cores/usb_hid/usb_api.cpp
2013-10-23 01:59:47 -07:00

820 lines
20 KiB
C++

/* USB API for Teensy USB Development Board
* http://www.pjrc.com/teensy/teensyduino.html
* Copyright (c) 2008 PJRC.COM, LLC
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <stdint.h>
#include "usb_common.h"
#include "usb_private.h"
#include "usb_api.h"
#include "wiring.h"
// Step #1, decode UTF8 to Unicode code points
//
#if ARDUINO >= 100
size_t usb_keyboard_class::write(uint8_t c)
#else
void usb_keyboard_class::write(uint8_t c)
#endif
{
if (c < 0x80) {
// single byte encoded, 0x00 to 0x7F
utf8_state = 0;
write_unicode(c);
} else if (c < 0xC0) {
// 2nd, 3rd or 4th byte, 0x80 to 0xBF
c &= 0x3F;
if (utf8_state == 1) {
utf8_state = 0;
write_unicode(unicode_wchar | c);
} else if (utf8_state == 2) {
unicode_wchar |= ((uint16_t)c << 6);
utf8_state = 1;
}
} else if (c < 0xE0) {
// begin 2 byte sequence, 0xC2 to 0xDF
// or illegal 2 byte sequence, 0xC0 to 0xC1
unicode_wchar = (uint16_t)(c & 0x1F) << 6;
utf8_state = 1;
} else if (c < 0xF0) {
// begin 3 byte sequence, 0xE0 to 0xEF
unicode_wchar = (uint16_t)(c & 0x0F) << 12;
utf8_state = 2;
} else {
// begin 4 byte sequence (not supported), 0xF0 to 0xF4
// or illegal, 0xF5 to 0xFF
utf8_state = 255;
}
#if ARDUINO >= 100
return 1;
#endif
}
// Step #2: translate Unicode code point to keystroke sequence
//
KEYCODE_TYPE usb_keyboard_class::unicode_to_keycode(uint16_t cpoint)
{
// Unicode code points beyond U+FFFF are not supported
// technically this input should probably be called UCS-2
if (cpoint < 32) {
if (cpoint == 10) return KEY_ENTER & 0x3FFF;
return 0;
}
if (cpoint < 128) {
if (sizeof(KEYCODE_TYPE) == 1) {
return pgm_read_byte(keycodes_ascii + (cpoint - 0x20));
} else if (sizeof(KEYCODE_TYPE) == 2) {
return pgm_read_word(keycodes_ascii + (cpoint - 0x20));
}
return 0;
}
#ifdef ISO_8859_1_A0
if (cpoint <= 0xA0) return 0;
if (cpoint < 0x100) {
if (sizeof(KEYCODE_TYPE) == 1) {
return pgm_read_byte(keycodes_iso_8859_1 + (cpoint - 0xA0));
} else if (sizeof(KEYCODE_TYPE) == 2) {
return pgm_read_word(keycodes_iso_8859_1 + (cpoint - 0xA0));
}
return 0;
}
#endif
//#ifdef UNICODE_20AC
//if (cpoint == 0x20AC) return UNICODE_20AC & 0x3FFF;
//#endif
#ifdef KEYCODE_EXTRA00
if (cpoint == UNICODE_EXTRA00) return KEYCODE_EXTRA00 & 0x3FFF;
#endif
#ifdef KEYCODE_EXTRA01
if (cpoint == UNICODE_EXTRA01) return KEYCODE_EXTRA01 & 0x3FFF;
#endif
#ifdef KEYCODE_EXTRA02
if (cpoint == UNICODE_EXTRA02) return KEYCODE_EXTRA02 & 0x3FFF;
#endif
#ifdef KEYCODE_EXTRA03
if (cpoint == UNICODE_EXTRA03) return KEYCODE_EXTRA03 & 0x3FFF;
#endif
#ifdef KEYCODE_EXTRA04
if (cpoint == UNICODE_EXTRA04) return KEYCODE_EXTRA04 & 0x3FFF;
#endif
#ifdef KEYCODE_EXTRA05
if (cpoint == UNICODE_EXTRA05) return KEYCODE_EXTRA05 & 0x3FFF;
#endif
#ifdef KEYCODE_EXTRA06
if (cpoint == UNICODE_EXTRA06) return KEYCODE_EXTRA06 & 0x3FFF;
#endif
#ifdef KEYCODE_EXTRA07
if (cpoint == UNICODE_EXTRA07) return KEYCODE_EXTRA07 & 0x3FFF;
#endif
#ifdef KEYCODE_EXTRA08
if (cpoint == UNICODE_EXTRA08) return KEYCODE_EXTRA08 & 0x3FFF;
