seesaw/bsp/bsp_sercom.cpp
2018-08-15 17:53:40 -04:00

506 lines
12 KiB
C++

#include "bsp_sercom.h"
bool sendDataSlaveWIRE( Sercom *sercom, uint8_t data )
{
//Send data
sercom->I2CS.DATA.bit.DATA = data;
//Problems on line? nack received?
if(!sercom->I2CS.INTFLAG.bit.DRDY || sercom->I2CS.STATUS.bit.RXNACK)
return false;
else
return true;
}
int availableWIRE( Sercom *sercom )
{
if(isMasterWIRE(sercom))
return sercom->I2CM.INTFLAG.bit.SB;
else
return sercom->I2CS.INTFLAG.bit.DRDY;
}
void prepareNackBitWIRE( Sercom *sercom )
{
if(isMasterWIRE(sercom)) {
// Send a NACK
sercom->I2CM.CTRLB.bit.ACKACT = 1;
} else {
sercom->I2CS.CTRLB.bit.ACKACT = 1;
}
}
void prepareAckBitWIRE( Sercom *sercom )
{
if(isMasterWIRE(sercom)) {
// Send an ACK
sercom->I2CM.CTRLB.bit.ACKACT = 0;
} else {
sercom->I2CS.CTRLB.bit.ACKACT = 0;
}
}
void prepareCommandBitsWire(Sercom *sercom, uint8_t cmd)
{
if(isMasterWIRE(sercom)) {
sercom->I2CM.CTRLB.bit.CMD = cmd;
while(sercom->I2CM.SYNCBUSY.bit.SYSOP)
{
// Waiting for synchronization
}
} else {
sercom->I2CS.CTRLB.bit.CMD = cmd;
}
}
uint8_t readDataWIRE( Sercom *sercom )
{
if(isMasterWIRE(sercom))
{
while( sercom->I2CM.INTFLAG.bit.SB == 0 )
{
// Waiting complete receive
}
return sercom->I2CM.DATA.bit.DATA ;
}
else
{
return sercom->I2CS.DATA.reg ;
}
}
void initClock( Sercom *sercom )
{
uint8_t clockId = 0;
if(sercom == SERCOM0)
{
clockId = GCLK_CLKCTRL_ID_SERCOM0_CORE;
}
else if(sercom == SERCOM1)
{
clockId = GCLK_CLKCTRL_ID_SERCOM1_CORE;
}
#if defined(SERCOM2)
else if(sercom == SERCOM2)
{
clockId = GCLK_CLKCTRL_ID_SERCOM2_CORE;
}
#endif
#if defined(SERCOM3)
else if(sercom == SERCOM3)
{
clockId = GCLK_CLKCTRL_ID_SERCOM3_CORE;
}
#endif
#if defined(SERCOM4)
else if(sercom == SERCOM4)
{
clockId = GCLK_CLKCTRL_ID_SERCOM4_CORE;
}
#endif
#if defined(SERCOM5)
else if(sercom == SERCOM5)
{
clockId = GCLK_CLKCTRL_ID_SERCOM5_CORE;
}
#endif
//Setting clock
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID( clockId ) | // Generic Clock 0 (SERCOMx)
GCLK_CLKCTRL_GEN_GCLK0 | // Generic Clock Generator 0 is source
GCLK_CLKCTRL_CLKEN ;
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID( GCLK_CLKCTRL_ID_SERCOMX_SLOW ) |
GCLK_CLKCTRL_GEN_GCLK1 |
GCLK_CLKCTRL_CLKEN ;
while ( GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY )
{
/* Wait for synchronization */
}
}
/* =========================
* ===== Sercom WIRE
* =========================
*/
void resetWIRE(Sercom *sercom)
{
//I2CM OR I2CS, no matter SWRST is the same bit.
