.. leading zeros are required for `frontmatter` to treat them as dates
rather than strings, apparently per the YAML specification.
This was done by script:
```py
import re
import datetime
import pathlib
import sys
import frontmatter
rx = re.compile(r'^(\s*)date_added:.*$', re.M)
for path_str in sys.argv[1:]:
print(path_str)
path = pathlib.Path(path_str)
post = frontmatter.load(path)
date_added = post.get("date_added", "")
if isinstance(date_added, datetime.date):
continue
if isinstance(date_added, str):
try:
date_added = datetime.datetime.strptime(date_added, "%Y-%m-%d")
except ValueError as exc:
print(f"Failed to parse date {date_added} in {path_str}: {exc}")
continue
date_added = date_added.date()
content = path.read_text("utf-8")
new_content = rx.sub(lambda m: f"{m.group(1)}date_added: {date_added}", content)
assert content != new_content
path.write_text(new_content, "utf-8")
```
1.3 KiB
1.3 KiB
| layout | board_id | title | name | manufacturer | board_url | board_image | downloads_display | blinka | date_added | features | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| download | jetson_tx1 | Jetson TX1 | Jetson TX1 | NVIDIA |
|
jetson_tx1.jpg | true | true | 2019-12-03 |
|
The world's first supercomputer on a module, Jetson TX1 is capable of delivering the performance and power efficiency needed for the latest visual computing applications. It's built around the revolutionary NVIDIA Maxwell™ architecture with 256 CUDA cores delivering over 1 TeraFLOPs of performance. 64-bit CPUs, 4K video encode and decode capabilities, and a camera interface capable of 1400 MPix/s make this the best system for embedded deep learning, computer vision, graphics, and GPU computing.
- GPU 256-core NVIDIA Maxwell™ GPU
- CPU Quad-Core ARM® Cortex®-A57 MPCore
- Memory 4GB 64-bit LPDDR4 Memory
- Storage 16GB eMMC
- Video: 4K 60 Hz decode | 4K 30 Hz encode
- USB USB 3.0 + USB 2.0
- Ethernet 1
- I2C 4
- CAN 1
- SPI 3
- UART 1
- GPIO 1
- Display Interface HDMI
- Operating Systems Linux Ubuntu
- PC Card Interface SD