#endif
#ifdef KEYCODE_EXTRA09
if (cpoint == UNICODE_EXTRA09) return KEYCODE_EXTRA09 & 0x3FFF;
#endif
return 0;
}
// Step #3: execute keystroke sequence
//
void usb_keyboard_class::write_keycode(KEYCODE_TYPE keycode)
{
if (!keycode) return;
#ifdef DEADKEYS_MASK
KEYCODE_TYPE deadkeycode = deadkey_to_keycode(keycode);
if (deadkeycode) write_key(deadkeycode);
#endif
write_key(keycode);
}
KEYCODE_TYPE usb_keyboard_class::deadkey_to_keycode(KEYCODE_TYPE keycode)
{
#ifdef DEADKEYS_MASK
keycode &= DEADKEYS_MASK;
if (keycode == 0) return 0;
#ifdef ACUTE_ACCENT_BITS
if (keycode == ACUTE_ACCENT_BITS) return DEADKEY_ACUTE_ACCENT;
#endif
#ifdef CEDILLA_BITS
if (keycode == CEDILLA_BITS) return DEADKEY_CEDILLA;
#endif
#ifdef CIRCUMFLEX_BITS
if (keycode == CIRCUMFLEX_BITS) return DEADKEY_CIRCUMFLEX;
#endif
#ifdef DIAERESIS_BITS
if (keycode == DIAERESIS_BITS) return DEADKEY_DIAERESIS;
#endif
#ifdef GRAVE_ACCENT_BITS
if (keycode == GRAVE_ACCENT_BITS) return DEADKEY_GRAVE_ACCENT;
#endif
#ifdef TILDE_BITS
if (keycode == TILDE_BITS) return DEADKEY_TILDE;
#endif
#ifdef RING_ABOVE_BITS
if (keycode == RING_ABOVE_BITS) return DEADKEY_RING_ABOVE;
#endif
#endif // DEADKEYS_MASK
return 0;
}
// Step #4: do each keystroke
//
void usb_keyboard_class::write_key(KEYCODE_TYPE keycode)
{
keyboard_report_data[0] = keycode_to_modifier(keycode);
keyboard_report_data[1] = 0;
keyboard_report_data[2] = keycode_to_key(keycode);
keyboard_report_data[3] = 0;
keyboard_report_data[4] = 0;
keyboard_report_data[5] = 0;
keyboard_report_data[6] = 0;
keyboard_report_data[7] = 0;
send_now();
keyboard_report_data[0] = 0;
keyboard_report_data[2] = 0;
send_now();
}
uint8_t usb_keyboard_class::keycode_to_modifier(KEYCODE_TYPE keycode)
{
uint8_t modifier=0;
#ifdef SHIFT_MASK
if (keycode & SHIFT_MASK) modifier |= MODIFIERKEY_SHIFT;
#endif
#ifdef ALTGR_MASK
if (keycode & ALTGR_MASK) modifier |= MODIFIERKEY_RIGHT_ALT;
#endif
#ifdef RCTRL_MASK
if (keycode & RCTRL_MASK) modifier |= MODIFIERKEY_RIGHT_CTRL;
#endif
return modifier;
}
uint8_t usb_keyboard_class::keycode_to_key(KEYCODE_TYPE keycode)
{
uint8_t key = keycode & 0x3F;
#ifdef KEY_NON_US_100
if (key == KEY_NON_US_100) key = 100;
#endif
return key;
}
void usb_keyboard_class::set_modifier(uint8_t c)
{
keyboard_report_data[0] = c;
}
void usb_keyboard_class::set_key1(uint8_t c)
{
keyboard_report_data[2] = c;
}
void usb_keyboard_class::set_key2(uint8_t c)
{
keyboard_report_data[3] = c;
}
void usb_keyboard_class::set_key3(uint8_t c)
{
keyboard_report_data[4] = c;
}
void usb_keyboard_class::set_key4(uint8_t c)
{
keyboard_report_data[5] = c;
}
void usb_keyboard_class::set_key5(uint8_t c)
{
keyboard_report_data[6] = c;
}
void usb_keyboard_class::set_key6(uint8_t c)
{
keyboard_report_data[7] = c;
}
void usb_keyboard_class::set_media(uint8_t c)
{
keyboard_report_data[1] = c;
}
void usb_keyboard_class::send_now(void)
{
uint8_t intr_state, timeout;
if (!usb_configuration) return;
intr_state = SREG;
cli();
UENUM = KEYBOARD_ENDPOINT;
timeout = UDFNUML + 50;
while (1) {
// are we ready to transmit?
