)){
return obj;
} else {
mp_raise_TypeError(translate("wrong operand type"));
}
return ndarray;
}
#if NDARRAY_HAS_BINARY_OPS || NDARRAY_HAS_INPLACE_OPS
mp_obj_t ndarray_binary_op(mp_binary_op_t _op, mp_obj_t lobj, mp_obj_t robj) {
// TODO: implement in-place operators
// if the ndarray stands on the right hand side of the expression, simply swap the operands
ndarray_obj_t *lhs, *rhs;
mp_binary_op_t op = _op;
if((op == MP_BINARY_OP_REVERSE_ADD) || (op == MP_BINARY_OP_REVERSE_MULTIPLY) ||
(op == MP_BINARY_OP_REVERSE_POWER) || (op == MP_BINARY_OP_REVERSE_SUBTRACT) ||
(op == MP_BINARY_OP_REVERSE_TRUE_DIVIDE)) {
lhs = ndarray_from_mp_obj(robj);
rhs = ndarray_from_mp_obj(lobj);
} else {
lhs = ndarray_from_mp_obj(lobj);
rhs = ndarray_from_mp_obj(robj);
}
if(op == MP_BINARY_OP_REVERSE_ADD) {
op = MP_BINARY_OP_ADD;
} else if(op == MP_BINARY_OP_REVERSE_MULTIPLY) {
op = MP_BINARY_OP_MULTIPLY;
} else if(op == MP_BINARY_OP_REVERSE_POWER) {
op = MP_BINARY_OP_POWER;
} else if(op == MP_BINARY_OP_REVERSE_SUBTRACT) {
op = MP_BINARY_OP_SUBTRACT;
} else if(op == MP_BINARY_OP_REVERSE_TRUE_DIVIDE) {
op = MP_BINARY_OP_TRUE_DIVIDE;
}
uint8_t ndim = 0;
size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
int32_t *lstrides = m_new(int32_t, ULAB_MAX_DIMS);
int32_t *rstrides = m_new(int32_t, ULAB_MAX_DIMS);
uint8_t broadcastable;
if((op == MP_BINARY_OP_INPLACE_ADD) || (op == MP_BINARY_OP_INPLACE_MULTIPLY) || (op == MP_BINARY_OP_INPLACE_POWER) ||
(op == MP_BINARY_OP_INPLACE_SUBTRACT) || (op == MP_BINARY_OP_INPLACE_TRUE_DIVIDE)) {
broadcastable = ndarray_can_broadcast_inplace(lhs, rhs, rstrides);
} else {
broadcastable = ndarray_can_broadcast(lhs, rhs, &ndim, shape, lstrides, rstrides);
}
if(!broadcastable) {
mp_raise_ValueError(translate("operands could not be broadcast together"));
m_del(size_t, shape, ULAB_MAX_DIMS);
m_del(int32_t, lstrides, ULAB_MAX_DIMS);
m_del(int32_t, rstrides, ULAB_MAX_DIMS);
}
// the empty arrays have to be treated separately
uint8_t dtype = NDARRAY_INT16;
ndarray_obj_t *nd;
if((lhs->ndim == 0) || (rhs->ndim == 0)) {
switch(op) {
case MP_BINARY_OP_INPLACE_ADD:
case MP_BINARY_OP_INPLACE_MULTIPLY:
case MP_BINARY_OP_INPLACE_SUBTRACT:
case MP_BINARY_OP_ADD:
case MP_BINARY_OP_MULTIPLY:
case MP_BINARY_OP_SUBTRACT:
// here we don't have to list those cases that result in an int16,
// because dtype is initialised with that NDARRAY_INT16
if(lhs->dtype == rhs->dtype) {
dtype = rhs->dtype;
} else if((lhs->dtype == NDARRAY_FLOAT) || (rhs->dtype == NDARRAY_FLOAT)) {
dtype = NDARRAY_FLOAT;
} else if(((lhs->dtype == NDARRAY_UINT8) && (rhs->dtype == NDARRAY_UINT16)) ||
((lhs->dtype == NDARRAY_INT8) && (rhs->dtype == NDARRAY_UINT16)) ||
((rhs->dtype == NDARRAY_UINT8) && (lhs->dtype == NDARRAY_UINT16)) ||
((rhs->dtype == NDARRAY_INT8) && (lhs->dtype == NDARRAY_UINT16))) {
dtype = NDARRAY_UINT16;
}
return MP_OBJ_FROM_PTR(ndarray_new_linear_array(0, dtype));
break;
case MP_BINARY_OP_INPLACE_POWER:
case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
case MP_BINARY_OP_POWER:
case MP_BINARY_OP_TRUE_DIVIDE:
return MP_OBJ_FROM_PTR(ndarray_new_linear_array(0, NDARRAY_FLOAT));
break;
case MP_BINARY_OP_LESS:
case MP_BINARY_OP_LESS_EQUAL:
case MP_BINARY_OP_MORE:
case MP_BINARY_OP_MORE_EQUAL:
case MP_BINARY_OP_EQUAL:
case MP_BINARY_OP_NOT_EQUAL:
nd = ndarray_new_linear_array(0, NDARRAY_UINT8);
nd->boolean = true;
return MP_OBJ_FROM_PTR(nd);
default:
return mp_const_none;
break;
}
}
switch(op) {
// first the in-place operators
#if NDARRAY_HAS_INPLACE_ADD
case MP_BINARY_OP_INPLACE_ADD:
return ndarray_inplace_ams(lhs, rhs, rstrides, op);
break;
#endif
#if NDARRAY_HAS_INPLACE_MULTIPLY
case MP_BINARY_OP_INPLACE_MULTIPLY:
return ndarray_inplace_ams(lhs, rhs, rstrides, op);
break;
#endif
#if NDARRAY_HAS_INPLACE_POWER
case MP_BINARY_OP_INPLACE_POWER:
return ndarray_inplace_power(lhs, rhs, rstrides);
break;
#endif
#if NDARRAY_HAS_INPLACE_SUBTRACT
case MP_BINARY_OP_INPLACE_SUBTRACT:
return ndarray_inplace_ams(lhs, rhs, rstrides, op);
break;
#endif
#if NDARRAY_HAS_INPLACE_TRUE_DIVIDE
case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
return ndarray_inplace_divide(lhs, rhs, rstrides);
break;
#endif
// end if in-place operators
#if NDARRAY_HAS_BINARY_OP_LESS
case MP_BINARY_OP_LESS:
// here we simply swap the operands
return ndarray_binary_more(rhs, lhs, ndim, shape, rstrides, lstrides, MP_BINARY_OP_MORE);
break;
#endif
#if NDARRAY_HAS_BINARY_OP_LESS_EQUAL
case MP_BINARY_OP_LESS_EQUAL:
// here we simply swap the operands
return ndarray_binary_more(rhs, lhs, ndim, shape, rstrides, lstrides, MP_BINARY_OP_MORE_EQUAL);
break;
#endif
#if NDARRAY_HAS_BINARY_OP_EQUAL
case MP_BINARY_OP_EQUAL:
return ndarray_binary_equality(lhs, rhs, ndim, shape, lstrides, rstrides, MP_BINARY_OP_EQUAL);
break;
#endif
#if NDARRAY_HAS_BINARY_OP_NOT_EQUAL
case MP_BINARY_OP_NOT_EQUAL:
return ndarray_binary_equality(lhs, rhs, ndim, shape, lstrides, rstrides, MP_BINARY_OP_NOT_EQUAL);
break;
#endif
#if NDARRAY_HAS_BINARY_OP_ADD
case MP_BINARY_OP_ADD:
return ndarray_binary_add(lhs, rhs, ndim, shape, lstrides, rstrides);
break;
#endif
#if NDARRAY_HAS_BINARY_OP_MULTIPLY
case MP_BINARY_OP_MULTIPLY:
return ndarray_binary_multiply(lhs, rhs, ndim, shape, lstrides, rstrides);
break;
#endif
#if NDARRAY_HAS_BINARY_OP_MORE
case MP_BINARY_OP_MORE:
return ndarray_binary_more(lhs, rhs, ndim, shape, lstrides, rstrides, MP_BINARY_OP_MORE);
break;
#endif
#if NDARRAY_HAS_BINARY_OP_MORE_EQUAL
case MP_BINARY_OP_MORE_EQUAL:
return ndarray_binary_more(lhs, rhs, ndim, shape, lstrides, rstrides, MP_BINARY_OP_MORE_EQUAL);
break;
#endif
#if NDARRAY_HAS_BINARY_OP_SUBTRACT
case MP_BINARY_OP_SUBTRACT:
return ndarray_binary_subtract(lhs, rhs, ndim, shape, lstrides, rstrides);
break;
#endif
#if NDARRAY_HAS_BINARY_OP_TRUE_DIVIDE
case MP_BINARY_OP_TRUE_DIVIDE:
return ndarray_binary_true_divide(lhs, rhs, ndim, shape, lstrides, rstrides);
break;
#endif
#if NDARRAY_HAS_BINARY_OP_POWER
case MP_BINARY_OP_POWER:
return ndarray_binary_power(lhs, rhs, ndim, shape, lstrides, rstrides);
break;
#endif
default:
return MP_OBJ_NULL; // op not supported
break;
}
return MP_OBJ_NULL;
}
#endif /* NDARRAY_HAS_BINARY_OPS || NDARRAY_HAS_INPLACE_OPS */
#if NDARRAY_HAS_UNARY_OPS
mp_obj_t ndarray_unary_op(mp_unary_op_t op, mp_obj_t self_in) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
