// Recursive calls of modules can generate complex geometry, especially // fractal style objects. // The example uses a recursive module to generate a random tree as // described in http://natureofcode.com/book/chapter-8-fractals/ levels = 10; // number of levels for the recursion len = 100; // length of the first segment thickness = 5; // thickness of the first segment // the identity matrix identity = [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ]; // random generator, to generate always the same output for the example, // this uses a seed for rands() and stores the array of random values in // the random variable. To generate different output, remove the seed or // replace the function rnd() to just call rands(s, e, 1)[0]. rcnt = 1000; random = rands(0, 1, rcnt, 18); function rnd(s, e, r) = random[r % rcnt] * (e - s) + s; // generate 4x4 translation matrix function mt(x, y) = [ [ 1, 0, 0, x ], [ 0, 1, 0, y ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ]; // generate 4x4 rotation matrix around Z axis function mr(a) = [ [ cos(a), -sin(a), 0, 0 ], [ sin(a), cos(a), 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ]; module tree(length, thickness, count, m = identity, r = 1) { color([0, 1 - (0.8 / levels * count), 0]) multmatrix(m) square([thickness, length]); if (count > 0) { tree(rnd(0.6, 0.8, r) * length, 0.8 * thickness, count - 1, m * mt(0, length) * mr(rnd(20, 35, r + 1)), 8 * r); tree(rnd(0.6, 0.8, r + 1) * length, 0.8 * thickness, count - 1, m * mt(0, length) * mr(-rnd(20, 35, r + 3)), 8 * r + 4); } } tree(len, thickness, levels); echo(version=version()); // Written in 2015 by Torsten Paul // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to the // public domain worldwide. This software is distributed without any // warranty. // // You should have received a copy of the CC0 Public Domain // Dedication along with this software. // If not, see .