micropython-ulab/code/utils/utils.c
2024-01-28 12:26:42 +01:00

411 lines
15 KiB
C

/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2024 Zoltán Vörös
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "utils.h"
#include "../ulab_tools.h"
#include "../numpy/fft/fft_tools.h"
#if ULAB_HAS_UTILS_MODULE
enum UTILS_BUFFER_TYPE {
UTILS_INT16_BUFFER,
UTILS_UINT16_BUFFER,
UTILS_INT32_BUFFER,
UTILS_UINT32_BUFFER,
};
#if ULAB_UTILS_HAS_FROM_INT16_BUFFER | ULAB_UTILS_HAS_FROM_UINT16_BUFFER | ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER
static mp_obj_t utils_from_intbuffer_helper(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, uint8_t buffer_type) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } } ,
{ MP_QSTR_count, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(-1) } },
{ MP_QSTR_offset, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(0) } },
{ MP_QSTR_out, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_byteswap, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_FALSE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
ndarray_obj_t *ndarray = NULL;
if(args[3].u_obj != mp_const_none) {
ndarray = MP_OBJ_TO_PTR(args[3].u_obj);
if((ndarray->dtype != NDARRAY_FLOAT) || !ndarray_is_dense(ndarray)) {
mp_raise_TypeError(MP_ERROR_TEXT("out must be a float dense array"));
}
}
size_t offset = mp_obj_get_int(args[2].u_obj);
mp_buffer_info_t bufinfo;
if(mp_get_buffer(args[0].u_obj, &bufinfo, MP_BUFFER_READ)) {
if(bufinfo.len < offset) {
mp_raise_ValueError(MP_ERROR_TEXT("offset is too large"));
}
uint8_t sz = sizeof(int16_t);
#if ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER
if((buffer_type == UTILS_INT32_BUFFER) || (buffer_type == UTILS_UINT32_BUFFER)) {
sz = sizeof(int32_t);
}
#endif
size_t len = (bufinfo.len - offset) / sz;
if((len * sz) != (bufinfo.len - offset)) {
mp_raise_ValueError(MP_ERROR_TEXT("buffer size must be a multiple of element size"));
}
if(mp_obj_get_int(args[1].u_obj) > 0) {
size_t count = mp_obj_get_int(args[1].u_obj);
if(len < count) {
mp_raise_ValueError(MP_ERROR_TEXT("buffer is smaller than requested size"));
} else {
len = count;
}
}
if(args[3].u_obj == mp_const_none) {
ndarray = ndarray_new_linear_array(len, NDARRAY_FLOAT);
} else {
if(ndarray->len < len) {
mp_raise_ValueError(MP_ERROR_TEXT("out array is too small"));
}
}
uint8_t *buffer = bufinfo.buf;
mp_float_t *array = (mp_float_t *)ndarray->array;
if(args[4].u_obj == mp_const_true) {
// swap the bytes before conversion
uint8_t *tmpbuff = m_new(uint8_t, sz);
#if ULAB_UTILS_HAS_FROM_INT16_BUFFER | ULAB_UTILS_HAS_FROM_UINT16_BUFFER
if((buffer_type == UTILS_INT16_BUFFER) || (buffer_type == UTILS_UINT16_BUFFER)) {
for(size_t i = 0; i < len; i++) {
tmpbuff += sz;
for(uint8_t j = 0; j < sz; j++) {
memcpy(--tmpbuff, buffer++, 1);
}
if(buffer_type == UTILS_INT16_BUFFER) {
*array++ = (mp_float_t)(*(int16_t *)tmpbuff);
} else {
*array++ = (mp_float_t)(*(uint16_t *)tmpbuff);
}
}
}
#endif
#if ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER
if((buffer_type == UTILS_INT32_BUFFER) || (buffer_type == UTILS_UINT32_BUFFER)) {
for(size_t i = 0; i < len; i++) {
tmpbuff += sz;
for(uint8_t j = 0; j < sz; j++) {
memcpy(--tmpbuff, buffer++, 1);
}
if(buffer_type == UTILS_INT32_BUFFER) {
*array++ = (mp_float_t)(*(int32_t *)tmpbuff);
} else {
*array++ = (mp_float_t)(*(uint32_t *)tmpbuff);
}
}
}
#endif
} else {
#if ULAB_UTILS_HAS_FROM_INT16_BUFFER
if(buffer_type == UTILS_INT16_BUFFER) {
for(size_t i = 0; i < len; i++) {
*array++ = (mp_float_t)(*(int16_t *)buffer);
buffer += sz;
}
}
#endif
#if ULAB_UTILS_HAS_FROM_UINT16_BUFFER
if(buffer_type == UTILS_UINT16_BUFFER) {
for(size_t i = 0; i < len; i++) {
*array++ = (mp_float_t)(*(uint16_t *)buffer);
buffer += sz;
}
}
#endif
#if ULAB_UTILS_HAS_FROM_INT32_BUFFER
if(buffer_type == UTILS_INT32_BUFFER) {
for(size_t i = 0; i < len; i++) {
*array++ = (mp_float_t)(*(int32_t *)buffer);
buffer += sz;
}
}
#endif
#if ULAB_UTILS_HAS_FROM_UINT32_BUFFER
if(buffer_type == UTILS_UINT32_BUFFER) {
for(size_t i = 0; i < len; i++) {
*array++ = (mp_float_t)(*(uint32_t *)buffer);
buffer += sz;
}
}
#endif
}
return MP_OBJ_FROM_PTR(ndarray);
}
return mp_const_none;
}
#ifdef ULAB_UTILS_HAS_FROM_INT16_BUFFER
static mp_obj_t utils_from_int16_buffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return utils_from_intbuffer_helper(n_args, pos_args, kw_args, UTILS_INT16_BUFFER);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_int16_buffer_obj, 1, utils_from_int16_buffer);
#endif
#ifdef ULAB_UTILS_HAS_FROM_UINT16_BUFFER
static mp_obj_t utils_from_uint16_buffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return utils_from_intbuffer_helper(n_args, pos_args, kw_args, UTILS_UINT16_BUFFER);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_uint16_buffer_obj, 1, utils_from_uint16_buffer);
#endif
#ifdef ULAB_UTILS_HAS_FROM_INT32_BUFFER
static mp_obj_t utils_from_int32_buffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return utils_from_intbuffer_helper(n_args, pos_args, kw_args, UTILS_INT32_BUFFER);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_int32_buffer_obj, 1, utils_from_int32_buffer);
#endif
#ifdef ULAB_UTILS_HAS_FROM_UINT32_BUFFER
static mp_obj_t utils_from_uint32_buffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return utils_from_intbuffer_helper(n_args, pos_args, kw_args, UTILS_UINT32_BUFFER);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_from_uint32_buffer_obj, 1, utils_from_uint32_buffer);
#endif
#endif /* ULAB_UTILS_HAS_FROM_INT16_BUFFER | ULAB_UTILS_HAS_FROM_UINT16_BUFFER | ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER */
#if ULAB_UTILS_HAS_SPECTROGRAM
//| import ulab.numpy
//|
//| def spectrogram(r: ulab.numpy.ndarray) -> ulab.numpy.ndarray:
//| """
//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
//|
//| Computes the spectrum of the input signal. This is the absolute value of the (complex-valued) fft of the signal.
//| This function is similar to scipy's ``scipy.signal.welch`` https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html."""
//| ...