if (UEINTX & (1<<RWAL)) break;
SREG = intr_state;
// has the USB gone offline?
if (!usb_configuration) return;
// have we waited too long?
if (UDFNUML == timeout) return;
// get ready to try checking again
intr_state = SREG;
cli();
UENUM = KEYBOARD_ENDPOINT;
}
UEDATX = keyboard_report_data[0];
UEDATX = keyboard_report_data[1];
UEDATX = keyboard_report_data[2];
UEDATX = keyboard_report_data[3];
UEDATX = keyboard_report_data[4];
UEDATX = keyboard_report_data[5];
UEDATX = keyboard_report_data[6];
UEDATX = keyboard_report_data[7];
UEINTX = 0x3A;
keyboard_idle_count = 0;
SREG = intr_state;
}
void usb_keyboard_class::press(uint16_t n)
{
uint8_t key, mod, msb, modrestore=0;
msb = n >> 8;
if (msb >= 0xC2 && msb <= 0xDF) {
n = (n & 0x3F) | ((uint16_t)(msb & 0x1F) << 6);
} else
if (msb == 0x80) {
presskey(0, n);
return;
} else
if (msb == 0x40) {
presskey(n, 0);
return;
}
KEYCODE_TYPE keycode = unicode_to_keycode(n);
if (!keycode) return;
#ifdef DEADKEYS_MASK
KEYCODE_TYPE deadkeycode = deadkey_to_keycode(keycode);
if (deadkeycode) {
modrestore = keyboard_report_data[0];
if (modrestore) {
keyboard_report_data[0] = 0;
send_now();
}
// TODO: test if operating systems recognize
// deadkey sequences when other keys are held
mod = keycode_to_modifier(deadkeycode);
key = keycode_to_key(deadkeycode);
presskey(key, mod);
releasekey(key, mod);
}
#endif
mod = keycode_to_modifier(keycode);
key = keycode_to_key(keycode);
presskey(key, mod | modrestore);
}
void usb_keyboard_class::release(uint16_t n)
{
uint8_t key, mod, msb;
msb = n >> 8;
if (msb >= 0xC2 && msb <= 0xDF) {
n = (n & 0x3F) | ((uint16_t)(msb & 0x1F) << 6);
} else
if (msb == 0x80) {
releasekey(0, n);
return;
} else
if (msb == 0x40) {
releasekey(n, 0);
return;
}
KEYCODE_TYPE keycode = unicode_to_keycode(n);
if (!keycode) return;
mod = keycode_to_modifier(keycode);
key = keycode_to_key(keycode);
releasekey(key, mod);
}
void usb_keyboard_class::presskey(uint8_t key, uint8_t modifier)
{
bool send_required = false;
uint8_t i;
if (modifier) {
if ((keyboard_report_data[0] & modifier) != modifier) {
keyboard_report_data[0] |= modifier;
send_required = true;
}
}
if (key) {
for (i=2; i < 8; i++) {
if (keyboard_report_data[i] == key) goto end;
}
for (i=2; i < 8; i++) {
if (keyboard_report_data[i] == 0) {
keyboard_report_data[i] = key;
send_required = true;
goto end;
}
}
}
end:
if (send_required) send_now();
}
void usb_keyboard_class::releasekey(uint8_t key, uint8_t modifier)
{
bool send_required = false;
uint8_t i;
if (modifier) {
if ((keyboard_report_data[0] & modifier) != 0) {
keyboard_report_data[0] &= ~modifier;
send_required = true;
}
}
if (key) {
for (i=2; i < 8; i++) {
if (keyboard_report_data[i] == key) {
keyboard_report_data[i] = 0;
send_required = true;
}
}
}
if (send_required) send_now();
}
void usb_keyboard_class::releaseAll(void)
{
uint8_t i, anybits;
anybits = keyboard_report_data[0];
for (i=2; i < 8; i++) {
anybits |= keyboard_report_data[i];
keyboard_report_data[i] = 0;
}
if (!anybits) return;
keyboard_report_data[0] = 0;
send_now();
}
void usb_mouse_class::move(int8_t x, int8_t y, int8_t wheel)
{
uint8_t intr_state, timeout;
if (!usb_configuration) return;
if (x == -128) x = -127;
if (y == -128) y = -127;
if (wheel == -128) wheel = -127;
intr_state = SREG;
cli();
UENUM = MOUSE_ENDPOINT;
timeout = UDFNUML + 50;
while (1) {
// are we ready to transmit?