ndarray_obj_t *ndarray = NULL;
switch (op) {
#if NDARRAY_HAS_UNARY_OP_ABS
case MP_UNARY_OP_ABS:
ndarray = ndarray_copy_view(self);
// if Boolean, NDARRAY_UINT8, or NDARRAY_UINT16, there is nothing to do
if(self->dtype == NDARRAY_INT8) {
int8_t *array = (int8_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) {
if(*array < 0) *array = -(*array);
}
} else if(self->dtype == NDARRAY_INT16) {
int16_t *array = (int16_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) {
if(*array < 0) *array = -(*array);
}
} else {
mp_float_t *array = (mp_float_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) {
if(*array < 0) *array = -(*array);
}
}
return MP_OBJ_FROM_PTR(ndarray);
break;
#endif
#if NDARRAY_HAS_UNARY_OP_INVERT
case MP_UNARY_OP_INVERT:
if(self->dtype == NDARRAY_FLOAT) {
mp_raise_ValueError(translate("operation is not supported for given type"));
}
// we can invert the content byte by byte, no need to distinguish between different dtypes
ndarray = ndarray_copy_view(self); // from this point, this is a dense copy
uint8_t *array = (uint8_t *)ndarray->array;
if(ndarray->boolean) {
for(size_t i=0; i < ndarray->len; i++, array++) *array = *array ^ 0x01;
} else {
uint8_t itemsize = mp_binary_get_size('@', self->dtype, NULL);
for(size_t i=0; i < ndarray->len*itemsize; i++, array++) *array ^= 0xFF;
}
return MP_OBJ_FROM_PTR(ndarray);
break;
#endif
#if NDARRAY_HAS_UNARY_OP_LEN
case MP_UNARY_OP_LEN:
return mp_obj_new_int(self->shape[ULAB_MAX_DIMS - self->ndim]);
break;
#endif
#if NDARRAY_HAS_UNARY_OP_NEGATIVE
case MP_UNARY_OP_NEGATIVE:
ndarray = ndarray_copy_view(self); // from this point, this is a dense copy
if(self->dtype == NDARRAY_UINT8) {
uint8_t *array = (uint8_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
} else if(self->dtype == NDARRAY_INT8) {
int8_t *array = (int8_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
} else if(self->dtype == NDARRAY_UINT16) {
uint16_t *array = (uint16_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
} else if(self->dtype == NDARRAY_INT16) {
int16_t *array = (int16_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
} else {
mp_float_t *array = (mp_float_t *)ndarray->array;
for(size_t i=0; i < self->len; i++, array++) *array = -(*array);
}
return MP_OBJ_FROM_PTR(ndarray);
break;
#endif
#if NDARRAY_HAS_UNARY_OP_POSITIVE
case MP_UNARY_OP_POSITIVE:
return MP_OBJ_FROM_PTR(ndarray_copy_view(self));
#endif
default:
return MP_OBJ_NULL; // operator not supported
break;
}
}
#endif /* NDARRAY_HAS_UNARY_OPS */
#if NDARRAY_HAS_TRANSPOSE
mp_obj_t ndarray_transpose(mp_obj_t self_in) {
#if ULAB_MAX_DIMS == 1
return self_in;
#endif
// TODO: check, what happens to the offset here, if we have a view
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
if(self->ndim == 1) {
return self_in;
}
size_t *shape = m_new(size_t, self->ndim);
int32_t *strides = m_new(int32_t, self->ndim);
for(uint8_t i=0; i < self->ndim; i++) {
shape[ULAB_MAX_DIMS - 1 - i] = self->shape[ULAB_MAX_DIMS - self->ndim + i];
strides[ULAB_MAX_DIMS - 1 - i] = self->strides[ULAB_MAX_DIMS - self->ndim + i];
}
// TODO: I am not sure ndarray_new_view is OK here...