//|
mp_obj_t utils_spectrogram(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE }} ,
#if !ULAB_FFT_IS_NUMPY_COMPATIBLE
{ MP_QSTR_, MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
#endif
{ MP_QSTR_scratchpad, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_out, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_NONE } },
{ MP_QSTR_log, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_FALSE } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(MP_ERROR_TEXT("spectrogram is defined for ndarrays only"));
}
ndarray_obj_t *in = MP_OBJ_TO_PTR(args[0].u_obj);
#if ULAB_MAX_DIMS > 1
if(in->ndim != 1) {
mp_raise_TypeError(MP_ERROR_TEXT("spectrogram is implemented for 1D arrays only"));
}
#endif
size_t len = in->len;
// Check if input is of length of power of 2
if((len & (len-1)) != 0) {
mp_raise_ValueError(MP_ERROR_TEXT("input array length must be power of 2"));
}
ndarray_obj_t *out = NULL;
#if ULAB_FFT_IS_NUMPY_COMPATIBLE
mp_obj_t scratchpad_object = args[1].u_obj;
mp_obj_t out_object = args[2].u_obj;
mp_obj_t log_object = args[3].u_obj;
#else
mp_obj_t scratchpad_object = args[2].u_obj;
mp_obj_t out_object = args[3].u_obj;
mp_obj_t log_object = args[4].u_obj;
#endif
if(out_object != mp_const_none) {
if(!mp_obj_is_type(out_object, &ulab_ndarray_type)) {
mp_raise_TypeError(MP_ERROR_TEXT("out must be an ndarray"));
}
out = MP_OBJ_TO_PTR(out_object);
if((out->dtype != NDARRAY_FLOAT) || (out->ndim != 1)){
mp_raise_TypeError(MP_ERROR_TEXT("out array must be a 1D array of float type"));
}
if(len != out->len) {
mp_raise_ValueError(MP_ERROR_TEXT("input and out arrays must have same length"));
}
} else {
out = ndarray_new_linear_array(len, NDARRAY_FLOAT);
}
ndarray_obj_t *scratchpad = NULL;
mp_float_t *tmp = NULL;
if(scratchpad_object != mp_const_none) {
if(!mp_obj_is_type(scratchpad_object, &ulab_ndarray_type)) {
mp_raise_TypeError(MP_ERROR_TEXT("scratchpad must be an ndarray"));
}
scratchpad = MP_OBJ_TO_PTR(scratchpad_object);
if(!ndarray_is_dense(scratchpad) || (scratchpad->ndim != 1) || (scratchpad->dtype != NDARRAY_FLOAT)) {
mp_raise_ValueError(MP_ERROR_TEXT("scratchpad must be a 1D dense float array"));
}
if(scratchpad->len != 2 * len) {
mp_raise_ValueError(MP_ERROR_TEXT("scratchpad must be twice as long as input"));
}
tmp = (mp_float_t *)scratchpad->array;
} else {
tmp = m_new0(mp_float_t, 2 * len);
}
uint8_t *array = (uint8_t *)in->array;
#if ULAB_FFT_IS_NUMPY_COMPATIBLE // ULAB_SUPPORTS_COMPLEX is automatically true
if(in->dtype == NDARRAY_COMPLEX) {
uint8_t sz = 2 * sizeof(mp_float_t);
for(size_t i = 0; i < len; i++) {
memcpy(tmp, array, sz);
tmp += 2;
array += in->strides[ULAB_MAX_DIMS - 1];
}
} else {
mp_float_t (*func)(void *) = ndarray_get_float_function(in->dtype);
for(size_t i = 0; i < len; i++) {
*tmp++ = func(array); // real part
*tmp++ = 0; // imaginary part, clear
array += in->strides[ULAB_MAX_DIMS - 1];
}
}
tmp -= 2 * len;
fft_kernel(tmp, len, 1);