//Setting the Software bit to 1
sercom->I2CM.CTRLA.bit.SWRST = 1;
//Wait both bits Software Reset from CTRLA and SYNCBUSY are equal to 0
while(sercom->I2CM.CTRLA.bit.SWRST || sercom->I2CM.SYNCBUSY.bit.SWRST);
}
void enableWIRE(Sercom *sercom)
{
// Enable the I²C master mode
sercom->I2CM.CTRLA.bit.ENABLE = 1 ;
while ( sercom->I2CM.SYNCBUSY.bit.ENABLE != 0 )
{
// Waiting the enable bit from SYNCBUSY is equal to 0;
}
// Setting bus idle mode
sercom->I2CM.STATUS.bit.BUSSTATE = 1 ;
while ( sercom->I2CM.SYNCBUSY.bit.SYSOP != 0 )
{
// Wait the SYSOP bit from SYNCBUSY coming back to 0
}
}
void initSlaveWIRE( Sercom *sercom, uint8_t ucAddress )
{
// Initialize the peripheral clock and interruption
initClock(sercom) ;
resetWIRE(sercom) ;
// Set slave mode
sercom->I2CS.CTRLA.bit.MODE = I2C_SLAVE_OPERATION;
sercom->I2CS.ADDR.reg = SERCOM_I2CS_ADDR_ADDR( ucAddress & 0x7Ful ) | // 0x7F, select only 7 bits
SERCOM_I2CS_ADDR_ADDRMASK( 0x00ul ) ; // 0x00, only match exact address
enableInterruptsWIRE( sercom );
while ( sercom->I2CM.SYNCBUSY.bit.SYSOP != 0 )
{
// Wait the SYSOP bit from SYNCBUSY to come back to 0
}
}
/* =========================
* ===== Sercom UART
* =========================
*/
void resetUART( Sercom * sercom )
{
// Start the Software Reset
sercom->USART.CTRLA.bit.SWRST = 1 ;
while ( sercom->USART.CTRLA.bit.SWRST || sercom->USART.SYNCBUSY.bit.SWRST )
{
// Wait for both bits Software Reset from CTRLA and SYNCBUSY coming back to 0
}
}
bool isDataRegisterEmptyUART( Sercom * sercom )
{
//DRE : Data Register Empty
return sercom->USART.INTFLAG.bit.DRE;
}
void initUART( Sercom * sercom, SercomUartSampleRate sampleRate, uint32_t baudrate)
{
initClock(sercom);
resetUART(sercom);
//Setting the CTRLA register
sercom->USART.CTRLA.reg = SERCOM_USART_CTRLA_MODE(0x01) |
SERCOM_USART_CTRLA_SAMPR(sampleRate);
//Setting the Interrupt register
sercom->USART.INTENSET.reg = SERCOM_USART_INTENSET_RXC | //Received complete
SERCOM_USART_INTENSET_ERROR; //All others errors
uint16_t sampleRateValue;
if (sampleRate == SAMPLE_RATE_x16) {
sampleRateValue = 16;
} else {
sampleRateValue = 8;
}
// Asynchronous fractional mode (Table 24-2 in datasheet)
// BAUD = fref / (sampleRateValue * fbaud)
// (multiply by 8, to calculate fractional piece)
uint32_t baudTimes8 = (SystemCoreClock * 8) / (sampleRateValue * baudrate);
sercom->USART.BAUD.FRAC.FP = (baudTimes8 % 8);
sercom->USART.BAUD.FRAC.BAUD = (baudTimes8 / 8);
}
void disableInterruptsUART(Sercom * sercom)
{
sercom->USART.INTENCLR.reg = SERCOM_USART_INTENCLR_RXC | //Received complete
SERCOM_USART_INTENCLR_ERROR; //All others errors
}
void initFrame( Sercom * sercom , SercomUartCharSize charSize, SercomDataOrder dataOrder, SercomParityMode parityMode, SercomNumberStopBit nbStopBits)
{
//Setting the CTRLA register
sercom->USART.CTRLA.reg |= SERCOM_USART_CTRLA_FORM( (parityMode == SERCOM_NO_PARITY ? 0 : 1) ) |
dataOrder << SERCOM_USART_CTRLA_DORD_Pos;
//Setting the CTRLB register
sercom->USART.CTRLB.reg |= SERCOM_USART_CTRLB_CHSIZE(charSize) |