// should be deep copy...
ndarray_obj_t *ndarray = ndarray_new_view(self, self->ndim, shape, strides, 0);
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_transpose_obj, ndarray_transpose);
#endif /* NDARRAY_HAS_TRANSPOSE */
#if ULAB_MAX_DIMS > 1
#if NDARRAY_HAS_RESHAPE
mp_obj_t ndarray_reshape(mp_obj_t oin, mp_obj_t _shape) {
ndarray_obj_t *source = MP_OBJ_TO_PTR(oin);
if(!mp_obj_is_type(_shape, &mp_type_tuple)) {
mp_raise_TypeError(translate("shape must be a tuple"));
}
mp_obj_tuple_t *shape = MP_OBJ_TO_PTR(_shape);
if(shape->len > ULAB_MAX_DIMS) {
mp_raise_ValueError(translate("maximum number of dimensions is 4"));
}
size_t *new_shape = m_new(size_t, ULAB_MAX_DIMS);
memset(new_shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
size_t new_length = 1;
for(uint8_t i=0; i < shape->len; i++) {
new_shape[ULAB_MAX_DIMS - i - 1] = mp_obj_get_int(shape->items[shape->len - i - 1]);
new_length *= new_shape[ULAB_MAX_DIMS - i - 1];
}
if(source->len != new_length) {
mp_raise_ValueError(translate("input and output shapes are not compatible"));
}
ndarray_obj_t *ndarray;
if(ndarray_is_dense(source)) {
// TODO: check if this is what numpy does
int32_t *new_strides = strides_from_shape(new_shape, source->dtype);
ndarray = ndarray_new_view(source, shape->len, new_shape, new_strides, 0);
} else {
ndarray = ndarray_new_ndarray_from_tuple(shape, source->dtype);
ndarray_copy_array(source, ndarray);
}
return MP_OBJ_FROM_PTR(ndarray);
}
MP_DEFINE_CONST_FUN_OBJ_2(ndarray_reshape_obj, ndarray_reshape);
#endif /* NDARRAY_HAS_RESHAPE */
#endif /* ULAB_MAX_DIMS > 1 */
#if ULAB_NUMPY_HAS_NDINFO
mp_obj_t ndarray_info(mp_obj_t obj_in) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(obj_in);
if(!mp_obj_is_type(ndarray, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("function is defined for ndarrays only"));
}
mp_printf(MP_PYTHON_PRINTER, "class: ndarray\n");
mp_printf(MP_PYTHON_PRINTER, "shape: (");
if(ndarray->ndim == 1) {
mp_printf(MP_PYTHON_PRINTER, "%d,", ndarray->shape[ULAB_MAX_DIMS-1]);
} else {
for(uint8_t i=0; i < ndarray->ndim-1; i++) mp_printf(MP_PYTHON_PRINTER, "%d, ", ndarray->shape[i]);
mp_printf(MP_PYTHON_PRINTER, "%d", ndarray->shape[ULAB_MAX_DIMS-1]);
}
mp_printf(MP_PYTHON_PRINTER, ")\n");
mp_printf(MP_PYTHON_PRINTER, "strides: (");
if(ndarray->ndim == 1) {
mp_printf(MP_PYTHON_PRINTER, "%d,", ndarray->strides[ULAB_MAX_DIMS-1]);
} else {
for(uint8_t i=0; i < ndarray->ndim-1; i++) mp_printf(MP_PYTHON_PRINTER, "%d, ", ndarray->strides[i]);
mp_printf(MP_PYTHON_PRINTER, "%d", ndarray->strides[ULAB_MAX_DIMS-1]);
}
mp_printf(MP_PYTHON_PRINTER, ")\n");
mp_printf(MP_PYTHON_PRINTER, "itemsize: %d\n", ndarray->itemsize);
mp_printf(MP_PYTHON_PRINTER, "data pointer: 0x%p\n", ndarray->array);
mp_printf(MP_PYTHON_PRINTER, "type: ");
if(ndarray->boolean) {
mp_printf(MP_PYTHON_PRINTER, "bool\n");
} else if(ndarray->dtype == NDARRAY_UINT8) {
mp_printf(MP_PYTHON_PRINTER, "uint8\n");
} else if(ndarray->dtype == NDARRAY_INT8) {
mp_printf(MP_PYTHON_PRINTER, "int8\n");
} else if(ndarray->dtype == NDARRAY_UINT16) {
mp_printf(MP_PYTHON_PRINTER, "uint16\n");
} else if(ndarray->dtype == NDARRAY_INT16) {
mp_printf(MP_PYTHON_PRINTER, "int16\n");
} else if(ndarray->dtype == NDARRAY_FLOAT) {
mp_printf(MP_PYTHON_PRINTER, "float\n");
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(ndarray_info_obj, ndarray_info);
#endif
// (the get_buffer protocol returns 0 for success, 1 for failure)
mp_int_t ndarray_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) {
ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in);
if(!ndarray_is_dense(self)) {
return 1;
}
bufinfo->len = self->itemsize * self->len;
bufinfo->buf = self->array;
bufinfo->typecode = self->dtype;
return 0;
}