#else // we might have two real input vectors
ndarray_obj_t *in2 = NULL;
if(n_args == 2) {
if(!mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(MP_ERROR_TEXT("spectrogram is defined for ndarrays only"));
}
in2 = MP_OBJ_TO_PTR(args[1].u_obj);
#if ULAB_MAX_DIMS > 1
if(in2->ndim != 1) {
mp_raise_TypeError(MP_ERROR_TEXT("spectrogram is implemented for 1D arrays only"));
}
#endif
if(len != in2->len) {
mp_raise_TypeError(MP_ERROR_TEXT("input arrays are not compatible"));
}
}
mp_float_t (*func)(void *) = ndarray_get_float_function(in->dtype);
for(size_t i = 0; i < len; i++) {
*tmp++ = func(array); // real part; imageinary will be cleared later
array += in->strides[ULAB_MAX_DIMS - 1];
}
if(n_args == 2) {
mp_float_t (*func2)(void *) = ndarray_get_float_function(in2->dtype);
array = (uint8_t *)in2->array;
for(size_t i = 0; i < len; i++) {
*tmp++ = func2(array);
array += in2->strides[ULAB_MAX_DIMS - 1];
}
tmp -= len;
} else {
// if there is only one input argument, clear the imaginary part
memset(tmp, 0, len * sizeof(mp_float_t));
}
tmp -= len;
fft_kernel(tmp, tmp + len, len, 1);
#endif /* ULAB_FFT_IS_NUMPY_COMPATIBLE */
mp_float_t *spectrum = (mp_float_t *)out->array;
uint8_t spectrum_sz = out->strides[ULAB_MAX_DIMS - 1] / sizeof(mp_float_t);
for(size_t i = 0; i < len; i++) {
#if ULAB_FFT_IS_NUMPY_COMPATIBLE
*spectrum = MICROPY_FLOAT_C_FUN(sqrt)(*tmp * *tmp + *(tmp + 1) * *(tmp + 1));
tmp += 2;
#else
*spectrum = MICROPY_FLOAT_C_FUN(sqrt)(*tmp * *tmp + *(tmp + len) * *(tmp + len));
tmp++;
#endif
if(log_object == mp_const_true) {
*spectrum = MICROPY_FLOAT_C_FUN(log)(*spectrum);
}
spectrum += spectrum_sz;
}
// FIXME:
// if(scratchpad_object == mp_const_none) {
// m_del(mp_float_t, tmp, 2 * len);
// }
return MP_OBJ_FROM_PTR(out);
}
MP_DEFINE_CONST_FUN_OBJ_KW(utils_spectrogram_obj, 1, utils_spectrogram);
#endif /* ULAB_UTILS_HAS_SPECTROGRAM */
static const mp_rom_map_elem_t ulab_utils_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_utils) },
#if ULAB_UTILS_HAS_FROM_INT16_BUFFER
{ MP_ROM_QSTR(MP_QSTR_from_int16_buffer), MP_ROM_PTR(&utils_from_int16_buffer_obj) },
#endif
#if ULAB_UTILS_HAS_FROM_UINT16_BUFFER
{ MP_ROM_QSTR(MP_QSTR_from_uint16_buffer), MP_ROM_PTR(&utils_from_uint16_buffer_obj) },
#endif
#if ULAB_UTILS_HAS_FROM_INT32_BUFFER
{ MP_ROM_QSTR(MP_QSTR_from_int32_buffer), MP_ROM_PTR(&utils_from_int32_buffer_obj) },
#endif
#if ULAB_UTILS_HAS_FROM_UINT32_BUFFER
{ MP_ROM_QSTR(MP_QSTR_from_uint32_buffer), MP_ROM_PTR(&utils_from_uint32_buffer_obj) },
#endif
#if ULAB_UTILS_HAS_SPECTROGRAM
{ MP_ROM_QSTR(MP_QSTR_spectrogram), MP_ROM_PTR(&utils_spectrogram_obj) },
#endif
};
static MP_DEFINE_CONST_DICT(mp_module_ulab_utils_globals, ulab_utils_globals_table);
const mp_obj_module_t ulab_utils_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_utils_globals,
};
#if CIRCUITPY_ULAB
MP_REGISTER_MODULE(MP_QSTR_ulab_dot_utils, ulab_utils_module);
#endif
#endif /* ULAB_HAS_UTILS_MODULE */