if (UEINTX & (1<<RWAL)) break;
SREG = intr_state;
// has the USB gone offline?
if (!usb_configuration) return;
// have we waited too long?
if (UDFNUML == timeout) return;
// get ready to try checking again
intr_state = SREG;
cli();
UENUM = MOUSE_ENDPOINT;
}
UEDATX = mouse_buttons;
UEDATX = x;
UEDATX = y;
UEDATX = wheel;
UEINTX = 0x3A;
SREG = intr_state;
}
void usb_mouse_class::click(uint8_t b)
{
mouse_buttons = (b & 7);
move(0, 0);
mouse_buttons = 0;
move(0, 0);
}
void usb_mouse_class::scroll(int8_t wheel)
{
move(0, 0, wheel);
}
void usb_mouse_class::set_buttons(uint8_t left, uint8_t middle, uint8_t right)
{
uint8_t mask=0;
if (left) mask |= 1;
if (middle) mask |= 4;
if (right) mask |= 2;
mouse_buttons = mask;
move(0, 0);
}
void usb_mouse_class::press(uint8_t b)
{
uint8_t prev = mouse_buttons;
mouse_buttons |= (b & 7);
if (mouse_buttons != prev) move(0, 0);
}
void usb_mouse_class::release(uint8_t b)
{
uint8_t prev = mouse_buttons;
mouse_buttons &= ~(b & 7);
if (mouse_buttons != prev) move(0, 0);
}
bool usb_mouse_class::isPressed(uint8_t b)
{
return ((mouse_buttons & (b & 7)) != 0);
}
#if defined(__AVR_ATmega32U4__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
void usb_joystick_class::send_now(void)
{
uint8_t intr_state, timeout;
if (!usb_configuration) return;
intr_state = SREG;
cli();
UENUM = JOYSTICK_ENDPOINT;
timeout = UDFNUML + 50;
while (1) {
// are we ready to transmit?
if (UEINTX & (1<<RWAL)) break;
SREG = intr_state;
// has the USB gone offline?
if (!usb_configuration) return;
// have we waited too long?
if (UDFNUML == timeout) return;
// get ready to try checking again
intr_state = SREG;
cli();
UENUM = JOYSTICK_ENDPOINT;
}
UEDATX = joystick_report_data[0];
UEDATX = joystick_report_data[1];
UEDATX = joystick_report_data[2];
UEDATX = joystick_report_data[3];
UEDATX = joystick_report_data[4];
UEDATX = joystick_report_data[5];
UEDATX = joystick_report_data[6];
UEDATX = joystick_report_data[7];
UEDATX = joystick_report_data[8];
UEDATX = joystick_report_data[9];
UEDATX = joystick_report_data[10];
UEDATX = joystick_report_data[11];
UEINTX = 0x3A;
SREG = intr_state;
}
#endif
static volatile uint8_t prev_byte=0;
void usb_serial_class::begin(long speed)
{
// make sure USB is initialized
usb_init();
uint16_t begin_wait = (uint16_t)millis();
while (1) {
if (usb_configuration) {
delay(200); // a little time for host to load a driver
return;
}
if (usb_suspended) {
uint16_t begin_suspend = (uint16_t)millis();
while (usb_suspended) {
// must remain suspended for a while, because
// normal USB enumeration causes brief suspend
// states, typically under 0.1 second
if ((uint16_t)millis() - begin_suspend > 250) {
return;
}
}
}
// ... or a timout (powered by a USB power adaptor that
// wiggles the data lines to keep a USB device charging)
if ((uint16_t)millis() - begin_wait > 2500) return;
}
prev_byte = 0;
}
void usb_serial_class::end()
{
usb_shutdown();
delay(25);
}
// number of bytes available in the receive buffer
int usb_serial_class::available()
{
uint8_t c;
c = prev_byte; // assume 1 byte static volatile access is atomic
if (c) return 1;
c = readnext();
if (c) {
prev_byte = c;
return 1;
}
return 0;
}
// get the next character, or -1 if nothing received
int usb_serial_class::read()
{
uint8_t c;
c = prev_byte;
if (c) {
prev_byte = 0;
return c;
}
c = readnext();
if (c) return c;
return -1;
}
int usb_serial_class::peek()
{
uint8_t c;
c = prev_byte;
if (c) return c;
c = readnext();
if (c) {
prev_byte = c;
return c;
}
return -1;
}
// get the next character, or 0 if nothing
uint8_t usb_serial_class::readnext(void)
{
uint8_t c, intr_state;
// interrupts are disabled so these functions can be
// used from the main program or interrupt context,
// even both in the same program!