nbStopBits << SERCOM_USART_CTRLB_SBMODE_Pos |
(parityMode == SERCOM_NO_PARITY ? 0 : parityMode) << SERCOM_USART_CTRLB_PMODE_Pos; //If no parity use default value
}
void initPads( Sercom * sercom , SercomUartTXPad txPad, SercomRXPad rxPad)
{
//Setting the CTRLA register
sercom->USART.CTRLA.reg |= SERCOM_USART_CTRLA_TXPO(txPad) |
SERCOM_USART_CTRLA_RXPO(rxPad);
// Enable Transceiver and Receiver
sercom->USART.CTRLB.reg |= SERCOM_USART_CTRLB_TXEN | SERCOM_USART_CTRLB_RXEN ;
}
int writeDataUART( Sercom * sercom ,uint8_t data)
{
// Wait for data register to be empty
while(!isDataRegisterEmptyUART(sercom));
//Put data into DATA register
sercom->USART.DATA.reg = (uint16_t)data;
return 1;
}
int writeDataUART( Sercom * sercom , char const *buffer){
while(*buffer != '\0')
writeDataUART(sercom, *buffer++);
return 1;
}
void enableUART( Sercom * sercom )
{
while(sercom->USART.SYNCBUSY.bit.ENABLE || sercom->USART.SYNCBUSY.bit.SWRST);
//Setting the enable bit to 1
sercom->USART.CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
//Wait for then enable bit from SYNCBUSY is equal to 0;
while(sercom->USART.SYNCBUSY.bit.ENABLE);
}
void disableUART( Sercom *sercom )
{
while(sercom->USART.SYNCBUSY.bit.ENABLE || sercom->USART.SYNCBUSY.bit.SWRST);
//Setting the enable bit to 0
sercom->USART.CTRLA.bit.ENABLE = 0;
//Wait for then enable bit from SYNCBUSY is equal to 0;
while(sercom->USART.SYNCBUSY.bit.ENABLE);
}
void setUARTBaud( Sercom *sercom, uint32_t baudrate )
{
disableUART(sercom);
// Asynchronous fractional mode (Table 24-2 in datasheet)
// BAUD = fref / (sampleRateValue * fbaud)
// (multiply by 8, to calculate fractional piece)
uint32_t baudTimes8 = (SystemCoreClock * 8) / (16 * baudrate);
sercom->USART.BAUD.FRAC.FP = (baudTimes8 % 8);
sercom->USART.BAUD.FRAC.BAUD = (baudTimes8 / 8);
enableUART(sercom);
}
/* =========================
* ===== Sercom SPI
* =========================
*/
uint8_t calculateBaudrateSynchronous(uint32_t baudrate)
{
return SERCOM_FREQ_REF / (2 * baudrate) - 1;
}
void initSPI( Sercom *sercom, SercomSpiTXPad mosi, SercomRXPad miso, SercomSpiCharSize charSize, SercomDataOrder dataOrder)
{
resetSPI(sercom);
initClock(sercom);
//Setting the CTRLA register
sercom->SPI.CTRLA.reg = SERCOM_SPI_CTRLA_MODE_SPI_MASTER |
SERCOM_SPI_CTRLA_DOPO(mosi) |
SERCOM_SPI_CTRLA_DIPO(miso) |
dataOrder << SERCOM_SPI_CTRLA_DORD_Pos;
//Setting the CTRLB register
sercom->SPI.CTRLB.reg = SERCOM_SPI_CTRLB_CHSIZE(charSize) |
SERCOM_SPI_CTRLB_RXEN; //Active the SPI receiver.
}
void initSPISlave( Sercom *sercom, SercomSpiTXPad miso, SercomRXPad mosi, SercomSpiCharSize charSize, SercomDataOrder dataOrder)
{
initClock(sercom);
resetSPI(sercom);
//Setting the CTRLA register
sercom->SPI.CTRLA.reg = SERCOM_SPI_CTRLA_MODE_SPI_SLAVE |
SERCOM_SPI_CTRLA_DOPO(miso) |
SERCOM_SPI_CTRLA_DIPO(mosi) |
dataOrder << SERCOM_SPI_CTRLA_DORD_Pos;
//Setting the CTRLB register
sercom->SPI.CTRLB.reg = SERCOM_SPI_CTRLB_CHSIZE(charSize) |
SERCOM_SPI_CTRLB_RXEN | SERCOM_SPI_CTRLB_PLOADEN; //Active the SPI receiver.
}
void initSPIClock( Sercom *sercom, SercomSpiClockMode clockMode, uint32_t baudrate)
{
//Extract data from clockMode
int cpha, cpol;
if((clockMode & (0x1ul)) == 0 )
cpha = 0;
else
cpha = 1;
if((clockMode & (0x2ul)) == 0)
cpol = 0;
else
cpol = 1;
//Setting the CTRLA register
sercom->SPI.CTRLA.reg |= ( cpha << SERCOM_SPI_CTRLA_CPHA_Pos ) |
( cpol << SERCOM_SPI_CTRLA_CPOL_Pos );
//Synchronous arithmetic
sercom->SPI.BAUD.reg = calculateBaudrateSynchronous(baudrate);
}
void resetSPI( Sercom *sercom )
{
//Setting the Software Reset bit to 1
sercom->SPI.CTRLA.bit.SWRST = 1;
//Wait both bits Software Reset from CTRLA and SYNCBUSY are equal to 0
while(sercom->SPI.CTRLA.bit.SWRST || sercom->SPI.SYNCBUSY.bit.SWRST);
}
void enableSPI( Sercom *sercom )
{
//Setting the enable bit to 1
sercom->SPI.CTRLA.bit.ENABLE = 1;
while(sercom->SPI.SYNCBUSY.bit.ENABLE)
{
//Waiting then enable bit from SYNCBUSY is equal to 0;
}
}
void disableSPI( Sercom *sercom )
{
while(sercom->SPI.SYNCBUSY.bit.ENABLE)
{
//Waiting then enable bit from SYNCBUSY is equal to 0;
}
//Setting the enable bit to 0
sercom->SPI.CTRLA.bit.ENABLE = 0;
while(sercom->SPI.SYNCBUSY.bit.ENABLE);
}
void setDataOrderSPI( Sercom *sercom, SercomDataOrder dataOrder)
{
//Register enable-protected
disableSPI(sercom);
sercom->SPI.CTRLA.bit.DORD = dataOrder;
enableSPI(sercom);
}
SercomDataOrder getDataOrderSPI( Sercom *sercom )
{
return (sercom->SPI.CTRLA.bit.DORD ? LSB_FIRST : MSB_FIRST);
}
void setBaudrateSPI( Sercom *sercom, uint8_t divider)
{
//Can't divide by 0
if(divider == 0)
return;
//Register enable-protected
disableSPI(sercom);
sercom->SPI.BAUD.reg = calculateBaudrateSynchronous( SERCOM_FREQ_REF / divider );
enableSPI(sercom);
}
void setClockModeSPI( Sercom *sercom, SercomSpiClockMode clockMode)
{
int cpha, cpol;
if((clockMode & (0x1ul)) == 0)
cpha = 0;
else
cpha = 1;
if((clockMode & (0x2ul)) == 0)
cpol = 0;
else
cpol = 1;
//Register enable-protected
disableSPI(sercom);
sercom->SPI.CTRLA.bit.CPOL = cpol;
sercom->SPI.CTRLA.bit.CPHA = cpha;
enableSPI(sercom);
}
uint8_t transferDataSPI( Sercom *sercom, uint8_t data)
{
sercom->SPI.DATA.bit.DATA = data; // Writing data into Data register
while( sercom->SPI.INTFLAG.bit.RXC == 0 )
{
// Waiting Complete Reception
}
return sercom->SPI.DATA.bit.DATA; // Reading data
}
bool isBufferOverflowErrorSPI( Sercom *sercom )
{
return sercom->SPI.STATUS.bit.BUFOVF;
}
bool isDataRegisterEmptySPI( Sercom *sercom )
{
//DRE : Data Register Empty
return sercom->SPI.INTFLAG.bit.DRE;
}
//bool isTransmitCompleteSPI()
//{
// //TXC : Transmit complete
// return sercom->SPI.INTFLAG.bit.TXC;
//}
//
//bool isReceiveCompleteSPI()
//{
// //RXC : Receive complete
// return sercom->SPI.INTFLAG.bit.RXC;
//}