intr_state = SREG;
cli();
if (!usb_configuration) {
SREG = intr_state;
return 0;
}
UENUM = DEBUG_RX_ENDPOINT;
try_again:
if (!(UEINTX & (1<<RWAL))) {
// no packet in buffer
SREG = intr_state;
return 0;
}
// take one byte out of the buffer
c = UEDATX;
if (c == 0) {
// if we see a zero, discard it and
// discard the rest of this packet
UEINTX = 0x6B;
goto try_again;
}
// if this drained the buffer, release it
if (!(UEINTX & (1<<RWAL))) UEINTX = 0x6B;
SREG = intr_state;
return c;
}
// discard any buffered input
void usb_serial_class::flush()
{
uint8_t intr_state;
if (usb_configuration) {
intr_state = SREG;
cli();
UENUM = DEBUG_RX_ENDPOINT;
while ((UEINTX & (1<<RWAL))) {
UEINTX = 0x6B;
}
SREG = intr_state;
}
prev_byte = 0;
}
// transmit a character.
#if ARDUINO >= 100
size_t usb_serial_class::write(uint8_t c)
#else
void usb_serial_class::write(uint8_t c)
#endif
{
//static uint8_t previous_timeout=0;
uint8_t timeout, intr_state;
// if we're not online (enumerated and configured), error
if (!usb_configuration) goto error;
// interrupts are disabled so these functions can be
// used from the main program or interrupt context,
// even both in the same program!
intr_state = SREG;
cli();
UENUM = DEBUG_TX_ENDPOINT;
// if we gave up due to timeout before, don't wait again
#if 0
// this seems to be causig a lockup... why????
if (previous_timeout) {
if (!(UEINTX & (1<<RWAL))) {
SREG = intr_state;
return;
}
previous_timeout = 0;
}
#endif
// wait for the FIFO to be ready to accept data
timeout = UDFNUML + TRANSMIT_TIMEOUT;
while (1) {
// are we ready to transmit?
if (UEINTX & (1<<RWAL)) break;
SREG = intr_state;
// have we waited too long? This happens if the user
// is not running an application that is listening
if (UDFNUML == timeout) {
//previous_timeout = 1;
goto error;
}
// has the USB gone offline?
if (!usb_configuration) goto error;
// get ready to try checking again
intr_state = SREG;
cli();
UENUM = DEBUG_TX_ENDPOINT;
}
// actually write the byte into the FIFO
UEDATX = c;
// if this completed a packet, transmit it now!
if (!(UEINTX & (1<<RWAL))) {
UEINTX = 0x3A;
debug_flush_timer = 0;
} else {
debug_flush_timer = TRANSMIT_FLUSH_TIMEOUT;
}
SREG = intr_state;
#if ARDUINO >= 100
return 1;
#endif
error:
#if ARDUINO >= 100
setWriteError();
return 0;
#else
return;
#endif
}
// These are Teensy-specific extensions to the Serial object
// immediately transmit any buffered output.
// This doesn't actually transmit the data - that is impossible!
// USB devices only transmit when the host allows, so the best
// we can do is release the FIFO buffer for when the host wants it
void usb_serial_class::send_now(void)
{
uint8_t intr_state;
intr_state = SREG;
cli();
if (debug_flush_timer) {
UENUM = DEBUG_TX_ENDPOINT;
while ((UEINTX & (1<<RWAL))) {
UEDATX = 0;
}
UEINTX = 0x3A;
debug_flush_timer = 0;
}
SREG = intr_state;
}
uint32_t usb_serial_class::baud(void)
{
return ((uint32_t)DEBUG_TX_SIZE * 10000 / DEBUG_TX_INTERVAL);
}
uint8_t usb_serial_class::stopbits(void)
{
return 1;
}
uint8_t usb_serial_class::paritytype(void)
{
return 0;
}
uint8_t usb_serial_class::numbits(void)
{
return 8;
}
uint8_t usb_serial_class::dtr(void)
{
return 1;
}
uint8_t usb_serial_class::rts(void)
{
return 1;
}
usb_serial_class::operator bool()
{
if (usb_configuration) return true;
return false;
}
// Preinstantiate Objects //////////////////////////////////////////////////////
usb_serial_class Serial = usb_serial_class();
usb_keyboard_class Keyboard = usb_keyboard_class();
usb_mouse_class Mouse = usb_mouse_class();
#if defined(__AVR_ATmega32U4__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
usb_joystick_class Joystick = usb_joystick_class();
#endif